El Sistema Planetario De Trappist-1

Total Page:16

File Type:pdf, Size:1020Kb

El Sistema Planetario De Trappist-1 (#313). EL SISTEMA PLANETARIO DE TRAPPIST-1 [MONOTEMA] El descubrimiento del sistema TRAPPIST-1 ha generado gran interés debido, fundamentalmente, a que los siete planetas detectados tienen características similares a la Tierra y podrían albergar vida. Esos planetas orbitan alrededor de una estrella enana tipo M, y además lo hacen de manera resonante y con acoplamiento por fuerzas de marea. En este post describo los detalles más relevantes de este hallazgo, y explico de forma breve los principales métodos de detección empleados en este campo de la física, así como también analizo la posible habitabilidad de los planetas encontrados. Muestro, por tanto, de manera didáctica, la complejidad de obtener resultados concluyentes cuando todavía existe incertidumbre importante en los datos, pero al mismo tiempo ilustro que a través de la observación, simulación numérica y análisis estadísticos, se puede obtener un dibujo aproximado de una parte de la galaxia que está a unos 39 años luz de nosotros. Introducción El descubrimiento de tres exoplanetas en la zona habitable de la estrella TRAPPIST-1A por Gillon et al. (2016), ha sido uno de los eventos más destacados en el campo de la astrofísica en los últimos años. Tan sólo unos meses más tarde, Gillon et al. (2017) publicaron que habían detectado hasta 7 planetas orbitando esa estrella, los cuales podrían contener agua líquida. De este modo, el hallazgo de los exoplanetas de TRAPPIST-1 constituye un caso muy atractivo para ilustrar algunas de las actividades fundamentales de la investigación en astrofísica, así como para explicar conceptos clave asociados a la búsqueda de lugares en el espacio con el potencial de albergar vida. En este artículo voy a describir los detalles de ese descubrimiento, definiendo los términos más importantes que se emplean para su correcto entendimiento, y discutiendo algunas de las contradicciones que muestran los estudios. Lo haré además, de manera didáctica, con el fin de facilitar su conocimiento. El objetivo de esta investigación es, por tanto, hacer comprensible el significado de este hallazgo científico, analizando brevemente las múltiples implicaciones que de él se derivan. Descripción del sistema planetario de TRAPPIST-1 Gillon et al. (2016) monitorizaron el brillo de la estrella TRAPPIST-1A durante 245 horas en 62 noches desde el 17 de septiembre al 28 de diciembre de 2015. Esa estrella se encuentra a una distancia estimada de la Tierra de 39.46 años- luz, y es una enana ultra fría tipo M situada en la constelación de Acuario. Su edad se estima en 7.6 ± 2.2 Gyr (Burgasser & Mamajek, 2017), es decir, de varios miles de millones de años, y es ciertamente más pequeña y menos brillante que el Sol. Así, Gillon et al. (2016) describieron su luminosidad, masa y radio como 0.05%, 8% y 11.5% en relación al Sol, respectivamente (los datos actualizados sobre todos los parámetros se encuentran en www.trappist.one). Como indica Sholkmann (2017), este descubrimiento ha sido posible gracias al trabajo conjunto de varios telescopios terrestres y espaciales: TRAPPIST TRansiting( Planets and PlanestIsimals Small Telescope) North system (Chile), el telescopio TRAPPIST-North (Marruecos), el Himalayan Chandra Telescope (India), el Very Large Telescope (Chile), el UK Infrared Telescope (Hawaii), el Spitzer Space Telescope, los telescopios William Herschel y Liverpool (La Palma, España), y el telescopio del South African Astronomical Observatory. A través del método de tránsito primario, Gillon et al. (2016) detectaron inicialmente 3 exoplanetas orbitando la estrella: TRAPPIST-1b, TRAPPIST-1c y TRAPPIST-1d. Posteriormente, Gillon et al. (2017) reportaban la detección de 4 exoplanetas más: TRAPPIST-1e, TRAPPIST-1f, TRAPPIST-1g, y TRAPPIST-1h, completando un sistema de 7 planetas que, al menos en número, es similar al Sistema Solar. La cadencia temporal del proceso de descubrimiento y la publicación de los estudios en revistas científicas puede consultarse en www.trappist.one, así como las características actualizadas de esos planetas (en las Tablas 1 y 2 mostramos algunas de ellas). Tabla 1. Características de la estrella TRAPPIST-1A Ascensión α = 23h 06m 0.117 ± 0.004 Radio recta 29.28s R☉ δ = -05º 02′ 50.7 (-2.2, Declinación Densidad 28.5” +1.2) ρ☉ Temperatura Constelación Acuario 2559 ± 50 K efectiva 0.000525 ± Distancia 12.1 ± 0.4 pc Luminosidad 0.000036 L☉ 0.080 ± 0.007 Masa Edad 7.6 ± 2.2 Gyr M☉ 1 Gyr = 1000 millones de años; 1 pc (Parsec) = 3.26156 años/luz; El subíndice ☉ se refiere al equivalente del Sol de la medida empleada. Fuente: www.trappist.one/#system Tabla 2. Características de los planetas de la estrella TRAPPIST-1A 1b 1c 1d 1e 1f 1g 1h 1.51087081 2.4218233 9.206690 12.35294 Periodo ± ± 4.049610 ± 6.099615 ± ± ± 18.767 ± orbital 0.00000060 0.0000017 0.000063días 0.000011días 0.000015 0.00012 0.004 días días días días días 36.40 ± 42.37 ± 62.60 ± 68.40 ± Duración del 49.13 ± 0.65 57.21 ± 0.71 75.6 ± 1.2 0.17 0.22 0.60 0.66 tránsito minutos minutos minutos minutos minutos minutos minutos Inclinación 89.65 ± 89.67 ± 89.75 ± 89.86 ± 89.680 ± 89.710 ± 89.76 ± orbital 0.25º 0.17º 0.16º 0.11º 0.034º 0.025º 0.05º Excentricidad < 0.081 < 0.083 < 0.070 < 0.085 < 0.063 < 0.061 Desconocida orbital 0.01521 ± 0.0451 ± 0.01111 ± 0.02144 ± 0.02817 ± 0371 ± 0.059 ± Semieje mayor 0.00047 0.0014 0.00034 UA 0.00065 UA 0.00085 UA 0.001 0.003 UA UA UA 1.086 ± 1.056 ± 0.772 ± 0.918 ± 1.045 ± 1.127 ± 0.752 ± Radio 0.035 R⊕ 0.035 R⊕ 0.030 R⊕ 0.039 R⊕ 0.038 R⊕ 0.041 R⊕ 0.032 R⊕ 0.85 ± 1.38 ± 0.41 ± 0.27 0.62 ± 0.58 0.68 ± 1.34 ± Masa Desconocida 0.72 M⊕ 0.61 M⊕ M⊕ M⊕ 0.18 M⊕ 0.88 M⊕ 0.66 ± 1.17 ± 0.89 ± 0.60 0.80 ± 0.76 0.60 ± 0.94 ± Densidad Desconocida 0.56 ρ⊕ 0.53 ρ⊕ ρ⊕ ρ⊕ 0.17 ρ⊕ 0.63 ρ⊕ 4.25 ± 2.27 ± 1.143 ± 0.662 ± 0.382 ± 0.258 ± 0.165 ± Irradiación 0.33 S⊕ 0.18 S⊕ 0.088 S⊕ 0.051 S⊕ 0.030 S⊕ 0.020 S⊕ 0.025 Temperatura 400.1 ± 341.9 ± 288.0 ± 5.6 251.3 ± 4.9 219.0 ± 198.6 ± 173 ± 4 K de equilibrio 7.7 K 6.6 K K K 4.2 K 3.8 K 1 UA (Unidad Astronómica) = 149 597 870 700 m (equivale a la distancia media entre la Tierra y el Sol); El subíndice ⊕ se refiere al equivalente de la Tierra de la medida empleada. Fuente: www.trappist.one/#system Un análisis sencillo de la Tabla 2 nos indica que los planetas de TRAPPIST-1 tienen una inclinación prácticamente perpendicular al cielo (visto desde la Tierra). Los periodos orbitales son de muy pocos días, dada la corta distancia con respecto a la estrella que podemos tomar de la medida del semieje mayor. Periodo y semieje mayor se relacionan por la Tercera Ley de Kepler. Todos los planetas tienen órbitas más excéntricas que la Tierra; en nuestro planeta la excentricidad es de 0.0167, es decir, casi circular. No obstante, tal y como comentan Gupta et al. (2001), la Tierra ha sufrido ciclos de excentricidad, por lo que no es un parámetro constante. Radios, masas y densidades son similares a las de nuestro planeta, aunque los datos para TRAPPIST-1h son mucho más inciertos. En cuanto a la irradiación y a la temperatura de equilibrio, existe gran variación debido a la diferencia en distancias con respecto a la estrella. Recordemos que la temperatura de equilibrio de la Tierra considerando el albedo (porcentaje de radiación reflejada) es de 254 K (vanLoon & Duffy, 2011). Por tanto, los planetas TRAPPIST-1d, TRAPPIST-e y TRAPPIST-1f, tendrían temperaturas de equilibrio ciertamente similares a la Tierra. La irradiación juega un papel fundamental en la consideración de potencial habitabilidad del planeta, como posteriormente veremos. La correlación entre varios de los parámetros de los exoplanetas es altamente compleja. Por ejemplo, Mancini (2017) encontró una posible asociación entre el radio y la temperatura de equilibrio, aunque esa relación no se muestra para el caso de TRAPPIST-1, ya que la correlación de Spearman (ρ) es no significativa ρ = 0.32 (p=0.48), Méndez & Rivera- Valentín (2017), por su parte, indicaron que existe una correlación positiva entre la excentricidad de la órbita y la irradiación recibida de la estrella, y encuentran que la temperatura de equilibrio media de un exoplaneta decrece con la excentricidad. Para el caso de TRAPPIST-1,ρ = 0.6 (p=0.21), para ambas correlaciones, por lo que tampoco son estadísticamente significativas. En cuanto a la relación entre la densidad y el radio, Weiss & Marcy (2014) encontraron que para planetas con radios menores a 1.5 R⊕, como el caso de los planetas detectados en TRAPPIST-1, la densidad se incrementa con el radio de manera lineal. Sin embargo, ρ = 0.2 (p=0.70) y la correlación lineal de Pearson r=-0.23 (p=0.94), es decir, resultados de nuevo no significativos. No obstante, lo ideal sería volver a calcular esas correlaciones con los datos brutos (pero ya recalibrados) sobre cada medición, y no sobre los parámetros medios presentes en la Tabla 2. Así, se tendrían muchas más observaciones y unos errores estándares mucho más pequeños, y de este modo mayor potencia para detectar asociaciones significativas. TRAPPIST-1 presenta resonancia orbital entre sus planetas. Este es un fenómeno que indica que existe una relación fraccional de números enteros entre los periodos de revolución de las órbitas.
Recommended publications
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
    University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars.
    [Show full text]
  • Open Batalha-Dissertation.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Planets and Exoplanets
    NASE Publications Planets and exoplanets Planets and exoplanets Rosa M. Ros, Hans Deeg International Astronomical Union, Technical University of Catalonia (Spain), Instituto de Astrofísica de Canarias and University of La Laguna (Spain) Summary This workshop provides a series of activities to compare the many observed properties (such as size, distances, orbital speeds and escape velocities) of the planets in our Solar System. Each section provides context to various planetary data tables by providing demonstrations or calculations to contrast the properties of the planets, giving the students a concrete sense for what the data mean. At present, several methods are used to find exoplanets, more or less indirectly. It has been possible to detect nearly 4000 planets, and about 500 systems with multiple planets. Objetives - Understand what the numerical values in the Solar Sytem summary data table mean. - Understand the main characteristics of extrasolar planetary systems by comparing their properties to the orbital system of Jupiter and its Galilean satellites. The Solar System By creating scale models of the Solar System, the students will compare the different planetary parameters. To perform these activities, we will use the data in Table 1. Planets Diameter (km) Distance to Sun (km) Sun 1 392 000 Mercury 4 878 57.9 106 Venus 12 180 108.3 106 Earth 12 756 149.7 106 Marte 6 760 228.1 106 Jupiter 142 800 778.7 106 Saturn 120 000 1 430.1 106 Uranus 50 000 2 876.5 106 Neptune 49 000 4 506.6 106 Table 1: Data of the Solar System bodies In all cases, the main goal of the model is to make the data understandable.
    [Show full text]
  • A Planetary Companion to the Nearby M4 Dwarf, Gliese
    A Planetary Companion to the Nearby M4 Dwarf, Gliese 876 1 Geoffrey W. Marcy2, R. Paul Butler,3, Steven S. Vogt4, Debra Fischer2, Jack J. Lissauer5 Received ; accepted Submitted to Astrophysical Journal Letters 1 arXiv:astro-ph/9807307v1 29 Jul 1998 Based on observations obtained at Lick Observatory, which is operated by the University of California, and on observations obtained at the W.M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. 2Department of Physics and Astronomy, San Francisco, CA, USA 94132 and at Department of Astronomy, University of California, Berkeley, CA USA 94720 3Anglo–Australian Observatory, PO Box 296, NSW 2121 Epping, Australia 4UCO/Lick Observatory, University of California at Santa Cruz, Santa Cruz, CA, 95064 5NASA/Ames Research Center, NASA/Ames Research Center, MS245-3, Moffett Field, CA 94035 –2– ABSTRACT Doppler measurements of the M4 dwarf star, Gliese 876, taken at both Lick and Keck Observatory reveal periodic, Keplerian velocity variations with a period of 61 days. The orbital fit implies that the companion has a mass of, M = 2.1 MJUP/ sin i, an orbital eccentricity of, e = 0.27 0.03, and a semimajor ± axis of, a = 0.21 AU. The planet is the first found around an M dwarf, and was drawn from a survey of 24 such stars at Lick Observatory. It is the closest extrasolar planet yet found, providing opportunities for follow–up detection. The presence of a giant planet on a non-circular orbit, 0.2 AU from a 1/3 M⊙ star, presents a challenge to planet formation theory.
    [Show full text]
  • The Stability of Ultra-Compact Planetary Systems
    A&A 516, A82 (2010) Astronomy DOI: 10.1051/0004-6361/200912698 & c ESO 2010 Astrophysics The stability of ultra-compact planetary systems B. Funk1, G. Wuchterl2,R.Schwarz1,3, E. Pilat-Lohinger3, and S. Eggl3 1 Department of Astronomy, Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary e-mail: [email protected] 2 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany e-mail: [email protected] 3 Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [schwarz;lohinger;eggl]@astro.univie.ac.at Received 15 June 2009 / Accepted 15 March 2010 ABSTRACT Aims. We investigate the dynamical stability of compact planetary systems in the CoRoT discovery space, i.e., with orbital periods of less than 50 days, including a detailed study of the stability of systems, which are spaced according to Hill’s criteria. Methods. The innermost fictitious planet was placed close to the Roche limit from the star (MStar = 1 MSun) and all other fictitious planets are lined up according to Hill’s criteria up to a distance of 0.26 AU, which corresponds to a 50 day period for a Sun-massed star. For the masses of the fictitious planets, we chose a range of 0.33–17 mEarth, where in each simulation all fictitious planets have the same mass. Additionally, we tested the influence of both the semi-major axis of the innermost planet and of the number of planets. In a next step we also included a gas giant in our calculations, which perturbs the inner ones and investigated their stability.
    [Show full text]
  • Abhören Von Funksignalen Durch Extraterrestrische Lebensformen
    Abhören von Funksignalen durch extraterrestrische Lebensformen Diplomarbeit zur Erlangung des akademischen Grades eines Magisters der Naturwissenschaften an der Karl-Franzens-Universität Graz vorgelegt von Andreas Franz KLAUSNER am Institut für Physik Begutachter: Univ.-Prof. Dr.phil Arnold Hanslmeier Graz, 2018 Eidesstattliche Erklärung Ich erkläre eidesstattlich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benutzt und die den Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen inländischen oder ausländischen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht. Die vorliegende Fassung entspricht der eingereichten elektronischen Version. Datum: _________________ Unterschrift: _________________________ Inhaltsverzeichnis Forschungsfragen .................................................................................................................................... V 1. Einleitung ......................................................................................................................................... 1 2. Ausbreitung elektromagnetischer Wellen ...................................................................................... 2 2.1 Geschwindigkeit von elektromagnetischen Wellen ............................................................ 4 2.2 Energietransport von elektromagnetischen Wellen ..........................................................
    [Show full text]
  • The TRAPPIST-1 JWST Community Initiative
    Bulletin of the AAS • Vol. 52, Issue 2 The TRAPPIST-1 JWST Community Initiative Michaël Gillon1, Victoria Meadows2, Eric Agol2, Adam J. Burgasser3, Drake Deming4, René Doyon5, Jonathan Fortney6, Laura Kreidberg7, James Owen8, Franck Selsis9, Julien de Wit10, Jacob Lustig-Yaeger11, Benjamin V. Rackham10 1Astrobiology Research Unit, University of Liège, Belgium, 2Department of Astronomy, University of Washington, USA, 3Department of Physics, University of California San Diego, USA, 4Department of Astronomy, University of Maryland at College Park, USA, 5Institute for Research in Exoplanets, University of Montreal, Canada, 6Other Worlds Laboratory, University of California Santa Cruz, USA, 7Center for Astrophysics | Harvard and Smithsonian, USA, 8Department of Physics, Imperial College London, United Kingdom, 9Laboratoire d’Astrophysique de Bordeaux, University of Bordeaux, France, 10Department of Earth, Atmospheric, and Planetary Sciences, MIT, USA, 11Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA Published on: Dec 02, 2020 DOI: 10.3847/25c2cfeb.afbf0205 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) Bulletin of the AAS • Vol. 52, Issue 2 The TRAPPIST-1 JWST Community Initiative ABSTRACT The upcoming launch of the James Webb Space Telescope (JWST) combined with the unique features of the TRAPPIST-1 planetary system should enable the young field of exoplanetology to enter into the realm of temperate Earth-sized worlds. Indeed, the proximity of the system (12pc) and the small size (0.12 R )
    [Show full text]
  • Extrasolar Planets
    Extrasolar Planets Dieter Schmitt Lecture Max Planck Institute for Introduction to Solar System Research Solar System Physics KatlenburgLindau Uni Göttingen, 8 June 2009 Outline • Historical Overview • Detection Methods • Planet Statistics • Formation of Planets • Physical Properties • Habitability Historical overview • 1989: planet / brown dwarf orbiting HD 114762 (Latham et al.) • 1992: two planets orbiting pulsar PSR B1257+12 (Wolszczan & Frail) • 1995: first planet around a solarlike star 51 Peg b (Mayor & Queloz) • 1999: first multiple planetary system with three planets Ups And (Edgar et al.) • 2000: first planet by transit method HD 209458 b (Charbonneau et al.) • 2001: atmosphere of HD 209458 b (Charbonneau et al.) • 2002: astrometry applied to Gliese 876 (Benedict et al.) • 2005: first planet by direct imaging GQ Lupi b (Neuhäuser et al.) • 2006: Earthlike planet by gravitational microlensing (Beaulieu et al.) • 2007: Gliese 581d, small exoplanet near habitability zone (Selsis et al.) • 2009: Gliese 581e, smallest exoplanet with 1.9 Earth masses (Mayor et al.) • As of 7 June 2009: 349 exoplanets in 296 systems (25 systems with 2 planets, 9 with 3, 2 with 4 and 1 with 5) www.exoplanet.eu Our Solar System 1047 MJ 0.39 AU 0.00314 MJ 1 MJ 0.30 MJ 0.046 MJ 0.054 MJ 1 AU 5.2 AU 9.6 AU 19 AU 30 AU 1 yr 11.9 yr 29.5 yr 84 yr 165 yr Definition Planet IAU 2006: • in orbit around the Sun / star • nearly spherical shape / sufficient mass for hydrostatic equilib. • cleared neighbourhood around its orbit Pluto: dwarf planet, as Ceres Brown
    [Show full text]
  • Search for Possible Exomoons with the FAST Telescope
    RAA 2017 Vol. 17 No. 12, 121 (4pp) doi: 10.1088/1674–4527/17/12/121 R c 2017 National Astronomical Observatories, CAS and IOP Publishing Ltd. esearch in Astronomy and http://www.raa-journal.org http://iopscience.iop.org/raa Astrophysics Search for possible exomoons with the FAST telescope Dragan V. Luki´c Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade, Serbia; [email protected] Received 2017 July 31; accepted 2017 September 10 Abstract Our knowledge of the solar system encourages us to believe that we might expect exomoons to be present around some known exoplanets. With present hardware and existing optical astronomy methods, we do not expect to be able to find exomoons for at least 10 years, and even then, it will be a hard task to detect them. Using data from the Exoplanet Orbit Database (EOD) we find stars with Jovian exoplanets within 50 light years. Most of them will be fully accessible by the new radio telescope, the Five-hundred-meter Aperture Spherical radio Telescope (FAST), under construction which is now in the test phase. We suggest radio astronomy based methods to search for possible exomoons around two exoplanets. Key words: exoplanets: general — exoplanets: radioastronomy — exomoons 1 INTRODUCTION Estrada 2003). This model only qualitatively describes the expected mass ratios. Since this model does not give The discovery of 51 Pegasi b (Mayor & Queloz 1995), us the masses of satellites, we will only use the first an exoplanet orbiting a Sun-like main sequence star, was model for our analysis of possible exomoons.
    [Show full text]
  • Feasibility of Spectro-Polarimetric Characterization of Exoplanetary Atmospheres with Direct Observing Instruments J
    A&A 599, A56 (2017) Astronomy DOI: 10.1051/0004-6361/201628206 & c ESO 2017 Astrophysics Feasibility of spectro-polarimetric characterization of exoplanetary atmospheres with direct observing instruments J. Takahashi1, T. Matsuo2, and Y. Itoh1 1 Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2, Nishigaichi, Sayo, 679-5313 Hyogo, Japan e-mail: [email protected] 2 Department of Earth and Space Science, Graduate School of Science, Osaka University 1–1, Machikaneyama-Cho, Toyonaka, 560-0043 Osaka, Japan Received 28 January 2016 / Accepted 9 November 2016 ABSTRACT Context. Spectro-polarimetry of reflected light from exoplanets is anticipated to be a powerful method for probing atmospheric composition and structure. Aims. We aim to evaluate the feasibility of the search for a spectro-polarimetric feature of water vapor using a high-contrast polari- metric instrument on a 30–40 m-class ground-based telescope. Methods. Three types of errors are considered: (a) errors from the difference between efficiencies for two orthogonally polarized states; (b) errors caused by speckle noises; and (c) errors caused by photon noise from scattered starlight. Using the analytically derived error formulas, we estimate the number of planets for which feasible spectro-polarimetric detection of water vapor is possible. Results. Our calculations show that effective spectro-polarimetric searches for water vapor are possible for 5 to 14 known planets. Spectro-polarimetric characterization of exoplanetary atmospheres is feasible with an extremely large telescope and a direct observing spectro-polarimeter. Key words. planetary systems – techniques: polarimetric – instrumentation: polarimeters 1. Introduction spectra were less clear. Similarly, Stam(2008) pointed out that the degree of polarization at the continuum wavelengths near a Spectro-polarimetric observations of visible or near-infrared re- molecular feature is more sensitive to the altitude of the cloud’s flected light from exoplanets can be a powerful tool for probing top compared with intensity.
    [Show full text]