Magnetism Was First Discovered by William Gilbert, and Was the First the Investigate the Mystery of Magnetism Using the Scientific Method

Total Page:16

File Type:pdf, Size:1020Kb

Magnetism Was First Discovered by William Gilbert, and Was the First the Investigate the Mystery of Magnetism Using the Scientific Method SCIO HIGH SCHOOL Name: PHYSICS Period: CONTENT WORK- Presentation Date: February 5, 2018 Overview of Major Concept(s) State and Explain Major Concept(s):: Iron is the most common element that is used in magnents because of its electrons. Electrons create magnetic fields by spinning. Most other elements are not as magnetic as iron due to their electrons canceling out eachothers magnetic field by spinning in opposite directions. Iron is so magnetic because four of its electrons spin the same way uncancled. Magnets always have a north seeking pole and a south seeking pole. Opposite poles attract, and like poles repel. Magnetic fields also behave with charged particles by deflecting them. this is why earth is not bombarded with cosmic radiation. Historical Perspective: Magnetism was first discovered by William Gilbert, and was the first the investigate the mystery of magnetism using the scientific method. Gilbert was also the one to discover that the Earth itself was a very weak magnet. Since then, magnetism has been studied by many other scientists. Most noteably, Carl Friedrich Gauss, Charles Coulomb, and Hans Christian Oersted. Application of Concept(s): Magnetism was first discovered by William Gilbert, and was the first the investigate the mystery of magnetism using the scientific method. Gilbert was also the one to discover that the Earth itself was a very weak magnet. Since then, magnetism has been studied by many other scientists. Most noteably, Carl Friedrich Gauss, Charles Coulomb, and Hans Christian Oersted. Think and Explain Questions Answers: 1. A stationary electric charge is surrounded by a magnetic field, and an electric field surrounds a charge in motion. 2. Iron has an odd amount of free electrons, makings it ferromagnetic. Wood is not ferromagnetic. 3. The iron fillings act as an outline that shows the magnetic fields because they are magnetic. However, they are not magnets. 4. The magnets exert the same amount of force on one another. 5. The magnetic domains in the iron are induced into allignment. Because this further increases the magnetic field intensity, it becomes an electromagnet. 6. The plasma must be moving in order to keep it from escaping. 7. A magnetic field holds the particles in a circular motion, while the electric field increases the speed it is traveling. 8. It cannot do work on them because it is the tangential component to the electromagnetic force. 9. The force on the particles is greatest when it is moving perpendicular to the magnet, and the force is less, or zero when the particle is moving parallel with the field. 10. It allows the pigeons to determine their latitude, longitude, and altitude. 11. The intensity of the cosmic rays was greater when Earth was in the zero phase. Review Questions Answers: 1. Both of them have poles. Opposites attract and like poles repel. 2. Magnetic poles cannot be isolated whereas electric charges can. 3. The source of a magnetic field is a magnet. A magnetic field is the space around a magnet, in which the magnetic force is exerted. 4. Not every atom is a magnet because most atoms have electrons spinning in the opposite directions to cancel out the magnetic force. Some atoms only have one electron that is not counteracted whereas iron has 4. 5. Iron has 4 electrons that spin in the same direction that are uncanceled. This is why Iron has the greatest magnetic properties. 6. A magnetic domain is a cluster of aligned iron atoms. 7. The pieces of iron that do not behave as magnets are not aligned, whereas iron that does behave as a magnet is aligned. 8. A piece of iron can be induced into becoming a magnet by rubbing a manet against it. This in turn will alaign the iron atoms causing a magnetic domain. The paper clip near the magnet will also become a magnet but a very weak one. 9. This will weaken a magnet because it will make the domains split up by changing the alignment of the atoms. 10. A concentric circle. 11. It is stronger because the current overlaps on the inside causing a greater force. 12. It has to move in the magnetic field. 13. The direction of the magnetic force is perpendicular to the motion of the charge. 14. It deflects cosmic radiation. 15. They both are forced perpendicular to the magnetic field lines. 16. When an electrical current passes through the loops of insulated wire they have a force on the needle from the magnetic fields produced. 17. This allows the motor to keep going. 18. It means that a compass doesn't point to true north, but to the magnetic north pole. 19. Convection currents, molten parts of earth's core, and moving charges within the earth. 20. Magnetic pole reversals occur when the magnetic poles reverse. Scientists can determine this by investigating the strata with insturments to determine the magnetic state of the strata at that time. .
Recommended publications
  • The Concept of Field in the History of Electromagnetism
    The concept of field in the history of electromagnetism Giovanni Miano Department of Electrical Engineering University of Naples Federico II ET2011-XXVII Riunione Annuale dei Ricercatori di Elettrotecnica Bologna 16-17 giugno 2011 Celebration of the 150th Birthday of Maxwell’s Equations 150 years ago (on March 1861) a young Maxwell (30 years old) published the first part of the paper On physical lines of force in which he wrote down the equations that, by bringing together the physics of electricity and magnetism, laid the foundations for electromagnetism and modern physics. Statue of Maxwell with its dog Toby. Plaque on E-side of the statue. Edinburgh, George Street. Talk Outline ! A brief survey of the birth of the electromagnetism: a long and intriguing story ! A rapid comparison of Weber’s electrodynamics and Maxwell’s theory: “direct action at distance” and “field theory” General References E. T. Wittaker, Theories of Aether and Electricity, Longam, Green and Co., London, 1910. O. Darrigol, Electrodynamics from Ampère to Einste in, Oxford University Press, 2000. O. M. Bucci, The Genesis of Maxwell’s Equations, in “History of Wireless”, T. K. Sarkar et al. Eds., Wiley-Interscience, 2006. Magnetism and Electricity In 1600 Gilbert published the “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). ! The Earth is magnetic ()*+(,-.*, Magnesia ad Sipylum) and this is why a compass points north. ! In a quite large class of bodies (glass, sulphur, …) the friction induces the same effect observed in the amber (!"#$%&'(, Elektron). Gilbert gave to it the name “electricus”.
    [Show full text]
  • 08. Ampère and Faraday Darrigol (2000), Chap 1
    08. Ampère and Faraday Darrigol (2000), Chap 1. A. Pre-1820. (1) Electrostatics (frictional electricity) • 1780s. Coulomb's description: ! Two electric fluids: positive and negative. ! Inverse square law: It follows therefore from these three tests, that the repulsive force that the two balls -- [which were] electrified with the same kind of electricity -- exert on each other, Charles-Augustin de Coulomb follows the inverse proportion of (1736-1806) the square of the distance."" (2) Magnetism: Coulomb's description: • Two fluids ("astral" and "boreal") obeying inverse square law. • No magnetic monopoles: fluids are imprisoned in molecules of magnetic bodies. (3) Galvanism • 1770s. Galvani's frog legs. "Animal electricity": phenomenon belongs to biology. • 1800. Volta's ("volatic") pile. Luigi Galvani (1737-1798) • Pile consists of alternating copper and • Charged rod connected zinc plates separated by to inner foil. brine-soaked cloth. • Outer foil grounded. • A "battery" of Leyden • Inner and outer jars that can surfaces store equal spontaeously recharge but opposite charges. themselves. 1745 Leyden jar. • Volta: Pile is an electric phenomenon and belongs to physics. • But: Nicholson and Carlisle use voltaic current to decompose Alessandro Volta water into hydrogen and oxygen. Pile belongs to chemistry! (1745-1827) • Are electricity and magnetism different phenomena? ! Electricity involves violent actions and effects: sparks, thunder, etc. ! Magnetism is more quiet... Hans Christian • 1820. Oersted's Experimenta circa effectum conflictus elecrici in Oersted (1777-1851) acum magneticam ("Experiments on the effect of an electric conflict on the magnetic needle"). ! Galvanic current = an "electric conflict" between decompositions and recompositions of positive and negative electricities. ! Experiments with a galvanic source, connecting wire, and rotating magnetic needle: Needle moves in presence of pile! "Otherwise one could not understand how Oersted's Claims the same portion of the wire drives the • Electric conflict acts on magnetic poles.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Appendix H: Common Units and Conversions Appendices 215
    Appendix H: Common Units and Conversions Appendices 215 Appendix H: Common Units and Conversions Temperature Length Fahrenheit to Celsius: °C = (°F-32)/1.8 1 micrometer (sometimes referred centimeter (cm) meter (m) inch (in) Celsius to Fahrenheit: °F = (1.8 × °C) + 32 to as micron) = 10-6 m Fahrenheit to Kelvin: convert °F to °C, then add 273.15 centimeter (cm) 1 1.000 × 10–2 0.3937 -3 Celsius to Kelvin: add 273.15 meter (m) 100 1 39.37 1 mil = 10 in Volume inch (in) 2.540 2.540 × 10–2 1 –3 3 1 liter (l) = 1.000 × 10 cubic meters (m ) = 61.02 Area cubic inches (in3) cm2 m2 in2 circ mil Mass cm2 1 10–4 0.1550 1.974 × 105 1 kilogram (kg) = 1000 grams (g) = 2.205 pounds (lb) m2 104 1 1550 1.974 × 109 Force in2 6.452 6.452 × 10–4 1 1.273 × 106 1 newton (N) = 0.2248 pounds (lb) circ mil 5.067 × 10–6 5.067 × 10–10 7.854 × 10–7 1 Electric resistivity Pressure 1 micro-ohm-centimeter (µΩ·cm) pascal (Pa) millibar (mbar) torr (Torr) atmosphere (atm) psi (lbf/in2) = 1.000 × 10–6 ohm-centimeter (Ω·cm) –2 –3 –6 –4 = 1.000 × 10–8 ohm-meter (Ω·m) pascal (Pa) 1 1.000 × 10 7.501 × 10 9.868 × 10 1.450 × 10 = 6.015 ohm-circular mil per foot (Ω·circ mil/ft) millibar (mbar) 1.000 × 102 1 7.502 × 10–1 9.868 × 10–4 1.450 × 10–2 2 0 –3 –2 Heat flow rate torr (Torr) 1.333 × 10 1.333 × 10 1 1.316 × 10 1.934 × 10 5 3 2 1 1 watt (W) = 3.413 Btu/h atmosphere (atm) 1.013 × 10 1.013 × 10 7.600 × 10 1 1.470 × 10 1 British thermal unit per hour (Btu/h) = 0.2930 W psi (lbf/in2) 6.897 × 103 6.895 × 101 5.172 × 101 6.850 × 10–2 1 1 torr (Torr) = 133.332 pascal (Pa) 1 pascal (Pa) = 0.01 millibar (mbar) 1.33 millibar (mbar) 0.007501 torr (Torr) –6 A Note on SI 0.001316 atmosphere (atm) 9.87 × 10 atmosphere (atm) 2 –4 2 The values in this catalog are expressed in 0.01934 psi (lbf/in ) 1.45 × 10 psi (lbf/in ) International System of Units, or SI (from the Magnetic induction B French Le Système International d’Unités).
    [Show full text]
  • Automatic Irrigation : Sensors and System
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1970 Automatic Irrigation : Sensors and System Herman G. Hamre Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Hamre, Herman G., "Automatic Irrigation : Sensors and System" (1970). Electronic Theses and Dissertations. 3780. https://openprairie.sdstate.edu/etd/3780 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. AUTOMATIC IRRIGATION: SENSORS AND SYSTEM BY HERMAN G. HAMRE A thesis submitted in partial fulfillment of the requirements for the degree Master of Science, Major in Electrical Engineering, South Dakota State University 1970 SOUTH DAKOTA STATE UNIVERSITY LIBRARY AUTOMATIC IRRIGATION: SENSORS AND SYSTEM This thesis is approved as a creditable and independent investi­ gation by a candidate for the degree, Master of Science, and is accept­ able as meeting the thesis requirements for this degree, but without implying that the conclusions reached by the candidate are necessarily the conclusions of the major department. �--- -"""'" _ _ -���--- - _ _ _ _____ -A>� - 7 7 T b � s/./ifjvisor ate Head, Electrical -r-oate Engineering Department ACKNOWLE GEMENTS The author wishes to express his sincere appreciation to Dr. A. J. Kurtenbach for his patient guidance and helpful suggestions, and to the Water Resources Institute for their support of this research.
    [Show full text]
  • Electricity and Magnetism
    Lecture 10 Fundamentals of Physics Phys 120, Fall 2015 Electricity and Magnetism A. J. Wagner North Dakota State University, Fargo, ND 58102 Fargo, September 24, 2015 Overview • Unexplained phenomena • Charges and electric forces revealed • Currents and circuits • Electricity and Magnetism are related! 1 Newton’s dream I wish we could derive the rest of the phenomena of Nature by the same kind of reasoning from mechanical principles, for I am induced by many reasons to suspect that they may all depend upon certain forces by which the particles of bodies, by some cause hitherto unknown, are either mutually impelled towards one another, and cohere in regular figures, or are repelled and recede from one another. from the preface of Newton’s Principia 2 What were those mysterious phenomena? 900 BC: Magnus, a Greek shepherd, walks across a field of black stones which pull the iron nails out of his sandals and the iron tip from his shepherd’s staff (authenticity not guaranteed). This region becomes known as Magnesia. 600 BC: Thales of Miletos(Greece) discovered that by rubbing an ’elektron’ (a hard, fossilized resin that today is known as amber) against a fur cloth, it would attract particles of straw and feathers. This strange effect remained a mystery for over 2000 years. 1269 AD: Petrus Peregrinus of Picardy, Italy, discovers that natural spherical magnets (lodestones) align needles with lines of longitude pointing between two pole positions on the stone. 3 ca. 1600: Dr.William Gilbert (court physician to Queen Elizabeth) discovers that the earth is a giant magnet just like one of the stones of Peregrinus, explaining how compasses work.
    [Show full text]
  • From Abraham De Moivre to Johann Carl Friedrich Gauss
    International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 7 Issue 6 Ver V || June 2018 || PP 28-34 A Brief Historical Overview Of the Gaussian Curve: From Abraham De Moivre to Johann Carl Friedrich Gauss Edel Alexandre Silva Pontes1 1Department of Mathematics, Federal Institute of Alagoas, Brazil Abstract : If there were only one law of probability to be known, this would be the Gaussian distribution. Faced with this uneasiness, this article intends to discuss about this distribution associated with its graph called the Gaussian curve. Due to the scarcity of texts in the area and the great demand of students and researchers for more information about this distribution, this article aimed to present a material on the history of the Gaussian curve and its relations. In the eighteenth and nineteenth centuries, there were several mathematicians who developed research on the curve, including Abraham de Moivre, Pierre Simon Laplace, Adrien-Marie Legendre, Francis Galton and Johann Carl Friedrich Gauss. Some researchers refer to the Gaussian curve as the "curve of nature itself" because of its versatility and inherent nature in almost everything we find. Virtually all probability distributions were somehow part or originated from the Gaussian distribution. We believe that the work described, the study of the Gaussian curve, its history and applications, is a valuable contribution to the students and researchers of the different areas of science, due to the lack of more detailed research on the subject. Keywords - History of Mathematics, Distribution of Probabilities, Gaussian Curve. ----------------------------------------------------------------------------------------------------------------------------- --------- Date of Submission: 09-06-2018 Date of acceptance: 25-06-2018 ----------------------------------------------------------------------------------------------------------------------------- ---------- I.
    [Show full text]
  • Carl Friedrich Gauss Seminarski Rad
    SREDNJA ŠKOLA AMBROZA HARAČIĆA PODRUČNI ODJEL CRES CARL FRIEDRICH GAUSS SEMINARSKI RAD Cres, 2014. SREDNJA ŠKOLA AMBROZA HARAČIĆA PODRUČNI ODJEL CRES CARL FRIEDRICH GAUSS SEMINARSKI RAD Učenice: Marina Kučica Giulia Muškardin Brigita Novosel Razred: 3.g. Mentorica: prof. Melita Chiole Predmet: Matematika Cres, ožujak 2014. II Sadržaj 1. UVOD .................................................................................................................................... 1 2. DJETINJSTVO I ŠKOLOVANJE ......................................................................................... 2 3. PRIVATNI ŽIVOT ................................................................................................................ 5 4. GAUSSOV RAD ................................................................................................................... 6 4.1. Prvi znanstveni rad .......................................................................................................... 6 4.2. Teorija brojeva ................................................................................................................ 8 4.3. Geodezija ......................................................................................................................... 9 4.4. Fizika ............................................................................................................................. 11 4.5. Astronomija ................................................................................................................... 12 4.6. Religija
    [Show full text]
  • Physics, Chapter 30: Magnetic Fields of Currents
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 30: Magnetic Fields of Currents Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 30: Magnetic Fields of Currents" (1958). Robert Katz Publications. 151. https://digitalcommons.unl.edu/physicskatz/151 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 30 Magnetic Fields of Currents 30-1 Magnetic Field around an Electric Current The first evidence for the existence of a magnetic field around an electric current was observed in 1820 by Hans Christian Oersted (1777-1851). He found that a wire carrying current caused a freely pivoted compass needle B D N rDirection I of current D II. • ~ I I In wire ' \ N I I c , I s c (a) (b) Fig. 30-1 Oersted's experiment. Compass needle is deflected toward the west when the wire CD carrying current is placed above it and the direction of the current is toward the north, from C to D. in its vicinity to be deflected. If the current in a long straight wire is directed from C to D, as shown in Figure 30-1, a compass needle below it, whose initial orientation is shown in dotted lines, will have its north pole deflected to the left and its south pole deflected to the right.
    [Show full text]
  • 2 a Revolutionary Science
    2 A Revolutionary Science When the Parisian crowds stormed the Bastille fortress and prison on 14 July 1789, they set in motion a train of events that revolutionized European political culture. To many contem- porary commentators and observers of the French Revolution, it seemed that the growing disenchantment with the absolutist regime of Louis XVI had been fostered in part by a particular kind of philosophy. French philosophes condemning the iniqui- ties of the ancien regime´ drew parallels between the organization of society and the organization of nature. Like many other En- lightenment thinkers, they took it for granted that science, or natural philosophy,could be used as a tool to understand society as well as nature. They argued that the laws of nature showed how unjust and unnatural the government of France really was. It also seemed, to some at least, that the French Revolution pro- vided an opportunity to galvanize science as well as society. The new French Republic was a tabula rasa on which the reform- ers could write what they liked. They could refound society on philosophical principles, making sure this time around that the organization of society really did mirror the organization of nature. Refounding the social and intellectual structures of sci- ence itself was to be part of this process. In many ways, therefore, the storming of the Bastille led to a revolution in science as well. To many in this new generation of radical French natu- ral philosophers, mathematics seemed to provide the key to 22 A Revolutionary Science 23 understanding nature. This was nothing new in itself, of course.
    [Show full text]
  • Newton's Notebook
    Newton’s Notebook The Haverford School’s Math & Applied Math Journal Issue I Spring 2017 The Haverford School Newton’s Notebook Spring 2017 “To explain all nature is too difficult a task for any one man or even for any one age. ‘Tis much better to do a little with certainty & leave the rest for others that come after you.” ~Isaac Newton Table of Contents Pure Mathematics: 7 The Golden Ratio.........................................................................................Robert Chen 8 Fermat’s Last Theorem.........................................................................Michael Fairorth 9 Math in Coding............................................................................................Bram Schork 10 The Pythagoreans.........................................................................................Eusha Hasan 12 Transfinite Numbers.................................................................................Caleb Clothier 15 Sphere Equality................................................................................Matthew Baumholtz 16 Interesting Series.......................................................................................Aditya Sardesi 19 Indirect Proofs..............................................................................................Mr. Patrylak Applied Mathematics: 23 Physics in Finance....................................................................................Caleb Clothier 26 The von Bertalanffy Equation..................................................................Will
    [Show full text]
  • The Astronomical Work of Carl Friedrich Gauss
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector HISTORIA MATHEMATICA 5 (1978), 167-181 THE ASTRONOMICALWORK OF CARL FRIEDRICH GAUSS(17774855) BY ERIC G, FORBES, UNIVERSITY OF EDINBURGH, EDINBURGH EH8 9JY This paper was presented on 3 June 1977 at the Royal Society of Canada's Gauss Symposium at the Ontario Science Centre in Toronto [lj. SUMMARIES Gauss's interest in astronomy dates from his student-days in Gattingen, and was stimulated by his reading of Franz Xavier von Zach's Monatliche Correspondenz... where he first read about Giuseppe Piazzi's discovery of the minor planet Ceres on 1 January 1801. He quickly produced a theory of orbital motion which enabled that faint star-like object to be rediscovered by von Zach and others after it emerged from the rays of the Sun. Von Zach continued to supply him with the observations of contemporary European astronomers from which he was able to improve his theory to such an extent that he could detect the effects of planetary perturbations in distorting the orbit from an elliptical form. To cope with the complexities which these introduced into the calculations of Ceres and more especially the other minor planet Pallas, discovered by Wilhelm Olbers in 1802, Gauss developed a new and more rigorous numerical approach by making use of his mathematical theory of interpolation and his method of least-squares analysis, which was embodied in his famous Theoria motus of 1809. His laborious researches on the theory of Pallas's motion, in whi::h he enlisted the help of several former students, provided the framework of a new mathematical formu- lation of the problem whose solution can now be easily effected thanks to modern computational techniques.
    [Show full text]