Photometry Using Mid-Sized Nanosatellites

Total Page:16

File Type:pdf, Size:1020Kb

Photometry Using Mid-Sized Nanosatellites Feasibility-Study for Space-Based Transit Photometry using Mid-sized Nanosatellites by Rachel Bowens-Rubin Submitted to the Department of Earth, Atmospheric, and Planetary Science in partial fulfillment of the requirements for the degree of Masters of Science in Earth, Atmospheric, and Planetary Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2012 @ Massachusetts Institute of Technology 2012. All rights reserved. A uthor .. ............... ................ Department of Earth, Atmospheric, and Planetary Science May 18, 2012 C ertified by .................. ........ ........................... Sara Seager Professor, Departments of Physics and EAPS Thesis Supervisor VIZ ~ Accepted by.......,.... Robert D. van der Hilst Schulumberger Professor of Geosciences and Head, Department of Earth, Atmospheric, and Planetary Science 2 Feasibility-Study for Space-Based Transit Photometry using Mid-sized Nanosatellites by Rachel Bowens-Rubin Submitted to the Department of Earth, Atmospheric, and Planetary Science on May 18, 2012, in partial fulfillment of the requirements for the degree of Masters of Science in Earth, Atmospheric, and Planetary Science Abstract The photometric precision needed to measure a transit of small planets cannot be achieved by taking observations from the ground, so observations must be made from space. Mid-sized nanosatellites can provide a low-cost option for building an optical system to take these observations. The potential of using nanosatellites of varying sizes to perform transit measurements was evaluated using a theoretical noise budget, simulated exoplanet-transit data, and case studies to determine the expected results of a radial velocity followup mission and transit survey mission. Optical systems on larger mid-sized nanosatellites (such as ESPA satellites) have greater potential than smaller mid-sized nanosatellites (such as CubeSats) to detect smaller planets, detect planets around dimmer stars, and discover more transits in RV followup missions. Thesis Supervisor: Sara Seager Title: Professor, Departments of Physics and EAPS 3 4 Acknowledgments I would first like to thank my direct advisor, Mary Knapp, for her time, advice, and continual guidance during every part of this project. Next, I would like to thank my advisor, Sara Seager, and my thesis committee members, Richard Binzel and Josh Winn, for their discussion and feedback on my research. Additionally, I would like to thank Jane Conner for teaching me the ins and outs of technical writing and for providing constant encouragement over the past four years. I would also like to acknowledge my labmates Brice Demory, Julien de Wit, Re- becca Jensen-Clem, Luyao Li, Stephen Messenger, Leslie Rogers, and Matt Smith for their consultations, for supplying me with numerous resources, and for helping me prepare for my defense presentation. Lastly, I would like to salute my friends and fellow goggleheads, Zach Barryte who taught me how to make pretty figures using Illustrator and Danbee Tauntaun Kim for her late night reassurance and support. 5 6 Contents 1 Science Background 15 1.1 Purpose of Study: To determine the viability of an ESPA satellite for measuring exoplanet transits ... ........ ........ 15 1.2 Current Methods for Detecting Exoplanets .. ...... ....... 16 1.3 Measuring Exoplanets via the Transit Method ........ 16 1.3.1 Brightness Over Time: Implications of the shape of the light curve. ........... .. .. .. .. .... 16 1.3.2 Probability of Finding an Exoplanet by Transit . 18 1.3.3 The Photometric Precision Threshold for Detecting a Transit- ing Planet ... ....... ....... ....... ..... 21 1.4 Mathematically Modeling the Shape of a Light Curve .... ..... 22 1.4.1 Estimating the Overall Shape by Deriving the Eclipsed Area . 22 1.4.2 Complications to the Overall Shape: Disconformities in the flux emitted from the solar disc ... ....... ....... 25 1.4.3 Modeling the Change in Flux, Including the Effect from Limb D arkening ........ .......... ........... 27 2 Small Satellites: a lower cost option for space missions 29 2.1 Cubesats: a standardized pico- and nanosatellite system .. ..... 30 2.1.1 ExoplanetSat: a 3U CubeSat capable of observing exoplanet transits ... ..... ..... ...... ..... ..... 32 2.2 ESPA Satellites: a larger standardized satellite system alternative .. 33 2.2.1 Castor: an ESPA spacecraft with the potential to be repurposed 35 7 3 Creating a Noise Budget for Space-Based Transit Observations 37 3.1 Important Choices for Engineering Systems. .. .. .. .. 3 7 3.1.1 Detector: CCD versus CMOS . ... .. .. 37 3.1.2 Optical System .. ... ... ... ... .. 39 3.1.3 Orbit Type: Low Earth Orbit . .. .. .. 39 3.1.4 Temperature Fluctuations: Using a Thermal Control System 39 3.2 Contributing Sources of Error ... .. .. .. .. .. .. .. 4 0 3.2.1 Shot Noise .... ..... .. .. .. .. .. .. .. 4 0 3.2.2 Dark Current ... ..... .. .. .. .. .. .. .. .. 4 2 3.2.3 Read Noise .. ..... .. .. .. .. .. .. .. .. 4 3 3.2.4 Jitter Noise .. ... .... .. .. .. .. .. .. .. .. .. 4 4 3.2.5 Quantization Noise..... .. .. .. .. .. .. .. 4 6 3.2.6 Background Light .. ... .. .. .. .. .. .. .. 4 7 3.2.7 Gain Drift ..... ..... .. .. .. .. .. .. .. 4 7 3.2.8 Noise Sources Not Modeled .. .. .. .. .. .. .. 4 8 3.3 Calculating the Total Noise . .. .. .. .. .. .. 4 8 3.3.1 Total Error Budget..... .. .. .. .. .. .. .. 4 8 3.3.2 Effect of Aperture Size, Target Magnitude, and Time Resolu- tion on Total Noise ............. .. .. 50 4 Simulating Data of Exoplanet Transits Collected from Space-Based Missions 53 4.1 The Overall Shape of the Light Curve .. .... ... ... ... ... 53 4.2 Adding Noise Consistent with the Error Budget ... ... ... .. 54 4.3 Gaps Due to Orbit Day and Night .... ... ... ... .... ... 55 4.4 Stacking Transits and Binning to Improve the Photometric Precision 55 5 Radial Velocity Follow-up and Transit Survey Case Studies 59 5.1 Determining the Frequency of Observable Transits .. ... ... .. 60 5.1.1 Selecting Targets and Finding Transit Windows . ... .. .. 60 5.1.2 Orbit Model and Observable Windows . .. ... .. ... .. 61 8 5.1.3 Observable-Transit Windows: When Transits can be Observed 62 5.2 Modeling Data of Transits Using the Results of the Frequency Study 65 5.3 Probability of the Mission Measuring a Transit: ESPA Conditions Compared with ExoSat Conditions ....... ........... 67 5.3.1 Selecting Planets for a RV survey . ...... ..... 67 5.3.2 Probability of Discovering Transits of Known-RV Planets .. 69 5.4 Beyond RV follow-up: Expected Results of a Transit Survey using a Mid-sized Nanosatellite around G and K stars .... ........ 71 5.4.1 Number of Non-variable G and K Stars which could be Monitored 71 5.4.2 Expected Number of Planets to Discover in a Transit Survey Using a Mid-sized Nanosatellite . 73 5.4.3 Transit-Survey Mission Lifetime Requirement .... ..... 74 6 Discussions and Recommendations Related to the Future Use of Mid-sized Nanosatellites to Measurements of Exoplanets 79 6.1 Size Limiting Factors for Building Satellites to Perform Photometry 79 6.2 Constellation of CubeSats verses One ESPA-Class Satellite ... 81 6.2.1 Advantages of a Constellation of CubeSats . ....... 81 6.2.2 Advantages of Using One ESPA-Class Satellite . 82 A Summary of Planet Candidates Used in Determining the Probability of Discovering a Transit in an RV Followup Mission 89 9 10 List of Figures 1-1 Exoplanet Transit Alignment . ............. 18 1-2 Planet Transiting a Star Correlated with the Measured Brightness . 19 1-3 Transit Duration, Transit Depth, and Duration of Ingress/Egress .. 20 1-4 Side View and Observer's View of the Planet's Orbit ......... 21 1-5 Top View and Observer's View of the Planet's Orbit . 23 1-6 Overlapping Stellar and Planetary Disc .... ............ 24 1-7 Limb Darkening Coefficients ... .................... 26 1-8 Area of a Partial Annulus, used for calculating the change of flux with lim b darkening ...... ............ ........... 28 2-1 1U, 2U, and 3U CubeSat Designs ..... 30 2-2 Poly-Picosatellite Orbital Deployer Schematic and Inside ....... 31 2-3 Diagrams of the ExoSat Design ...... 33 2-4 EELV-ESPA system ...... ............. ........ 34 2-5 Model of an ESPA ring with Six Docking Rings ............ 34 2-6 Model of Castor, an ESPA satellite designed at MIT . ........ 35 3-1 Total Noise Budget ... ......................... 41 3-2 Spot Motion on the Detector ............. .......... 44 3-3 Pixel Correlation Time .......... ............. ... 45 3-4 Quantization Noise: Input and Output signals into the ADC ..... 46 3-5 Sources of Error for Time Resolution of One Hour and Aperture Size of 30-cm ..................... ............. 49 11 3-6 Total Noise Estimate varying by Aperture Size for a collection duration of 20 m inutes ..... .... ..... ..... .... ..... ... 51 3-7 Aperture Needed to detect an Earth-Sized Planet ... ..... ... 51 4-1 Shape of 55 Cancri E Transit ...... ............. ... 54 4-2 55 Cancri E with Error . ...... ..... ..... .... ..... 55 4-3 55 Cancri E Transit with Orbit Day and Night Data ... ...... 56 4-4 55 Cancri E Transit with only Orbit Night Data .... ..... 56 4-5 Stacking Transits ... ............. ............ 57 4-6 Ten 55 Cancri E transits Stacked and Binned .... .... ..... 58 5-1 Predicted Transit, Observational, and Observational-Transit Windows for H D 20794 . ........ ........ ........ ....... 62 5-2 Observable Window Zoomed . ...... ..... .... ..... .. 63 5-3 All Observable-Transit Windows . ...... ...... ...... .. 65 5-4 Data Collected from HD20794c Observational-Transit Windows .. 66 5-5 Data Collected from
Recommended publications
  • Occuttau'm@Newsteuer
    Occuttau'm@Newsteuer Volume IV, Number 3 january, 1987 ISSN 0737-6766 Occultation Newsletter is published by the International Occultation Timing Association. Editor and compos- itor: H. F. DaBo11; 6N106 White Oak Lane; St. Charles, IL 60174; U.S.A. Please send editorial matters, new and renewal memberships and subscriptions, back issue requests, address changes, graze prediction requests, reimbursement requests, special requests, and other IOTA business, but not observation reports, to the above. FROM THE PUBLISHER IOTA NEWS This is the first issue of 1987. Some reductions in David Id. Dunham prices of back issues are shown below. The main purpose of this issue is to distribute pre- dictions and charts for planetary and asteroidal oc- When renewing, please give your name and address exactly as they ap- pear on your mailing label, so that we can locate your file; if the cultations that occur during at least the first part label should be revised, tell us how it should be changed. of 1987. As explained in the article about these If you wish, you may use your VISA or NsterCard for payments to IOTA; events starting on p. 41, the production of this ma- include the account number, the expiration date, and your signature. terial was delayed by successful efforts to improve Card users must pay the full prices. If paying by cash, check, or the prediction system and various year-end pres- money order, please pay only the discount prices. Full Discount sures, including the distribution o"' lunar grazing price price occultation predictions. Unfortunately, this issue IOTA membership dues (incl.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Planetary Phase Variations of the 55 Cancri System
    The Astrophysical Journal, 740:61 (7pp), 2011 October 20 doi:10.1088/0004-637X/740/2/61 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. PLANETARY PHASE VARIATIONS OF THE 55 CANCRI SYSTEM Stephen R. Kane1, Dawn M. Gelino1, David R. Ciardi1, Diana Dragomir1,2, and Kaspar von Braun1 1 NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125, USA; [email protected] 2 Department of Physics & Astronomy, University of British Columbia, Vancouver, BC V6T1Z1, Canada Received 2011 May 6; accepted 2011 July 21; published 2011 September 29 ABSTRACT Characterization of the composition, surface properties, and atmospheric conditions of exoplanets is a rapidly progressing field as the data to study such aspects become more accessible. Bright targets, such as the multi-planet 55 Cancri system, allow an opportunity to achieve high signal-to-noise for the detection of photometric phase variations to constrain the planetary albedos. The recent discovery that innermost planet, 55 Cancri e, transits the host star introduces new prospects for studying this system. Here we calculate photometric phase curves at optical wavelengths for the system with varying assumptions for the surface and atmospheric properties of 55 Cancri e. We show that the large differences in geometric albedo allows one to distinguish between various surface models, that the scattering phase function cannot be constrained with foreseeable data, and that planet b will contribute significantly to the phase variation, depending upon the surface of planet e. We discuss detection limits and how these models may be used with future instrumentation to further characterize these planets and distinguish between various assumptions regarding surface conditions.
    [Show full text]
  • Interior Dynamics of Super-Earth 55 Cancri E Constrained by General Circulation Models
    Geophysical Research Abstracts Vol. 21, EGU2019-4167, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. Interior dynamics of super-Earth 55 Cancri e constrained by general circulation models Tobias Meier (1), Dan J. Bower (1), Tim Lichtenberg (2), and Mark Hammond (2) (1) Center for Space and Habitability, Universität Bern , Bern, Switzerland , (2) Department of Physics, University of Oxford, Oxford, United Kingdom Close-in and tidally-locked super-Earths feature a day-side that always faces the host star and are thus subject to intense insolation. The thermal phase curve of 55 Cancri e, one of the best studied super-Earths, reveals a hotspot shift (offset of the maximum temperature from the substellar point) and a large day-night temperature contrast. Recent general circulation models (GCMs) aiming to explain these observations determine the spatial variability of the surface temperature of 55 Cnc e for different atmospheric masses and compositions. Here, we use constraints from the GCMs to infer the planet’s interior dynamics using a numerical geodynamic model of mantle flow. The geodynamic model is devised to be relatively simple due to uncertainties in the interior composition and structure of 55 Cnc e (and super-Earths in general), which preclude a detailed treatment of thermophysical parameters or rheology. We focus on several end-member models inspired by the GCM results to map the variety of interior regimes relevant to understand the present-state and evolution of 55 Cnc e. In particular, we investigate differences in heat transport and convective style between the day- and night-sides, and find that the thermal structure close to the surface and core-mantle boundary exhibits the largest deviations.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Platform-Independent Mobile Robot Communication
    Philipp A. Baer Platform-Independent Development of Robot Communication Software kassel university press This work has been accepted by the faculty of Electrical Engineering and Computer Science of the University of Kassel as a thesis for acquiring the academic degree of Doktor der Ingenieurwissenschaften (Dr.-Ing.). Advisers: Prof. Dr. Kurt Geihs Prof. Dr. Gerhard K. Kraetzschmar Additional Doctoral Committee Members: Prof. Dr. Albert Zündorf Prof. Dr. Klaus David Defense day: 04th December 2008 Bibliographic information published by Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.d-nb.de. Zugl.: Kassel, Univ., Diss. 2008 ISBN print: 978-3-89958-644-2 ISBN online: 978-3-89958-645-9 URN: urn:nbn:de:0002-6453 © 2008, kassel university press GmbH, Kassel www.upress.uni-kassel.de Printed by: Unidruckerei, University of Kassel Printed in Germany Für Mutti und Mama. Mutti, du bleibst unvergessen. * 29. September 1923 = 14. Oktober 2008 Contents List of Figuresv List of Tables vii Abstract ix I Introduction1 1 Introduction3 1.1 Motivation.........................................4 1.1.1 Software Structure................................5 1.1.2 Development Methodology...........................5 1.1.3 Communication.................................6 1.1.4 Configuration and Monitoring.........................6 1.2 Problem Analysis.....................................7 1.2.1 Development Methodology...........................7 1.2.2 Communication Infrastructure........................8 1.2.3 Resource Discovery...............................8 1.3 Solution Approach....................................9 1.4 Major Results........................................ 11 1.5 Overview.......................................... 12 2 Foundations 13 2.1 Autonomous Mobile Robots............................... 13 2.1.1 Hardware Architecture............................. 14 2.1.2 Robot Software.................................
    [Show full text]
  • Long-Term Activity in Photospheres of Low-Mass Stars with Strong Magnetic Fields
    Geomagnetism and Aeronomy, 2020, Vol. 60, No. 7 LONG-TERM ACTIVITY IN PHOTOSPHERES OF LOW-MASS STARS WITH STRONG MAGNETIC FIELDS N. I. Bondar’1*, M. M. Katsova2** Abstract The behavior of the average annual luminosity of K–M dwarfs OU Gem, EQ Vir, V1005 Ori and AU Mic was studied at time intervals of several decades. The main sources of photometric data for 1989–2019 were the Hipparcos, ASAS, KWS databases. An analysis of long-term series showed that the average annual brightness of all stars varies cyclical. The durations of possible cycles for OU Gem, V1005 Ori and AU Mic are 40–42 years, for EQ Vir – 16.6 years, and amplitudes of cycles are of 0.09–0.2m. The selected stars belong to the group of red dwarfs for which the average surface magnetic field hBi exceeds of several kilogauss. We examined the type of the relationship between the parameters of the cycle, its duration and amplitude, for 9 stars with hBi < 4 kG. A tendency to increasing of the amplitude and duration of the cycle when the value of hBi decrease has been noted. It may be suggested that with an increasing of the surface magnetic field, it becomes more uniform and the level of activity changes in this case in less degrees than on stars with strong local fields concentrated in large spots. Keywords stars: activity – stars: cycles – stars: starspots – techniques: photometry 1 Crimean Astrophysical Observatory RAS, Nauchny, Russia 2 Sternberg State Astronomical Institute, Lomonosov Moscow State University, Moscow, Russia *e-mail: [email protected] **e-mail: [email protected] Received: March 07, 2020.
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Apparent and Absolute Magnitudes of Stars: a Simple Formula
    Available online at www.worldscientificnews.com WSN 96 (2018) 120-133 EISSN 2392-2192 Apparent and Absolute Magnitudes of Stars: A Simple Formula Dulli Chandra Agrawal Department of Farm Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi - 221005, India E-mail address: [email protected] ABSTRACT An empirical formula for estimating the apparent and absolute magnitudes of stars in terms of the parameters radius, distance and temperature is proposed for the first time for the benefit of the students. This reproduces successfully not only the magnitudes of solo stars having spherical shape and uniform photosphere temperature but the corresponding Hertzsprung-Russell plot demonstrates the main sequence, giants, super-giants and white dwarf classification also. Keywords: Stars, apparent magnitude, absolute magnitude, empirical formula, Hertzsprung-Russell diagram 1. INTRODUCTION The visible brightness of a star is expressed in terms of its apparent magnitude [1] as well as absolute magnitude [2]; the absolute magnitude is in fact the apparent magnitude while it is observed from a distance of . The apparent magnitude of a celestial object having flux in the visible band is expressed as [1, 3, 4] ( ) (1) ( Received 14 March 2018; Accepted 31 March 2018; Date of Publication 01 April 2018 ) World Scientific News 96 (2018) 120-133 Here is the reference luminous flux per unit area in the same band such as that of star Vega having apparent magnitude almost zero. Here the flux is the magnitude of starlight the Earth intercepts in a direction normal to the incidence over an area of one square meter. The condition that the Earth intercepts in the direction normal to the incidence is normally fulfilled for stars which are far away from the Earth.
    [Show full text]
  • Winter Observing Notes
    Wynyard Planetarium & Observatory Winter Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Tour of the Sky with the Naked Eye NGC 457 CASSIOPEIA eta Cas Look for Notice how the constellations 5 the ‘W’ swing around Polaris during shape the night Is Dubhe yellowish compared 2 Polaris to Merak? Dubhe 3 Merak URSA MINOR Kochab 1 Is Kochab orange Pherkad compared to Polaris? THE PLOUGH 4 Mizar Alcor Figure 1: Sketch of the northern sky in winter. North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. To your right is a group of stars like the outline of a saucepan standing up on it’s handle. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The top two stars are called the Pointers. Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white-hot. 2. Use the Pointers to guide you to the left, to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the right are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. Check with binoculars. © Rob Peeling, CaDAS, 2007 version 2.0 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Polaris, Kochab and Pherkad mark the constellation Ursa Minor, the Little Bear.
    [Show full text]
  • FIXED STARS a SOLAR WRITER REPORT for Churchill Winston WRITTEN by DIANA K ROSENBERG Page 2
    FIXED STARS A SOLAR WRITER REPORT for Churchill Winston WRITTEN BY DIANA K ROSENBERG Page 2 Prepared by Cafe Astrology cafeastrology.com Page 23 Churchill Winston Natal Chart Nov 30 1874 1:30 am GMT +0:00 Blenhein Castle 51°N48' 001°W22' 29°‚ 53' Tropical ƒ Placidus 02' 23° „ Ý 06° 46' Á ¿ 21° 15° Ý 06' „ 25' 23° 13' Œ À ¶29° Œ 28° … „ Ü É Ü 06° 36' 26' 25° 43' Œ 51'Ü áá Œ 29° ’ 29° “ àà … ‘ à ‹ – 55' á á 55' á †32' 16° 34' ¼ † 23° 51'Œ 23° ½ † 06' 25° “ ’ † Ê ’ ‹ 43' 35' 35' 06° ‡ Š 17° 43' Œ 09° º ˆ 01' 01' 07° ˆ ‰ ¾ 23° 22° 08° 02' ‡ ¸ Š 46' » Ï 06° 29°ˆ 53' ‰ Page 234 Astrological Summary Chart Point Positions: Churchill Winston Planet Sign Position House Comment The Moon Leo 29°Le36' 11th The Sun Sagittarius 7°Sg43' 3rd Mercury Scorpio 17°Sc35' 2nd Venus Sagittarius 22°Sg01' 3rd Mars Libra 16°Li32' 1st Jupiter Libra 23°Li34' 1st Saturn Aquarius 9°Aq35' 5th Uranus Leo 15°Le13' 11th Neptune Aries 28°Ar26' 8th Pluto Taurus 21°Ta25' 8th The North Node Aries 25°Ar51' 8th The South Node Libra 25°Li51' 2nd The Ascendant Virgo 29°Vi55' 1st The Midheaven Gemini 29°Ge53' 10th The Part of Fortune Capricorn 8°Cp01' 4th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Semisquare Mars 1°56' Applying The Moon Trine Neptune 1°10' Separating The Moon Trine The North Node 3°45' Separating The Moon Sextile The Midheaven 0°17' Applying The Sun Semisquare Jupiter 0°50' Applying The Sun Sextile Saturn 1°52' Applying The Sun Trine Uranus 7°30' Applying Mercury Square Uranus 2°21' Separating Mercury Opposition Pluto 3°49' Applying Venus Sextile
    [Show full text]
  • What's in This Issue?
    A JPL Image of surface of Mars, and JPL Ingenuity Helicioptor illustration. July 11th at 4:00 PM, a family barbeque at HRPO!!! This is in lieu of our regular monthly meeting.) (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory) This is a pot-luck. Club will provide briskett and beverages, others will contribute as the spirit moves. What's In This Issue? President’s Message Member Meeting Minutes Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night SubReddit and Discord BRAS Member Astrophotos ARTICLE: Astrophotography with your Smart Phone Observing Notes: Canes Venatici – The Hunting Dogs Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society BRAS YouTube Channel Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 23 July 2021 President’s Message Hey everybody, happy fourth of July. I hope ya’ll’ve remembered your favorite coping mechanism for dealing with the long hot summers we have down here in the bayou state, or, at the very least, are making peace with the short nights that keep us from enjoying both a good night’s sleep and a productive observing/imaging session (as if we ever could get a long enough break from the rain for that to happen anyway). At any rate, we figured now would be as good a time as any to get the gang back together for a good old fashioned potluck style barbecue: to that end, we’ve moved the July meeting to the Sunday, 11 July at 4PM at HRPO.
    [Show full text]