Inhalt Magnetosphäre

Total Page:16

File Type:pdf, Size:1020Kb

Inhalt Magnetosphäre Merkur.............................. 68 Silfra-Spalte..............133 Orientierung............... 72 Death Valley............. 134 Inhalt Magnetosphäre..........73 Antarktis................... 136 Geschichte................. 74 Great Barrier Reef... 138 Vorwort...............................6 Gestatten: Amazonas- BepiColombo............... 76 Regenwald............... 140 Das Universum: Der Merkur in der Ngorongoro-Krater.. 142 eine Einführung...............8 Kultur............................. 77 Chinesische Mauer.. 144 Die Größe des Caloris Planitia........... 79 Universums............... 10 Pantheon Fossae......... 80 Mond...............................146 Moderne Raditladi-Becken..........81 Orientierung..............150 Beobachtungs­ Rachmaninoff-Krater. 82 Geschichte............... 152 methoden .................... 12 Caloris Montes............. 83 Der Mond in der Heutige Teleskope....... 14 Kultur...........................156 Anleitung zur Venus................................ 84 Gestatten: Apollo 11.158 Benutzung dieses Buchs................16 Orientierung.................88 Der Lunar Orbital Gateway................... 160 Namensgebung............18 Atmosphäre.................90 Highlights.....................20 Geschichte....................91 Mondfinsternis............161 Die Venus in der Meer der Ruhe..........163 Sonnensystem................. 22 Kultur.............................94 Südpol-Aitken- Gestatten: Mariner... 95 Krater .........................164 Durchgänge & Gestatten: Magellan .. 96 Kopernikus-Krater... 165 Finsternisse.....................28 Zeichen von Leben ... 98 Montes Apenninus .. 166 Baltis Vallis..................101 Oceanus Procellarum .167 Die Planeten des Maat Mons............... 102 Sonnensystems..............30 Mars.................................168 Alpha Regio............. 103 Orientierung.............. 172 Bemannte Raumfahrt... 48 Maxwell Montes........104 Die Kartografierung Wettlauf ins All............48 Aphrodite Terra........105 des Mars: Von Wettlauf zum Mond... 50 Meeren zu Kratern .. .173 Erde................................ 106 Das Shuttle- Die Marsmonde Phobos Programm......................51 Orientierung............. 110 und Deimos................174 Die Raumfahrt Die Schichten der Atmosphäre/ heute.............................52 Atmosphäre................ 112 Magnetosphäre.......... 177 Die Internationale Die Magnetosphäre.. .113 Geschichte............... 178 Raumstation.................53 Geschichte..................114 Leben auf dem Mars: Die Beobachtung der der Rote Planet in der Sonne................................ 54 Erde durch Satelliten: Kultur......................... 182 Orientierung.................58 zehn NASA-Missionen, Der Mars als Forschungs­ Atmosphäre.................60 die zum besseren objekt......................... 186 Verständnis des Die Heliosphäre............61 Gestatten: Curiosity. 188 Planeten beitragen .. 120 Sonneneruptionen und Gestatten: InSight - die Mount Everest..........124 was sich dahinter jüngste NASA-Mission verbirgt.........................62 Challengertief..........126 zum Mars...................190 Geschichte................. 64 Atacama-Wüste........128 Reise zum Mars - der Die Sonne in der Mauna Kea............... 130 Wagen wartet............. 194 Kultur............................ 66 Chicxulub-Krater.... 132 Polkappen................... 196 2 I INHALT Tharsis Montes..........198 Oberfläche L Kuipergürtel...................326 Olympus Mons...........200 Atmosphäre..............275 Valles Marineris..........201 Die Auroras des Zwergplaneten...............328 Uranus........................276 Hellas Planitia...........202 Eris..............................330 4 Fakten zur Bagnold-Dünenfeld.. 203 Farout (2018 VG18).. 331 Magnetosphäre........ 277 Gale-Krater.................204 2015 TG387 („The Ringsysteme..............280 Goblin“).......................332 Elysium Planitia.........206 Miranda......................284 Haumea...................... 333 Syrtis Major Planum. 208 Ariel........................... 285 Makemake............... 334 Utopia Planitia...........209 Umbriel......................286 Pluto.......................... 336 Vastitas Borealis.... 210 Oberon......................287 Titania........................288 Jupiter.............................212 Kometen........................ 338 Die Schäfermonde .. 289 Orientierung............. 216 Borrelly...................... 340 Atmosphäre................217 C/1861 Gl Thatcher. 341 Neptun........................... 290 Geschichte................. 218 Hale-Bopp................. 342 Orientierung..............294 Großer Roter Fleck.. 222 Hailey.......................... 343 Magnetosphäre........ 295 Ringsystem.................224 Hartley 2.................... 344 Geschichte................296 Oberfläche............... 225 ISON............................ 345 Neptun in der ’Oumuamua............. 346 Wolken........................ 226 Kultur..........................299 Shoemaker-Levy 9 .. 347 Ozeane.......................227 Neptuns Oberfläche & Magnetosphäre........228 Atmosphäre.............301 Swift-Tuttle............... 348 Juno-Mission.............230 Neptuns Ringe......... 302 Tempel 1.................... 349 Io................................ 232 Proteus.....................303 Tempel-Tuttle............350 Europa........................ 234 Triton........................ 304 Tschurjumow- Gerassimenko..........351 Ganymed................... 236 Nereid.......................306 Wild 2.......................... 352 Kallisto...................... 238 Neptuns andere Monde.......................308 Oortsche Wolke............353 Saturn............................ 242 Orientierung...............246 Asteroiden, Zwergplaneten und Exoplaneten................. 354 Geschichte.................248 Kometen: Nicht­ 2MASS J2126-8140.. 360 Cassini-Mission........253 planetarische Objekte 51 Pegasi b............... 361 Saturnringe...............254 des Sonnensystems ... 310 55 Cancri................. 362 Magnetosphäre des Barnards Stern b... .364 Saturns...................... 256 Asteroidengürtel & Saturnoberfläche ... 257 Asteroiden....................... 312 CoRoT-7b................... 366 Titan............................ 258 Bennu.........................314 CVSO30bundc ....368 Enceladus.................. 260 Ceres...........................316 Epsilon Eridani......... 370 Rhea, Dione & Tethys. 262 Chariklo....................... 317 Fomalhaut b............. 372 lapetus...................... 263 EH1...............................318 diese 163 b, c und d 373 Mimas........................ 264 Eros............................320 diese 176 b............. 374 Phoebe.......................265 Ida...............................321 diese 436 b............. 375 Itokawa.......................322 diese 504 b............. 376 Uranus............................ 266 Phaethon...................323 diese 581 b, c und e. 378 Orientierung...............270 Psyche........................ 324 diese 625 b............. 380 Geschichte................. 272 Vesta.......................... 325 diese 667 Cb und Cc 381 3 Gliese 832 b und c .. 382 Kosmische Objekte.... 438 Katzenaugennebel .. 486 Gliese 876 b, c, d Sternentstehung: Keplers Supernova .. 487 und e......................... 383 Nebel und Kes 75........................ 488 Protosterne...............442 Gliese 3470 b............384 Kleiner Hantelnebel . 489 Hauptreihensterne .. 443 GQ Lupi b.................. 385 Krebsnebel............... 490 Riesensterne.............444 HAT-P-7 b...................387 Mira.............................491 Doppelsterne und HAT-P-11 b.................. 388 MY Camelopardalis .492 Sternhaufen...............445 HD 40307 g.............. 390 Nordamerikanebel . .493 Sternentode...............446 HD 69830 b, c Omega Centauri .... 494 und d...........................391 Lebenszyklen von Sternen...................... 450 Orionnebel............... 495 HD 149026 b........... 391 Spektralklassifi­ Pferdekopfnebel .... 496 HD 189733 b............. 394 kation.......................... 453 Plejaden................... 497 HD 209458 b........... 396 IE 2259+586.............454 Polarstern................. 498 HIP 68468b 3C273........................ 455 Prokyon...................... 499 und c..........................398 Achernar.................... 456 RCW86...................... 500 Kapteyn b und c .... 399 Aldebaran................... 457 KELT-9 b...................400 Regulus.......................501 Algol............................458 Kepler-10 b und c ... 402 Rigel............................ 502 Almaaz...................... 459 Kepler-11 b bis g .... 403 Ringnebel................. 503 Alpha Centauri A... .460 Kepler-16 (AB)-b.... 404 Rosettennebel..........504 Alpha Centauri B.... 461 Kepler-22 b............... 405 Sagittarius A*............505 Altair.......................... 462 Kepler-62 b bis f.... 406 SAO 206462...............506 Antares...................... 463 Kepler-70 b und c ... 407 SDSSJ0927+2943... 507 Arktur........................ 464 Kepler-78 b............... 408 SGR 1806-20.............508 Barnards Stern.........465 Kepler-90 b............... 409 Sirius.......................... 509 Beteigeuze................ 466 Kepler-186 b bis f ... 410 Spica...........................510 Canopus.....................467 Kepler-444 b bis f... 412 Tabbys Stern............. 511 Capella...................... 468 Kepler-1625 b und sein T Tauri......................... 512 Cirrusnebel.................469 Exomond...................413
Recommended publications
  • Observational Studies of the Galaxy Peculiar Velocity Field
    OBSERVATIONAL STUDIES OF THE GALAXY PECULIAR VELOCITY FIELD by Philip Andrew James Astrophysics Group Blackett Laboratory Imperial College of Science, Technology and Medicine London SW7 2BZ A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College November 1988 1 ABSTRACT This thesis describes two observational studies of the peculiar velocity field of galaxies over scales of 50-100 Jr1 Mpc, and the consequences of these measurements for cosmological theories. An introduction is given to observational cosmology, emphasising the crucial questions of the nature of the dark matter and the formation of structure. The principal cosmological models are discussed, and the role of observations in developing these models is stressed. Consideration is given to those observations that are likely to prove good discriminators between the competing models, particular emphasis being given to studies of the coherent velocities of samples of galaxies. The first new study presented here uses optical photometry and redshifts, from the literature, for First Ranked Cluster Galaxies (FRCG’s). These galaxies are excellent standard candles, and thus ideal for peculiar velocity studies. A simple one­ dimensional analysis detects no relative motion between the Local Group of galaxies and 60 FRCG’s with redshifts of up to 15000 kms-1. This is shown to imply a streaming motion of the cluster galaxies of at least 600 kms_1 relative to the CBR. The second observational study is a reanalysis of the Rubin et al. (1976a,b) sample of Sc galaxies. Near-IR photometry is used in our reanalysis to minimise the effects of extinction and to facilitate the use of luminosity indicators in reducing the effects of selection biases.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Comprehensive Broadband X-Ray and Multiwavelength Study of Active Galactic Nuclei in Local 57 Ultra/Luminous Infrared Galaxies Observed with Nustar And/Or Swift/BAT
    Draft version July 26, 2021 Typeset using LATEX twocolumn style in AASTeX631 Comprehensive Broadband X-ray and Multiwavelength Study of Active Galactic Nuclei in Local 57 Ultra/luminous Infrared Galaxies Observed with NuSTAR and/or Swift/BAT Satoshi Yamada ,1 Yoshihiro Ueda ,1 Atsushi Tanimoto ,2 Masatoshi Imanishi ,3, 4 Yoshiki Toba ,1, 5 Claudio Ricci ,6, 7, 8 and George C. Privon 9 1Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan 2Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan 3National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588, Japan 4Department of Astronomical Science, Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 5Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan 6N´ucleo de Astronom´ıade la Facultad de Ingenier´ıa,Universidad Diego Portales, Av. Ej´ercito Libertador 441, Santiago, Chile 7Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People's Republic of China 8George Mason University, Department of Physics & Astronomy, MS 3F3, 4400 University Drive, Fairfax, VA 22030, USA 9National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA (Received April 13, 2021; Revised June 11, 2021; Accepted Jul, 2021) ABSTRACT We perform a systematic X-ray spectroscopic analysis of 57 local ultra/luminous infrared galaxy systems (containing 84 individual galaxies) observed with Nuclear Spectroscopic Telescope Array and/or Swift/BAT. Combining soft X-ray data obtained with Chandra, XMM-Newton, Suzaku and/or Swift/XRT, we identify 40 hard (>10 keV) X-ray detected active galactic nuclei (AGNs) and con- strain their torus parameters with the X-ray clumpy torus model XCLUMPY (Tanimoto et al.
    [Show full text]
  • Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
    University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars.
    [Show full text]
  • Bias Mitigation in Galaxy Zoo Using Machine Learning Techniques
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Bias Mitigation in Galaxy Zoo Using Machine Learning Techniques Permalink https://escholarship.org/uc/item/7241p065 Author Silva do Nascimento Neto, Pedro Publication Date 2019 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Bias Mitigation in Galaxy Zoo Using Machine Learning Techniques DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Pedro Silva do Nascimento Neto Dissertation Committee: Professor Wayne Hayes, Chair Professor Aaron Barth Professor Eric Mjolsness 2019 c 2019 Pedro Silva do Nascimento Neto DEDICATION To my beloved wife, Elise. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES x LIST OF ALGORITHMS xii ACKNOWLEDGMENTS xiii CURRICULUM VITAE xv ABSTRACT OF THE DISSERTATION xvii 1 Introduction 1 2 Spiral Galaxy Recognition Using Arm Analysis and Random Forests 4 2.1 Introduction . 5 2.1.1 Related Work . 8 2.1.2 Regression, Not Classification, Because Galaxy Morphology Is Contin- uous, Not Discrete . 11 2.2 Methods . 13 2.3 Results . 17 2.3.1 Features, Trees, and Forests . 17 2.3.2 Adding SpArcFiRe Features . 18 2.3.3 Feature Quality . 26 2.3.4 Comparison with Other Regression Methods . 28 2.4 Conclusions . 30 3 The Chirality Bias in Galaxy Zoo 1 32 3.1 Introduction . 33 3.2 Nature of the bias . 36 3.2.1 More S-wise than Z-wise spins for all values of \spirality" .
    [Show full text]
  • Open Batalha-Dissertation.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets.
    [Show full text]
  • Understanding the H2/HI Ratio in Galaxies 3
    Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization.
    [Show full text]
  • Truce Agreement Victory for Yemeni Nation: Abdulsalam
    WWW.TEHRANTIMES.COM I N T E R N A T I O N A L D A I L Y 16 Pages Price 20,000 Rials 1.00 EURO 4.00 AED 39th year No.13278 Saturday DECEMBER 15, 2018 Azar 23, 1397 Rabi’ Al thani 6, 1440 We should make Iranian scientist Persepolis beat Pars “Dark Room” sanctions ineffective: Baharvand among winners Jonoubi, Tractor Sazi named best at general 2 of 2019 TWAS Prize 9 beaten by Foolad: IPL 15 Kerala film festival 16 Iran to deal with CNPC according Truce agreement victory for to contract rights: Zanganeh ECONOMY TEHRAN — Irani- contract, when Total left they were to take deskan Oil Minister Bijan over based on the terms of the contract Namdar Zanganeh said CNPC’s leaving otherwise it would be a breach of contract South Pars deal would be a violation of and we will deal with it according to our Yemeni nation: Abdulsalam the contract and Iran will act accordingly, contractual rights. IRNA reported. Earlier in November, Zanganeh had Iran welcomes preliminary deals between Yemeni warring sides 2 In an interview with the national said that China’s state-owned CNPC television on Wednesday, the official had officially replaced France’s Total noted that since the Chinese company in Iran’s multibillion-dollar South Pars is the second biggest shareholder in the gas project. 4 See page 13 Zarif says Iran gets its security from people POLITICS TEHRAN – Foreign he said in speech at annual gathering deskMinister Mohammad of pro-reform Neda-ye Iranian Party Javad Zarif said on Friday that it is (Voice of Iranians).
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]
  • 1987Apj. . .318. .1613 the Astrophysical Journal, 318:161-174
    .1613 The Astrophysical Journal, 318:161-174,1987 July 1 © 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. .318. 1987ApJ. A STUDY OF A FLUX-LIMITED SAMPLE OF IRAS GALAXIES1 Beverly J. Smith and S. G. Kleinmann University of Massachusetts J. P. Huchra Harvard-Smithsonian Center for Astrophysics AND F. J. Low Steward Observatory, University of Arizona Received 1986 September 3 ; accepted 1986 December 11 ABSTRACT We present results from a study of all 72 galaxies detected by IRAS in band 3 at flux levels >2 Jy and lying the region 8h < a < 17h, 23?5 < <5 < 32?5. Redshifts and accurate four-color IRAS photometry were 8 2 obtained for the entire sample. The 60 jtm luminosities of these galaxies lie in the range 4 x 10 (JF/o/100) L0 2 2 to 5 x lO^iTo/lOO) L0. The 60 jtm luminosity function at the high-luminosity end is proportional to L~ ; 10 below L = 10 L0 the luminosity function flattens. This is in agreement with previous results. We find a distinction between the morphology and infrared colors of the most luminous and the least luminous galaxies, leading to the suggestion that the observed luminosity function is produced by two different classes of objects. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed in blue luminosity than those optically selected, in the sense that the IRAS sample includes few galaxies of low absolute blue luminosity. We also find that the space distribution of the two samples differ: the density enhancement of IRAS galaxies is only that of the optically selected galaxies in the core of the Coma Cluster, raising the question whether source counts of IRAS galaxies can be used to deduce the mass distribution in the universe.
    [Show full text]
  • Planets and Exoplanets
    NASE Publications Planets and exoplanets Planets and exoplanets Rosa M. Ros, Hans Deeg International Astronomical Union, Technical University of Catalonia (Spain), Instituto de Astrofísica de Canarias and University of La Laguna (Spain) Summary This workshop provides a series of activities to compare the many observed properties (such as size, distances, orbital speeds and escape velocities) of the planets in our Solar System. Each section provides context to various planetary data tables by providing demonstrations or calculations to contrast the properties of the planets, giving the students a concrete sense for what the data mean. At present, several methods are used to find exoplanets, more or less indirectly. It has been possible to detect nearly 4000 planets, and about 500 systems with multiple planets. Objetives - Understand what the numerical values in the Solar Sytem summary data table mean. - Understand the main characteristics of extrasolar planetary systems by comparing their properties to the orbital system of Jupiter and its Galilean satellites. The Solar System By creating scale models of the Solar System, the students will compare the different planetary parameters. To perform these activities, we will use the data in Table 1. Planets Diameter (km) Distance to Sun (km) Sun 1 392 000 Mercury 4 878 57.9 106 Venus 12 180 108.3 106 Earth 12 756 149.7 106 Marte 6 760 228.1 106 Jupiter 142 800 778.7 106 Saturn 120 000 1 430.1 106 Uranus 50 000 2 876.5 106 Neptune 49 000 4 506.6 106 Table 1: Data of the Solar System bodies In all cases, the main goal of the model is to make the data understandable.
    [Show full text]
  • The Stability of Ultra-Compact Planetary Systems
    A&A 516, A82 (2010) Astronomy DOI: 10.1051/0004-6361/200912698 & c ESO 2010 Astrophysics The stability of ultra-compact planetary systems B. Funk1, G. Wuchterl2,R.Schwarz1,3, E. Pilat-Lohinger3, and S. Eggl3 1 Department of Astronomy, Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary e-mail: [email protected] 2 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany e-mail: [email protected] 3 Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [schwarz;lohinger;eggl]@astro.univie.ac.at Received 15 June 2009 / Accepted 15 March 2010 ABSTRACT Aims. We investigate the dynamical stability of compact planetary systems in the CoRoT discovery space, i.e., with orbital periods of less than 50 days, including a detailed study of the stability of systems, which are spaced according to Hill’s criteria. Methods. The innermost fictitious planet was placed close to the Roche limit from the star (MStar = 1 MSun) and all other fictitious planets are lined up according to Hill’s criteria up to a distance of 0.26 AU, which corresponds to a 50 day period for a Sun-massed star. For the masses of the fictitious planets, we chose a range of 0.33–17 mEarth, where in each simulation all fictitious planets have the same mass. Additionally, we tested the influence of both the semi-major axis of the innermost planet and of the number of planets. In a next step we also included a gas giant in our calculations, which perturbs the inner ones and investigated their stability.
    [Show full text]