Feasibility of Spectro-Polarimetric Detection of Atmospheric Components of Exoplanets

Total Page:16

File Type:pdf, Size:1020Kb

Feasibility of Spectro-Polarimetric Detection of Atmospheric Components of Exoplanets Feasibility of Spectro-Polarimetric Detection of Atmospheric Components of Exoplanets Jun Takahashi (University of Hyogo) Taro Matsuo (Osaka University) Polarimetry for planets • Reflection makes polarization. Polarization of the reflected light from a planet has information of its atmosphere, clouds and surface. • Polarimetry has been a powerful method to investigate Solar-System objects. For example, polarimetry for Venus (e.g., Lyot 1929) played a key role to identify H2SO4 hazes by determining the size and refractive index of the reflecting particles. • As is for Solar-System planets, polarimetry for exoplanets may be a good diagnostic tool to know … • atmospheric composition • cloud/haze altitude (Stam 2004, 2008) • optical thickness of atmosphere ? (Takahashi+ 2013) • existence of a surface ocean ?? (McCullough 2006) Pol. spectra of planets • Model calculations 668 D. M. Stam et al.: Polarimetry to detect and characterize Jupiter-like extrasolar planets Earth-like planet, Stam(2008) Jupiter-like planet, Stam(2004) ) 0.20 1.0 % P ( a. b. CH3 features 0.8 0.15 F 0.6 H2O clear 0.10 O2 Flux model 1 0.4 0.05 model 2 low cloud model 3 0.2 Degree of polarization Deg. of polarization, P ofpolarization, Deg. high haze 0.00 0.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 WavelengthWavelength(nm) (µm) Wavelength (µm) Fig. 4. The flux F• andThe degree enhanced of polarization featuresP of are starlight explained reflected by by the three decrease Jupiter-like in EGPs intensity for α = of90 ◦the.Planetarymodelatmosphere1 (solid lines) containsmultiply only molecules, scattered model component 2 (dashed lines) at is the simila absorptionrtomodel1,exceptforatroposphericcloudlayer,andmodel3(dotted wavelengths as compared lines) is similar to modelwith 2, that except at for the a stratospheric continuum haze wavelengths layer. • Pol spectra are sensitive to the clouds/haze altitude. and the sensitivity of the degree of polarization of the reflected For model 2, which is the atmosphere with the tropospheric stellar radiation to the structure and composition of the plane- cloud, both F and P (Fig. 4a and 4b) at the shortest wave- tary model atmosphere. lengths are similar to those of model 1, because at these wave- lengths, the molecular scattering optical thickness of the atmo- spheric layers above the cloud is so large that hardly any stellar 4. Results light will reach the cloud layer. In the strong CH4-absorption band around 0.89 µm, With increasing wavelength, the molec- 4.1. Flux and polarization as functions of wavelength ular scattering optical thickness decreases, and, at least at con- Figure 4 shows spectra of the reflected flux F and degree of po- tinuum wavelengths, the contribution of light scattered by the larization P for the 3 model atmospheres and a planetary phase cloud particles to the reflected F and P increases. The slope of the continuum F is less steep for model 2 than for model 1, angle α of 90◦. These spectra have been calculated at the same because while the molecular scattering optical thickness de- 1-nm intervals at which the CH4 absorption cross-sections have been given (Karkoschka 1994). In order to present general re- creases with wavelength, the cloud’s (scattering) optical thick- 2 2 2 2 ness increases. The decrease of the continuum P for model 2 sults in Fig. 4, we have set πB0r R /(d D )(seeEq.(5))equal 1 (Fig. 4b) is due to the increased multiple scattering within the to one. In fact, Fig. 4a thus shows 4 a1(λ, 90◦), with a1 the (1,1)-element of the planetary scattering matrix S (cf. Eq. (6)) cloud layers, as well as to the low degree of polarization of light and Fig. 4b, b (λ, 90 )/a (λ, 90 ). Using Eq. (5), scaling the that is scattered by cloud particles (see Fig. 3b). − 1 ◦ 1 ◦ fluxes presented in Fig. 4a to obtain results for a Jupiter-like In the CH4-absorption bands, F is generally larger and P extrasolar planet in an arbitrary planetary system is a straight- smaller for model 2 than for model 1, just like at continuum forward excercise. Note that P (Fig. 4b) is independent of the wavelengths. In the strong absorption band around 0.89 µm, choice of r, R, d, D,andB0,becauseP is a relative measure. however, F and P of the two models are similar, because at The flux and polarization spectra in Fig. 4 can be thought these wavelengths, hardly any stellar light can reach the cloud of to consist of a continuum with superimposed high-spectral layer due to the large molecular absorption optical thickness resolution features that are due to absorption by CH4.Recent of the atmosphere above the cloud. The light that is reflected Earth-based spectropolarimetric measurements of the gaseous at these wavelengths, has thus been scattered in the highest at- planets of our own Solar System using ZIMPOL show a similar mospheric layers, which are identical in model atmospheres 1 spectral structure (Joos et al. 2004). and 2. For model 1, which is the clear atmosphere, the continuum For model 3, the atmosphere with the tropospheric cloud F decreases steadily with λ (Fig. 4a), following the decrease and the stratospheric haze, F is at all wavelengths somewhat of the molecular scattering optical thickness with λ.Thecon- larger than for model 2, even at the shortest wavelengths, where tinuum P (Fig. 4b) increases with λ, because the smaller the model 2 is almost indistinguishable from model 1 (Fig. 4a). molecular optical thickness, the less multiple scattering takes The influence of the optically thin haze on F is explained by place within the atmosphere; and multiple scattering tends to the relatively small molecular scattering and absorption optical lower the degree of polarization of the reflected light. Multiple thickness above the high-altitude haze layer: at all wavelengths, scattering also decreases with increasing absorption by CH4. a significant fraction of the incoming stellar light reaches the For model atmosphere 1, this fully explains the high values haze layer and is reflected back to space. The degree of polar- of P within the CH4 absorption bands (Stam et al. 1999). In ization P (Fig. 4b) for model 3 is at all wavelengths signifi- the strong absorption band around 0.89 µm, P = 0.95, and thus cantly lower than that for model 1 and 2 mainly because light almost reaches its single scattering value at a single scattering that is singly scattered by the haze particles has a very low de- angle of 90◦ (which corresponds with a planetary phase angle α gree of polarization (see Fig. 3b). In particular, P is very low of 90◦), namely 0.96 (see Fig. 3b). in the strong absorption band around 0.89 µm. Whereas in the Pol. spectra of planets • Earthshine observations (Sterzik+ 2012, Miles-Paez+ 2014). A&A 562, L5 (2014) (Miles-Paez+ 2014) 18 values of the surrounding continuum, i.e., similar in intensity This work 16 Sterzik et al. 2012 to the blue optical wavelengths. Even more important should 14 Bazzon et al. 2013: highlands be the linear polarization signal of water bands at 1.4 µm Bazzon et al. 2013: maria H O ∼ 12 2 and 1.9 µm, which unfortunately cannot be characterized from ∼ 10 the ground due to strong telluric absorption. Spectropolarimetric (%) * O H O O 8 2 2 2 models of the Earth, guided by the visible and NIR observations p H O 2 H O 6 2 shown here, could provide hints to their expected polarization 4 values. To this point, we presented earthshine p values as measured 2 ∗ from the light deflection on the Moon surface. However, this 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 process introduces significant depolarization due to the back- Wavelength (µm) scattering from the lunar soil (Dollfus 1957); the true linear Enhanced features atFig. molecular 3. Our visible (H2O, and O2 NIR) absorption spectropolarimetric wavelengths measurements were of the polarization intensity of the planet Earth is actually higher. At confirmed by the observations.earthshine compared to literature data. A 10-pixel binning was applied optical wavelengths, the depolarization is estimated at a fac- ➡Spectro-polarimetryto the seems NIR spectrum to be a ofpromising region B. Themethod uncertainty to detect per wavelength is plot- tor of 3.3λ/550 (λ in nm) by Dollfus (1957),makingtruepo- atmospheric molecules.ted as vertical gray error bars. Wavelengths of strong telluric absorption larization fall in the range 26 31%. We are not aware of any have been removed. Some molecular species seen in “emission” (in- determination of the depolarization− factor for the NIR in the dicative of strong atmospheric flux absorption and less multiscattering literature. The extrapolation of Eq. (9) by Bazzon et al. (2013) processes occurring at those particular wavelengths) are labeled. The toward the NIR yields corrections of 2.2 3.3forthewave- vertical dashed line separates the ALFOSC and LIRIS data. length interval 0.9 2.3 µm, implying∼× that the−× true linear polar- ization intensity of− the Earth may be 9 12% for the NIR con- ∼ − We compare our measurements with data from the literature tinuum, and 12 36% at the peak of the O2 (1.25 µm) and ∼ − in Fig. 3. To improve the quality of the NIR linear polarization H2O(1.12µm) bands. The extrapolation of Dollfus (1957) depo- degree spectrum of region B, we applied a ten-pixel binning in larization wavelength dependency toward the NIR would yield the spectral dimension. Overlaid in Fig. 3 are the optical p val- even higher true polarization values by a factor of 4.
Recommended publications
  • Enabling Science with Gaia Observations of Naked-Eye Stars
    Enabling science with Gaia observations of naked-eye stars J. Sahlmanna,b, J. Mart´ın-Fleitasb,c, A. Morab,c, A. Abreub,d, C. M. Crowleyb,e, E. Jolietb,f aEuropean Space Agency, STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA; bEuropean Space Agency, ESAC, P.O. Box 78, Villanueva de la Canada,˜ 28691 Madrid, Spain; cAurora Technology, Crown Business Centre, Heereweg 345, 2161 CA Lisse, The Netherlands; dElecnor Deimos Space, Ronda de Poniente 19, Ed. Fiteni VI, 28760 Tres Cantos, Madrid, Spain; eHE Space Operations BV, Huygensstraat 44, 2201 DK Noordwijk, The Netherlands; fCalifornia Institute of Technology, Pasadena, CA, 91125, USA ABSTRACT ESA’s Gaia space astrometry mission is performing an all-sky survey of stellar objects. At the beginning of the nominal mission in July 2014, an operation scheme was adopted that enabled Gaia to routinely acquire observations of all stars brighter than the original limit of G∼6, i.e. the naked-eye stars. Here, we describe the current status and extent of those observations and their on-ground processing. We present an overview of the data products generated for G<6 stars and the potential scientific applications. Finally, we discuss how the Gaia survey could be enhanced by further exploiting the techniques we developed. Keywords: Gaia, Astrometry, Proper motion, Parallax, Bright Stars, Extrasolar planets, CCD 1. INTRODUCTION There are about 6000 stars that can be observed with the unaided human eye. Greek astronomer Hipparchus used these stars to define the magnitude system still in use today, in which the faintest stars had an apparent visual magnitude of 6.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Gaia Search for Stellar Companions of TESS Objects of Interest
    Received 1 July 2020; Revised 29 August 2020; Accepted 18 September 2020 DOI: xxx/xxxx ARTICLE TYPE Gaia Search for stellar Companions of TESS Objects of Interest M. Mugrauer* | K.-U. Michel 1Astrophysikalisches Institut und Universitäts-Sternwarte Jena The first results of a new survey are reported, which explores the 2nd data release Correspondence of the ESA-Gaia mission, in order to search for stellar companions of (Community) M. Mugrauer, Astrophysikalisches Institut und Universitäts-Sternwarte Jena, TESS Objects of Interest and to characterize their properties. In total, 193 binary and Schillergäßchen 2, D-07745 Jena, Germany. 15 hierarchical triple star systems are presented, detected among 1391 target stars, Email: [email protected] which are located at distances closer than about 500 pc around the Sun. The com- panions and the targets are equidistant and share a common proper motion, as it is expected for gravitationally bound stellar systems, proven with their accurate Gaia astrometry. The companions exhibit masses in the range between about 0.08 M⊙ and 3 M⊙ and are most frequently found in the mass range between 0.13 and 0.6 M⊙. The companions are separated from the targets by about 40 up to 9900 au, and their frequency continually decreases with increasing separation. While most of the detected companions are late K to mid M dwarfs, also 5 white dwarf companions were identified in this survey, whose true nature is revealed by their photometric properties. KEYWORDS: binaries: visual, white dwarfs, stars: individual (TOI 249 C, TOI 1259 B, TOI 1624 B, TOI 1703 B, CTOI 53309262 B) 1 INTRODUCTION explored the 2nd data release of the European Space Agency (ESA) Gaia mission (Gaia DR2 from hereon, Gaia Collabora- A key aspect in the diversity of exoplanets is the multiplicity tion, Brown, Vallenari, et al., 2018), which provides manifold of their host stars.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
    University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars.
    [Show full text]
  • Precise Radial Velocities of Giant Stars
    A&A 555, A87 (2013) Astronomy DOI: 10.1051/0004-6361/201321714 & c ESO 2013 Astrophysics Precise radial velocities of giant stars V. A brown dwarf and a planet orbiting the K giant stars τ Geminorum and 91 Aquarii, David S. Mitchell1,2,SabineReffert1, Trifon Trifonov1, Andreas Quirrenbach1, and Debra A. Fischer3 1 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 2 Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA e-mail: [email protected] 3 Department of Astronomy, Yale University, New Haven, CT 06511, USA Received 16 April 2013 / Accepted 22 May 2013 ABSTRACT Aims. We aim to detect and characterize substellar companions to K giant stars to further our knowledge of planet formation and stellar evolution of intermediate-mass stars. Methods. For more than a decade we have used Doppler spectroscopy to acquire high-precision radial velocity measurements of K giant stars. All data for this survey were taken at Lick Observatory. Our survey includes 373 G and K giants. Radial velocity data showing periodic variations were fitted with Keplerian orbits using a χ2 minimization technique. Results. We report the presence of two substellar companions to the K giant stars τ Gem and 91 Aqr. The brown dwarf orbiting τ Gem has an orbital period of 305.5±0.1 days, a minimum mass of 20.6 MJ, and an eccentricity of 0.031±0.009. The planet orbiting 91 Aqr has an orbital period of 181.4 ± 0.1 days, a minimum mass of 3.2 MJ, and an eccentricity of 0.027 ± 0.026.
    [Show full text]
  • Open Batalha-Dissertation.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • AMD-Stability and the Classification of Planetary Systems
    A&A 605, A72 (2017) DOI: 10.1051/0004-6361/201630022 Astronomy c ESO 2017 Astrophysics& AMD-stability and the classification of planetary systems? J. Laskar and A. C. Petit ASD/IMCCE, CNRS-UMR 8028, Observatoire de Paris, PSL, UPMC, 77 Avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 7 November 2016 / Accepted 23 January 2017 ABSTRACT We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in Laskar (2000, Phys. Rev. Lett., 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD-unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database for which the orbital elements are sufficiently well known. Key words. chaos – celestial mechanics – planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general 1. Introduction motion resonances (MMR, Wisdom 1980; Deck et al. 2013; Ramos et al. 2015) could justify the Hill-type criteria, but the The increasing number of planetary systems has made it nec- results on the overlap of the MMR island are valid only for close essary to search for a possible classification of these planetary orbits and for short-term stability.
    [Show full text]
  • Planets and Exoplanets
    NASE Publications Planets and exoplanets Planets and exoplanets Rosa M. Ros, Hans Deeg International Astronomical Union, Technical University of Catalonia (Spain), Instituto de Astrofísica de Canarias and University of La Laguna (Spain) Summary This workshop provides a series of activities to compare the many observed properties (such as size, distances, orbital speeds and escape velocities) of the planets in our Solar System. Each section provides context to various planetary data tables by providing demonstrations or calculations to contrast the properties of the planets, giving the students a concrete sense for what the data mean. At present, several methods are used to find exoplanets, more or less indirectly. It has been possible to detect nearly 4000 planets, and about 500 systems with multiple planets. Objetives - Understand what the numerical values in the Solar Sytem summary data table mean. - Understand the main characteristics of extrasolar planetary systems by comparing their properties to the orbital system of Jupiter and its Galilean satellites. The Solar System By creating scale models of the Solar System, the students will compare the different planetary parameters. To perform these activities, we will use the data in Table 1. Planets Diameter (km) Distance to Sun (km) Sun 1 392 000 Mercury 4 878 57.9 106 Venus 12 180 108.3 106 Earth 12 756 149.7 106 Marte 6 760 228.1 106 Jupiter 142 800 778.7 106 Saturn 120 000 1 430.1 106 Uranus 50 000 2 876.5 106 Neptune 49 000 4 506.6 106 Table 1: Data of the Solar System bodies In all cases, the main goal of the model is to make the data understandable.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Archival VLT/Naco Multiplicity Investigation of Exoplanet Host Stars J
    Astronomy & Astrophysics manuscript no. final_version c ESO 2018 November 27, 2018 Archival VLT/NaCo multiplicity investigation of exoplanet host stars J. Dietrich1; 2 and C. Ginski1; 3 1 Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 Harvard University, Cambridge, MA 02138, United States 3 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands Received June XX, 2017; accepted YYY ABSTRACT Context. The influence of stellar multiplicity on planet formation is not yet well determined. Most planets are found using indirect detection methods via the small radial velocity or photometric variations of the primary star. These indirect detection methods are not sensitive to wide stellar companions. High-resolution imaging is thus needed to identify potential (sub)stellar companions to these stars. Aims. In this study we aim to determine the (sub)stellar multiplicity status of exoplanet host stars, that were not previously investigated for stellar multiplicity in the literature. For systems with non-detections we provide detailed detection limits to make them accessible for further statistical analysis. Methods. For this purpose we have employed previously unpublished high-resolution imaging data taken with VLT/NACO in a wide variety of different scientific programs and publicly accessible in the ESO archive. We used astrometric and theoretical population synthesis to determine whether detected companion candidates are likely to be bound or are merely chance-projected background objects. Results. We provide detailed detection limits for 39 systems and investigate 29 previously unknown companion candidates around five systems.
    [Show full text]