bioRxiv preprint doi: https://doi.org/10.1101/454470; this version posted October 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Atlas of Subcellular RNA Localization Revealed by APEX-seq Furqan M. Fazal1,2,3,*, Shuo Han3,4,5,*, Pornchai Kaewsapsak3,4,5, Kevin R. Parker1,2,3, Jin Xu1,2,3, Alistair N. Boettiger6, Howard Y. Chang1,2,3,7,†, Alice Y. Ting3,4,5,8,9,† 1Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA 2Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA 3Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA 4Department of Chemistry, Stanford University, Stanford, CA, USA 5Department of Biology, Stanford University, Stanford, CA, USA 6Department of Developmental Biology, Stanford University School of Medicine, CA, USA 7Howard Hughes Medical Institute 8Chan Zuckerberg Biohub, San Francisco, California, USA 9Lead contact *These authors contributed equally to this work †Corresponding authors. Email:
[email protected] (A.Y.T.);
[email protected] (H.Y.C.) SUMMARY We introduce APEX-seq, a method for RNA sequencing based on spatial proximity to the peroxidase enzyme APEX2. APEX-seq in nine distinct subcellular locales produced a nanometer-resolution spatial map of the human transcriptome, revealing extensive and exquisite patterns of localization for diverse RNA classes and transcript isoforms. We uncover a radial organization of the nuclear transcriptome, which is gated at the inner surface of the nuclear pore for cytoplasmic export of processed transcripts.