Abhören Von Funksignalen Durch Extraterrestrische Lebensformen

Total Page:16

File Type:pdf, Size:1020Kb

Abhören Von Funksignalen Durch Extraterrestrische Lebensformen Abhören von Funksignalen durch extraterrestrische Lebensformen Diplomarbeit zur Erlangung des akademischen Grades eines Magisters der Naturwissenschaften an der Karl-Franzens-Universität Graz vorgelegt von Andreas Franz KLAUSNER am Institut für Physik Begutachter: Univ.-Prof. Dr.phil Arnold Hanslmeier Graz, 2018 Eidesstattliche Erklärung Ich erkläre eidesstattlich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benutzt und die den Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen inländischen oder ausländischen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht. Die vorliegende Fassung entspricht der eingereichten elektronischen Version. Datum: _________________ Unterschrift: _________________________ Inhaltsverzeichnis Forschungsfragen .................................................................................................................................... V 1. Einleitung ......................................................................................................................................... 1 2. Ausbreitung elektromagnetischer Wellen ...................................................................................... 2 2.1 Geschwindigkeit von elektromagnetischen Wellen ............................................................ 4 2.2 Energietransport von elektromagnetischen Wellen ........................................................... 5 2.3 Zusammenhang zwischen Strahlungsintensität und Abstand von der Quelle .................... 6 2.4 Ausbreitung elektromagnetischer Strahlung in 50 Jahren .................................................. 7 2.5 Wien´sches Verschiebungsgesetz und Planck´sches Strahlungsgesetz ............................... 9 3. Leistung von terrestrischen Signalen: ........................................................................................... 12 3.1 Ultrakurzwellen: ................................................................................................................ 12 3.2 Leistung von Ultrakurzwellensendern: .............................................................................. 14 3.3 Leistungsabschätzung von elektromagnetischen Wellen ................................................. 15 3.4 Gerichtete Aussendung elektromagnetischer Wellen ...................................................... 16 3.5 Die Friis-Übertragungsgleichung ....................................................................................... 19 3.5.1 Einheiten ........................................................................................................................ 20 3.5.2 Freiraumdämpfung und Leistungsübertragungsbilanz ................................................. 22 3.5.3 Beispiele ........................................................................................................................ 25 4. Radioteleskope .............................................................................................................................. 31 4.1 Sensitivität von Radioteleskopen .......................................................................................... 32 4.1.1 Einflussfaktoren auf die Sensitivität: ..................................................................................... 34 4.1.2 Kosmisches Hintergrundrauschen ......................................................................................... 36 5. Abschätzung der terrestrischen Senderdichte .............................................................................. 37 5.1 Sender.................................................................................................................................... 38 5.2 Erhebung von Referenzdaten und Entwicklung von Funktionen .......................................... 39 5.2.1 Entwicklung der exponentiellen Funktion ............................................................................. 43 5.2.2 Entwicklung der linearen Funktion ........................................................................................ 48 5.3 Weitere Einflussfaktoren: ...................................................................................................... 51 5.4 Abschätzung der kumulativen regionalen Sendeleistung ..................................................... 55 6. Mögliche Detektion terrestrischer Signale .................................................................................... 58 6.1 Exoplaneten ........................................................................................................................... 58 6.2 Habitable Zonen .................................................................................................................... 61 6.3 Banden und Fenster der Atmosphäre ................................................................................... 64 6.4 Berechnung der größtmöglichen Distanz .............................................................................. 66 7. Resultate ........................................................................................................................................ 69 I 7.1 Diskussion der Resultate ....................................................................................................... 70 8. Zusammenfassung ......................................................................................................................... 73 Literaturverzeichnis ............................................................................................................................... 75 Onlinequellenverzeichnis ...................................................................................................................... 77 Anhang .................................................................................................................................................. 80 II Abbildungsverzeichnis Abbildung 1: Ausbreitung elektromagnetischer Wellen im Raum ........................................................ 2 Abbildung 2: Phasen des elektrischen und magnetischen Feldes .......................................................... 3 Abbildung 3: Ausbreitung einer elektromagnetischen Welle im Fernfeld............................................. 3 Abbildung 4: Exponentielle Intensitätsabnahme elektromagnetischer Strahlung (1-50 ly) ................... 8 Abbildung 5: Exponentielle Intensitätsabnahme elektromagnetischer Strahlung (20-50 ly) ................. 8 Abbildung 6: Wien´sches Verschiebungsgesetz .................................................................................. 10 Abbildung 7: Relation von Wellenlänge, Frequenz und Energie ......................................................... 14 Abbildung 8: Strahlungsintensität bei gerichteter Strahlung ............................................................... 18 Abbildung 9: Vergleich des exponentiellen und linearen Leistungsverlaufs ....................................... 22 Abbildung 10: Freiraumdämpfungsfaktor über Strecke für verschiedene Frequenzen ....................... 24 Abbildung 11: Vereinfachte Darstellung einer Kommunikationsübertragung .................................... 27 Abbildung 12: Leistungsabnahme der el. Strahlung für eine Strecke von 1 m bis 20 m ..................... 29 Abbildung 13: Radioteleskop Effelsberg ............................................................................................. 31 Abbildung 14: Beobachtung und Erwartungswert ............................................................................... 33 Abbildung 15: T-휆 - Zusammenhang der kosmischen Hintergrundstrahlung...................................... 36 Abbildung 16: Frequenz-Intensitäts-Diagramm kosmischen Hintergrundstrahlung ........................... 37 Abbildung 17: Sendeantennen (Graz 1, Rostock-Toitenwinkel, Berliner Fernsehturm) ..................... 39 Abbildung 18: Verzeichnis, welches für die Recherche benutzt wurde ............................................... 40 Abbildung 19: Datenauswertung für Österreich mit Excel (1) ............................................................ 40 Abbildung 20: Datenauswertung für Österreich mit Excel (2) ............................................................ 41 Abbildung 21: Graph der Exponentialfunktion .................................................................................... 46 Abbildung 22: Darstellung der linearen Funktionen im Intervall [0,10] (MATLAB) ......................... 49 Abbildung 23: Für die Untersuchung herangezogene Staaten ............................................................. 51 Abbildung 24: Vergleich der unkorrigierten mit den korrigierten Werten .......................................... 54 Abbildung 25: Strahlungsleistungen diverser Länder .......................................................................... 54 Abbildung 26: Temperatur in Abhängigkeit zum Abstand .................................................................. 62 Abbildung 27: Habitable Zonen für Hauptreihensterne ....................................................................... 62 Abbildung 28: Kontinuierliche habitable Zone .................................................................................... 63 Abbildung 29: Atmosphärische Fenster für elektromagnetische Strahlung ......................................... 65 Abbildung 30: Frequenzabhängige Distanz der berechneten elektromagnetischen Welle .................. 70 Abbildung
Recommended publications
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:2102.09424V2 [Astro-Ph.EP] 20 Feb 2021 the first Exoplanet
    Draft version February 23, 2021 Typeset using LATEX twocolumn style in AASTeX63 Planets Across Space and Time (PAST). I. Characterizing the Memberships of Galactic Components and Stellar Ages: Revisiting the Kinematic Methods and Applying to Planet Host Stars Di-Chang Chen,1, 2 Ji-Wei Xie,1, 2 Ji-Lin Zhou,1, 2 Su-Bo Dong,3 Chao Liu,4, 5 Hai-Feng Wang,6 Mao-Sheng Xiang,7, 8 Yang Huang,9 Ali Luo,7 and Zheng Zheng10 1School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China 2Key Laboratory of Modern Astronomy and Astrophysics, Ministry of Education, Nanjing 210023, China 3Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China 4Key Lab of Space Astronomy and Technology, National Astronomical Observatories, CAS, 100101, China 5University of Chinese Academy of Sciences, Beijing, 100049, China. 6South-Western Institute for Astronomy Research, Yunnan University, Kunming, 650500, China; LAMOST Fellow 7National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 8Max-Planck Institute for Astronomy, K¨onigstuhl17, D-69117 Heidelberg, Germany 9South-Western Institute for Astronomy Research, Yunnan University, Kunming, 650500, China 10Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 ABSTRACT Over 4,000 exoplanets have been identified and thousands of candidates are to be confirmed. The relations between the characteristics of these planetary systems and the kinematics, Galactic compo- nents, and ages of their host stars have yet to be well explored. Aiming to addressing these questions, we conduct a research project, dubbed as PAST (Planets Across Space and Time). To do this, one of the key steps is to accurately characterize the planet host stars.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
    University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars.
    [Show full text]
  • Arxiv:2103.02709V1
    Draft version September 19, 2021 Typeset using LATEX default style in AASTeX63 A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyn's Star Anna Bortle,1 Hallie Fausey,1 Jinbiao Ji,1 Sarah Dodson-Robinson,1 Victor Ramirez Delgado,1 and John Gizis1 1University of Delaware Department of Physics and Astronomy 217 Sharp Lab Newark, DE 19716 USA ABSTRACT Radial-velocity (RV) planet searches are often polluted by signals caused by gas motion at the star's surface. Stellar activity can mimic or mask changes in the RVs caused by orbiting planets, resulting in false positives or missed detections. Here we use Gaussian Process (GP) regression to disentangle the contradictory reports of planets vs. rotation artifacts in Kapteyn's star (Anglada-Escud´eet al. 2014; Robertson et al. 2015a; Anglada-Escud´eet al. 2016). To model rotation, we use joint quasi-periodic kernels for the RV and Hα signals, requiring that their periods and correlation timescales be the same. We find that the rotation period of Kapteyn's star is 125 days, while the characteristic active-region lifetime is 694 days. Adding a planet to the RV model produces a best-fit orbital period of 100 years, or 10 times the observing time baseline, indicating that the observed RVs are best explained by star rotation only. We also find no significant periodic signals in residual RV data sets constructed by subtracting off realizations of the best-fit rotation model and conclude that both previously reported \planets" are artifacts of the star's rotation and activity. Our results highlight the pitfalls of using sinusoids to model quasi-periodic rotation signals.
    [Show full text]
  • Open Batalha-Dissertation.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Planets and Exoplanets
    NASE Publications Planets and exoplanets Planets and exoplanets Rosa M. Ros, Hans Deeg International Astronomical Union, Technical University of Catalonia (Spain), Instituto de Astrofísica de Canarias and University of La Laguna (Spain) Summary This workshop provides a series of activities to compare the many observed properties (such as size, distances, orbital speeds and escape velocities) of the planets in our Solar System. Each section provides context to various planetary data tables by providing demonstrations or calculations to contrast the properties of the planets, giving the students a concrete sense for what the data mean. At present, several methods are used to find exoplanets, more or less indirectly. It has been possible to detect nearly 4000 planets, and about 500 systems with multiple planets. Objetives - Understand what the numerical values in the Solar Sytem summary data table mean. - Understand the main characteristics of extrasolar planetary systems by comparing their properties to the orbital system of Jupiter and its Galilean satellites. The Solar System By creating scale models of the Solar System, the students will compare the different planetary parameters. To perform these activities, we will use the data in Table 1. Planets Diameter (km) Distance to Sun (km) Sun 1 392 000 Mercury 4 878 57.9 106 Venus 12 180 108.3 106 Earth 12 756 149.7 106 Marte 6 760 228.1 106 Jupiter 142 800 778.7 106 Saturn 120 000 1 430.1 106 Uranus 50 000 2 876.5 106 Neptune 49 000 4 506.6 106 Table 1: Data of the Solar System bodies In all cases, the main goal of the model is to make the data understandable.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Estimating Physical Properties of Confirmed Exoplanets: I
    Original Research Papers Fundamental Journals Open Access Journals International Journal of Fundamental Physical Sciences (IJFPS) ISSN: 2231-8186 IJFPS, Vol 11, No 1, pp 17-29 March 2021 B. Nikouravan https://doi.org/10.14331/ijfps.2021.330146 Estimating Physical Properties of Confirmed Exoplanets: I. Calculation of essential planetary properties-Possible M-R cataloging of exoplanets Bijan Nikouravan Department of Physics, Islamic Azad University (IAU), Varamin - Pishva Branch, Iran Received March 2021 Received in revised: April 2021 Published: April 2021 ABSTRACT The discovery of extrasolar planets outside our solar system and around other stars is now well underway. In the presented paper, calculations of some physical properties for confirmed exoplanets have been done. We have estimated physical properties such as the semi-major axis for potentially habitable exoplanets, the mass of planets by applying Kepler's third law around the mass of solar, Jupiter, and Earth-mass, stellar luminosity, habitability zone for the inner center and outer regions, radial velocity amplitude, planetary equilibrium temperature (PET) or effective radiation emission temperature and planet density. The mass- radius (MR) relationship of planets was investigated for potentially habitable exoplanets of three different groups of extrasolar planets: Subterran (Mars-size), Terran (Earth-size), and Superterran (Super-Earths or Mini-Neptunes); introduced in PHL, and found well coefficient values for each group. The minimum and maximum values for the mass and radius of exoplanets have been selected from 0.1 < 푀 < 10 푀⊕ and 0.4 < 푅 < 2.5 푅⊕ . The same MR relationship has also estimated the same properties for a larger number of confirmed exoplanets with a mass and radius of 0.1< M < 100 푀⊕ and 0.4 < 푅 < 15 푅⊕ , respectively, resulting their classification within 7 groups of mass and radius, with good coefficient values for each group.
    [Show full text]
  • The Stability of Ultra-Compact Planetary Systems
    A&A 516, A82 (2010) Astronomy DOI: 10.1051/0004-6361/200912698 & c ESO 2010 Astrophysics The stability of ultra-compact planetary systems B. Funk1, G. Wuchterl2,R.Schwarz1,3, E. Pilat-Lohinger3, and S. Eggl3 1 Department of Astronomy, Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary e-mail: [email protected] 2 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany e-mail: [email protected] 3 Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [schwarz;lohinger;eggl]@astro.univie.ac.at Received 15 June 2009 / Accepted 15 March 2010 ABSTRACT Aims. We investigate the dynamical stability of compact planetary systems in the CoRoT discovery space, i.e., with orbital periods of less than 50 days, including a detailed study of the stability of systems, which are spaced according to Hill’s criteria. Methods. The innermost fictitious planet was placed close to the Roche limit from the star (MStar = 1 MSun) and all other fictitious planets are lined up according to Hill’s criteria up to a distance of 0.26 AU, which corresponds to a 50 day period for a Sun-massed star. For the masses of the fictitious planets, we chose a range of 0.33–17 mEarth, where in each simulation all fictitious planets have the same mass. Additionally, we tested the influence of both the semi-major axis of the innermost planet and of the number of planets. In a next step we also included a gas giant in our calculations, which perturbs the inner ones and investigated their stability.
    [Show full text]
  • The TRAPPIST-1 JWST Community Initiative
    Bulletin of the AAS • Vol. 52, Issue 2 The TRAPPIST-1 JWST Community Initiative Michaël Gillon1, Victoria Meadows2, Eric Agol2, Adam J. Burgasser3, Drake Deming4, René Doyon5, Jonathan Fortney6, Laura Kreidberg7, James Owen8, Franck Selsis9, Julien de Wit10, Jacob Lustig-Yaeger11, Benjamin V. Rackham10 1Astrobiology Research Unit, University of Liège, Belgium, 2Department of Astronomy, University of Washington, USA, 3Department of Physics, University of California San Diego, USA, 4Department of Astronomy, University of Maryland at College Park, USA, 5Institute for Research in Exoplanets, University of Montreal, Canada, 6Other Worlds Laboratory, University of California Santa Cruz, USA, 7Center for Astrophysics | Harvard and Smithsonian, USA, 8Department of Physics, Imperial College London, United Kingdom, 9Laboratoire d’Astrophysique de Bordeaux, University of Bordeaux, France, 10Department of Earth, Atmospheric, and Planetary Sciences, MIT, USA, 11Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA Published on: Dec 02, 2020 DOI: 10.3847/25c2cfeb.afbf0205 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) Bulletin of the AAS • Vol. 52, Issue 2 The TRAPPIST-1 JWST Community Initiative ABSTRACT The upcoming launch of the James Webb Space Telescope (JWST) combined with the unique features of the TRAPPIST-1 planetary system should enable the young field of exoplanetology to enter into the realm of temperate Earth-sized worlds. Indeed, the proximity of the system (12pc) and the small size (0.12 R )
    [Show full text]