Prospects of Detecting the Polarimetric Signature of the Earth-Mass Planet Α Centauri B B with SPHERE/ZIMPOL

Total Page:16

File Type:pdf, Size:1020Kb

Prospects of Detecting the Polarimetric Signature of the Earth-Mass Planet Α Centauri B B with SPHERE/ZIMPOL View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main A&A 556, A64 (2013) Astronomy DOI: 10.1051/0004-6361/201321881 & c ESO 2013 Astrophysics Prospects of detecting the polarimetric signature of the Earth-mass planet α Centauri B b with SPHERE/ZIMPOL J. Milli1,2, D. Mouillet1,D.Mawet2,H.M.Schmid3, A. Bazzon3, J. H. Girard2,K.Dohlen4, and R. Roelfsema3 1 Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), University Joseph Fourier, CNRS, BP 53, 38041 Grenoble, France e-mail: [email protected] 2 European Southern Observatory, Casilla 19001, Santiago 19, Chile 3 Institute for Astronomy, ETH Zurich, 8093 Zurich, Switzerland 4 Laboratoire d’Astrophysique de Marseille (LAM),13388 Marseille, France Received 12 May 2013 / Accepted 4 June 2013 ABSTRACT Context. Over the past five years, radial-velocity and transit techniques have revealed a new population of Earth-like planets with masses of a few Earth masses. Their very close orbit around their host star requires an exquisite inner working angle to be detected in direct imaging and sets a challenge for direct imagers that work in the visible range, such as SPHERE/ZIMPOL. Aims. Among all known exoplanets with less than 25 Earth masses we first predict the best candidate for direct imaging. Our primary objective is then to provide the best instrument setup and observing strategy for detecting such a peculiar object with ZIMPOL. As a second step, we aim at predicting its detectivity. Methods. Using exoplanet properties constrained by radial velocity measurements, polarimetric models and the diffraction propaga- tion code CAOS, we estimate the detection sensitivity of ZIMPOL for such a planet in different observing modes of the instrument. We show how observing strategies can be optimized to yield the best detection performance on a specific target. Results. In our current knowledge of exoplanetary systems, α Centauri B b is the most promising target with less than 25 Earth masses for ZIMPOL. With a gaseous Rayleigh-scattering atmosphere and favorable inclinations, the planet could be detected in about four hours of observing time, using the four-quadrant phase-mask coronograph in the I band. However, if α Centauri B b should display unfavorable polarimetric and reflective properties similar to that of our Moon, it is around 50 times fainter than the best sensitivity of ZIMPOL. Conclusions. α Centauri B is a primary target for SPHERE. Dedicated deep observations specifically targeting the radial velocity- detected planet can lead to a detection if the polarimetric properties of the planet are favorable. Key words. instrumentation: high angular resolution – planets and satellites: detection – instrumentation: polarimeters – polarization – planets and satellites: individual: alpha Centauri – planets and satellites: atmospheres 1. Introduction circumstellar emission down to 18 mag/arcsec2 at 1.5 on HD 169142 (Quanz et al. 2013). A dedicated instrument for exo- Imaging planets is a very attractive goal to improve our under- planet search in the visible light will now be installed at the VLT standing of planetary systems. So far, it has only been achieved 1 as part of the SPHERE instrument (Beuzit et al. 2008): ZIMPOL, in the near-infrared by detecting the thermal emission of young the Zurich IMaging POLarimeter (Schmid et al. 2006). It uses (1−100 Myr) and massive Jupiter-size planets at large distances − the SPHERE AO system and coronographic masks. ZIMPOL from their host stars (5 100 AU). Imaging planets in visible re- has demonstrated polarimetric sensitivities of 10−5 locally with flected light is also very valuable. However, while the flux re- an absolute polarimetric accuracy of 10−3. Fast polarimetric flected by the planet is highest at a very small orbit, the stellar modulation is performed using a ferroelectric liquid crystal to halo is stronger than that of the planet at such a short separation. swap two orthogonal linear polarization states at 1 kHz. A po- Moreover, the adaptive optics (AO) correction is not favorable at × −10 larization beamsplitter converts this modulation into an intensity visible wavelengths. The contrast required is around 4 10 for modulation, which is then demodulated in real-time by a special an earth at 1 AU from its host star, while the angular separation masked charge-shifting CCD detector. The same CCD pixels are is only 0.1 for a star at 10 pc. used for the detection of both polarization states to minimize dif- However, to help detection, a specific property of scat- ff ff ferential e ects. Since the modulation period is shorter than the tered light can be used: polarization. Polarimetric di erential seeing variation timescale, speckle noise is strongly reduced in imaging (PDI) is already widely used to enhance the con- the polarization image. trast between a star and circumstellar material, e.g., to reveal The large majority of low-mass exoplanets (Mpl ≤ 25 MEarth) protoplanetary disks. Currently, two 8-m class telescopes pro- detected in transit or radial velocity (RV) have a projected an- vide subarcsec-resolved imaging with a dual-beam polarimeter: / / gular separation at quadrature smaller than the ZIMPOL in- Subaru HiCIAO and VLT NaCo. The latter revealed polarized ner working angle however, 2λ/d at 600 nm or 0.03. Those 1 Except for Fomalhaut b detected by Kalas et al. (2008) with with a preliminary intensity contrast higher than one part per −9 HST/ACS and confirmed by Galicher et al. (2013)andCurrie et al. billion (10 ) and a projected separation larger than 0.03 are (2012), but this is a controversial case because the nature of the object named in Fig. 1 and constitute our sample selection. The pre- 2 has yet to be revealed. liminary intensity contrast is given by f · (Rpl/a) assuming the Article published by EDP Sciences A64, page 1 of 5 A&A 556, A64 (2013) 10−6 circularized given the low value of a. Four discrete in- clinations 10◦,30◦,60◦, and 90◦ are used in our simula- . α Cen B b tions, corresponding to a planet true mass of 6 6, 2 2, 1 3, and 1.1 Earth masses. α, λ 10−7 – The disk integrated reflectance f ( ) and polarization frac- tion p(α, λ) as a function of α. The product f × p is called polarized reflectance hereafter. Gl 581 d – The planet radius R estimated from the mass-radius relation Gl 785 b Gliese 876 e pl HD 20794 c 61 Vir d derived for terrestrial planets by Sotin et al. (2007), with Rpl −8 HD 102365 b . Contrast to the star 10 0 274 ◦ HD 20794 d proportional to Mpl . It ranges between 1.7 REarth for a 10 HD 69830 d inclination and 1.0 REarth for an edge-on system. HD 40307 g Rpl 2 HD 192310 c φ, ,λ φ, ,λ All in all, the polarimetric contrast is p( i ) f ( i ) a .We HD 10180 g 10−9 investigate two polarization models for the planet: 0.01 0.10 1.00 Angular separation (arcsec) Moon-like planet. This model corresponds to a rocky planet with polarimetric properties like the Moon. Given the small Fig. 1. Preliminary intensity contrast of known exoplanets of less mass and orbital distance of α Cen B b, a tiny atmosphere or than 25 Earth masses confirmed before May 2013 (from exoplanets.eu). even no atmosphere at all is a realistic assumption. The light The size and color (from blue to red) of the dots are proportional to the planet mass. is reflected from the solid surface and Moon- or Mercury-like properties are therefore plausible. From a detection point of same reflectance f = 0.2 for all planets (corresponding to the view this would represent a worst case scenario. We used Rayleigh-scattering atmosphere described below and a scatter- reflectance and polarization fraction measurements of the ff ing angle α = 87◦). The radius R is computed from the Moon derived from Coyne & Pellicori (1970)andKie er & pl Stone (2005) for this scenario. They are displayed in Fig. 2. RV mass Mpl sin i assuming an Earth bulk density. The ver- The polarized reflectance reaches a maximum of 0.13% for a tical dotted line shows the ZIMPOL inner working angle. Of ◦ the 11 targets, α Cen B b is by far the most promising with its scattering angle of 60 and there is little wavelength depen- − intensity contrast of more than 2 × 10−7. It has a semi-major dence in the 600 900 nm range. axis a = 0.04 AU (Dumusque et al. 2012). Because its parent Planet with a Rayleigh-scattering atmosphere. In more favor- star is the second-closest star after Proxima Centauri at a dis- able conditions, the planet is assumed to have a rocky core tance of 1.34 pc, the projected separation is enhanced but re- and to retain a Rayleigh-scattering atmosphere that reflects mains small: 0.03 at quadrature. and polarizes much more incident starlight. We used the po- Polarimetric differential imaging is complementary to larization model presented in Buenzli & Schmid (2009)for RV techniques, which have a projection ambiguity because the that purpose. It assumes a multiple-scattering atmosphere system inclination i is unknown and only the projected mass above a Lambertian surface. It is described by three pa- M × sin i can be determined. This degeneracy can be broken rameters: the surface albedo As, the atmosphere total opti- τ ω with multi-epoch direct images. α Cen B b could then become cal depth , and the single scattering albedo . We chose the first exoplanet to be unambiguously detected both in RV the most favorable parameter set corresponding to a deep τ = ω = and direct imaging.
Recommended publications
  • Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
    University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars.
    [Show full text]
  • Open Batalha-Dissertation.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Planets and Exoplanets
    NASE Publications Planets and exoplanets Planets and exoplanets Rosa M. Ros, Hans Deeg International Astronomical Union, Technical University of Catalonia (Spain), Instituto de Astrofísica de Canarias and University of La Laguna (Spain) Summary This workshop provides a series of activities to compare the many observed properties (such as size, distances, orbital speeds and escape velocities) of the planets in our Solar System. Each section provides context to various planetary data tables by providing demonstrations or calculations to contrast the properties of the planets, giving the students a concrete sense for what the data mean. At present, several methods are used to find exoplanets, more or less indirectly. It has been possible to detect nearly 4000 planets, and about 500 systems with multiple planets. Objetives - Understand what the numerical values in the Solar Sytem summary data table mean. - Understand the main characteristics of extrasolar planetary systems by comparing their properties to the orbital system of Jupiter and its Galilean satellites. The Solar System By creating scale models of the Solar System, the students will compare the different planetary parameters. To perform these activities, we will use the data in Table 1. Planets Diameter (km) Distance to Sun (km) Sun 1 392 000 Mercury 4 878 57.9 106 Venus 12 180 108.3 106 Earth 12 756 149.7 106 Marte 6 760 228.1 106 Jupiter 142 800 778.7 106 Saturn 120 000 1 430.1 106 Uranus 50 000 2 876.5 106 Neptune 49 000 4 506.6 106 Table 1: Data of the Solar System bodies In all cases, the main goal of the model is to make the data understandable.
    [Show full text]
  • A Planetary Companion to the Nearby M4 Dwarf, Gliese
    A Planetary Companion to the Nearby M4 Dwarf, Gliese 876 1 Geoffrey W. Marcy2, R. Paul Butler,3, Steven S. Vogt4, Debra Fischer2, Jack J. Lissauer5 Received ; accepted Submitted to Astrophysical Journal Letters 1 arXiv:astro-ph/9807307v1 29 Jul 1998 Based on observations obtained at Lick Observatory, which is operated by the University of California, and on observations obtained at the W.M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. 2Department of Physics and Astronomy, San Francisco, CA, USA 94132 and at Department of Astronomy, University of California, Berkeley, CA USA 94720 3Anglo–Australian Observatory, PO Box 296, NSW 2121 Epping, Australia 4UCO/Lick Observatory, University of California at Santa Cruz, Santa Cruz, CA, 95064 5NASA/Ames Research Center, NASA/Ames Research Center, MS245-3, Moffett Field, CA 94035 –2– ABSTRACT Doppler measurements of the M4 dwarf star, Gliese 876, taken at both Lick and Keck Observatory reveal periodic, Keplerian velocity variations with a period of 61 days. The orbital fit implies that the companion has a mass of, M = 2.1 MJUP/ sin i, an orbital eccentricity of, e = 0.27 0.03, and a semimajor ± axis of, a = 0.21 AU. The planet is the first found around an M dwarf, and was drawn from a survey of 24 such stars at Lick Observatory. It is the closest extrasolar planet yet found, providing opportunities for follow–up detection. The presence of a giant planet on a non-circular orbit, 0.2 AU from a 1/3 M⊙ star, presents a challenge to planet formation theory.
    [Show full text]
  • The TRAPPIST-1 JWST Community Initiative
    Bulletin of the AAS • Vol. 52, Issue 2 The TRAPPIST-1 JWST Community Initiative Michaël Gillon1, Victoria Meadows2, Eric Agol2, Adam J. Burgasser3, Drake Deming4, René Doyon5, Jonathan Fortney6, Laura Kreidberg7, James Owen8, Franck Selsis9, Julien de Wit10, Jacob Lustig-Yaeger11, Benjamin V. Rackham10 1Astrobiology Research Unit, University of Liège, Belgium, 2Department of Astronomy, University of Washington, USA, 3Department of Physics, University of California San Diego, USA, 4Department of Astronomy, University of Maryland at College Park, USA, 5Institute for Research in Exoplanets, University of Montreal, Canada, 6Other Worlds Laboratory, University of California Santa Cruz, USA, 7Center for Astrophysics | Harvard and Smithsonian, USA, 8Department of Physics, Imperial College London, United Kingdom, 9Laboratoire d’Astrophysique de Bordeaux, University of Bordeaux, France, 10Department of Earth, Atmospheric, and Planetary Sciences, MIT, USA, 11Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA Published on: Dec 02, 2020 DOI: 10.3847/25c2cfeb.afbf0205 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) Bulletin of the AAS • Vol. 52, Issue 2 The TRAPPIST-1 JWST Community Initiative ABSTRACT The upcoming launch of the James Webb Space Telescope (JWST) combined with the unique features of the TRAPPIST-1 planetary system should enable the young field of exoplanetology to enter into the realm of temperate Earth-sized worlds. Indeed, the proximity of the system (12pc) and the small size (0.12 R )
    [Show full text]
  • El Sistema Planetario De Trappist-1
    (#313). EL SISTEMA PLANETARIO DE TRAPPIST-1 [MONOTEMA] El descubrimiento del sistema TRAPPIST-1 ha generado gran interés debido, fundamentalmente, a que los siete planetas detectados tienen características similares a la Tierra y podrían albergar vida. Esos planetas orbitan alrededor de una estrella enana tipo M, y además lo hacen de manera resonante y con acoplamiento por fuerzas de marea. En este post describo los detalles más relevantes de este hallazgo, y explico de forma breve los principales métodos de detección empleados en este campo de la física, así como también analizo la posible habitabilidad de los planetas encontrados. Muestro, por tanto, de manera didáctica, la complejidad de obtener resultados concluyentes cuando todavía existe incertidumbre importante en los datos, pero al mismo tiempo ilustro que a través de la observación, simulación numérica y análisis estadísticos, se puede obtener un dibujo aproximado de una parte de la galaxia que está a unos 39 años luz de nosotros. Introducción El descubrimiento de tres exoplanetas en la zona habitable de la estrella TRAPPIST-1A por Gillon et al. (2016), ha sido uno de los eventos más destacados en el campo de la astrofísica en los últimos años. Tan sólo unos meses más tarde, Gillon et al. (2017) publicaron que habían detectado hasta 7 planetas orbitando esa estrella, los cuales podrían contener agua líquida. De este modo, el hallazgo de los exoplanetas de TRAPPIST-1 constituye un caso muy atractivo para ilustrar algunas de las actividades fundamentales de la investigación en astrofísica, así como para explicar conceptos clave asociados a la búsqueda de lugares en el espacio con el potencial de albergar vida.
    [Show full text]
  • Feasibility of Spectro-Polarimetric Characterization of Exoplanetary Atmospheres with Direct Observing Instruments J
    A&A 599, A56 (2017) Astronomy DOI: 10.1051/0004-6361/201628206 & c ESO 2017 Astrophysics Feasibility of spectro-polarimetric characterization of exoplanetary atmospheres with direct observing instruments J. Takahashi1, T. Matsuo2, and Y. Itoh1 1 Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2, Nishigaichi, Sayo, 679-5313 Hyogo, Japan e-mail: [email protected] 2 Department of Earth and Space Science, Graduate School of Science, Osaka University 1–1, Machikaneyama-Cho, Toyonaka, 560-0043 Osaka, Japan Received 28 January 2016 / Accepted 9 November 2016 ABSTRACT Context. Spectro-polarimetry of reflected light from exoplanets is anticipated to be a powerful method for probing atmospheric composition and structure. Aims. We aim to evaluate the feasibility of the search for a spectro-polarimetric feature of water vapor using a high-contrast polari- metric instrument on a 30–40 m-class ground-based telescope. Methods. Three types of errors are considered: (a) errors from the difference between efficiencies for two orthogonally polarized states; (b) errors caused by speckle noises; and (c) errors caused by photon noise from scattered starlight. Using the analytically derived error formulas, we estimate the number of planets for which feasible spectro-polarimetric detection of water vapor is possible. Results. Our calculations show that effective spectro-polarimetric searches for water vapor are possible for 5 to 14 known planets. Spectro-polarimetric characterization of exoplanetary atmospheres is feasible with an extremely large telescope and a direct observing spectro-polarimeter. Key words. planetary systems – techniques: polarimetric – instrumentation: polarimeters 1. Introduction spectra were less clear. Similarly, Stam(2008) pointed out that the degree of polarization at the continuum wavelengths near a Spectro-polarimetric observations of visible or near-infrared re- molecular feature is more sensitive to the altitude of the cloud’s flected light from exoplanets can be a powerful tool for probing top compared with intensity.
    [Show full text]
  • Feasibility of Spectro-Polarimetric Detection of Atmospheric Components of Exoplanets
    Feasibility of Spectro-Polarimetric Detection of Atmospheric Components of Exoplanets Jun Takahashi (University of Hyogo) Taro Matsuo (Osaka University) Polarimetry for planets • Reflection makes polarization. Polarization of the reflected light from a planet has information of its atmosphere, clouds and surface. • Polarimetry has been a powerful method to investigate Solar-System objects. For example, polarimetry for Venus (e.g., Lyot 1929) played a key role to identify H2SO4 hazes by determining the size and refractive index of the reflecting particles. • As is for Solar-System planets, polarimetry for exoplanets may be a good diagnostic tool to know … • atmospheric composition • cloud/haze altitude (Stam 2004, 2008) • optical thickness of atmosphere ? (Takahashi+ 2013) • existence of a surface ocean ?? (McCullough 2006) Pol. spectra of planets • Model calculations 668 D. M. Stam et al.: Polarimetry to detect and characterize Jupiter-like extrasolar planets Earth-like planet, Stam(2008) Jupiter-like planet, Stam(2004) ) 0.20 1.0 % P ( a. b. CH3 features 0.8 0.15 F 0.6 H2O clear 0.10 O2 Flux model 1 0.4 0.05 model 2 low cloud model 3 0.2 Degree of polarization Deg. of polarization, P ofpolarization, Deg. high haze 0.00 0.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 WavelengthWavelength(nm) (µm) Wavelength (µm) Fig. 4. The flux F• andThe degree enhanced of polarization featuresP of are starlight explained reflected by by the three decrease Jupiter-like in EGPs intensity for α = of90 ◦the.Planetarymodelatmosphere1 (solid lines) containsmultiply only molecules, scattered model component 2 (dashed lines) at is the simila absorptionrtomodel1,exceptforatroposphericcloudlayer,andmodel3(dotted wavelengths as compared lines) is similar to modelwith 2, that except at for the a stratospheric continuum haze wavelengths layer.
    [Show full text]
  • Paul Robertson, Ph.D
    Paul Robertson, Ph.D. Assistant Professor Department of Physics & Astronomy Email: [email protected] The University of California, Irvine Phone: (949) 824-6660 4129 Frederick Reines Hall Web: http://faculty.sites.uci.edu/robertson/ Irvine, CA 92697 EDUCATION Doctor in Astrophysics, 2013 The University of Texas, Austin, TX Dissertation: “Discovering New Solar Systems: Jupiter Analogs and the Quest to Find Another Earth” Master of Arts in Astrophysics, 2010 The University of Texas, Austin, TX Thesis: “The Hobby-Eberly Telescope M dwarf Planet Search Program: New Observations and Results” Bachelor of Arts in Physics and Mathematics, 2008 The University of North Carolina, Chapel Hill, NC PROFESSIONAL APPOINTMENTS Assistant Professor, UC Irvine 2018-present NASA Sagan Fellow, Penn State University 2015-2017 Postdoctoral Fellow, Penn State University 2013-2015 AWARDS University of New South Wales Science Visiting Fellowship, 2016 Carl Sagan Fellowship, NASA, 2015 Graduate Continuing Fellowship, University of Texas, 2012-2013 Frank N. Edmonds Jr. Memorial Fellowship in Astronomy, The University of Texas, 2011-2012 Graduate with Distinction, The University of North Carolina, 2008 FIRST-AUTHORED PEER REVIEWED PUBLICATIONS Robertson, P., Anderson, T., Stefansson, G. et al. 2019, “Ultra-Stable Environment Control for the NEID Spectrometer: Design and Performance Demonstration.” Journal of Astronomical Telescopes, Instruments, and Systems, accepted. arXiv:1902.07729. Robertson, P. 2018. “Aliasing in the Radial Velocities of YZ Ceti: An Ultra-short Period for YZ Ceti c?” The Astrophysical Journal Letters, Vol. 864, p. 28. Robertson, P., Bender, C., Mahadevan, S., Roy, A., & Ramsey, L. W. 2016. “Proxima Centauri as a Benchmark for Stellar Activity Indicators in the Near Infrared.” The Astrophysical Journal, Vol.
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • The TRAPPIST-1 JWST Community Initiative
    The TRAPPIST-1 JWST Community Initiative Michael¨ Gillon1, Victoria Meadows2, Eric Agol2, Adam J. Burgasser3, Drake Deming4, Rene´ Doyon5, Jonathan Fortney6, Laura Kreidberg7, James Owen8, Franck Selsis9, Julien de Wit10, Jacob Lustig-Yaeger2, Benjamin V. Rackham10 1Astrobiology Research Unit, University of Liege,` Belgium 2Department of Astronomy, University of Washington, USA 3Department of Physics, University of California San Diego, USA 4Department of Astronomy, University of Maryland at College Park, USA 5Institute for Research in Exoplanets, University of Montreal, Canada 6Other Worlds Laboratory, University of California Santa Cruz, USA 7Center for Astrophysics — Harvard and Smithsonian, USA 8Department of Physics, Imperial College London, United Kingdom 9Laboratoire d’Astrophysique de Bordeaux, University of Bordeaux, France 10Department of Earth, Atmospheric, and Planetary Sciences, MIT, USA February 17, 2020 he upcoming launch of the James Webb analysis techniques, complementary space-based Space Telescope (JWST) combined with and ground-based observations) and theoretical T the unique features of the TRAPPIST-1 levels (e.g. model developments and comparison, planetary system should enable the young field retrieval techniques, inferences). Depending on of exoplanetology to enter into the realm of tem- the outcome of the first phase of JWST observa- perate Earth-sized worlds. Indeed, the proximity tions of the planets, this initiative could become of the system (12pc) and the small size (0.12 the seed of a major JWST Legacy Program devoted R ) and luminosity (0.05% L ) of its host star to the study of TRAPPIST-1. should make the comparative atmospheric char- acterization of its seven transiting planets within Keywords: planetary systems, star and planet reach of an ambitious JWST program.
    [Show full text]