Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass

Total Page:16

File Type:pdf, Size:1020Kb

Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 alpha Cen B 0.934 alf Cen B b 0.004 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet g 0.006 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.8 GJ 273 0.290 GJ 273 c 0.004 3.8 GJ 273 0.290 GJ 273 b 0.009 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 d 0.022 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 b 1.938 4.9 GJ 832 0.450 GJ 832 c 0.016 4.9 GJ 832 0.450 GJ 832 b 0.689 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 b 0.009 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 e 0.015 6.2 GJ 581 0.310 GJ 581 e 0.006 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 b 0.050 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 c 0.011 6.6 HD 219134 HD 219134 b 0.012 6.6 HD 219134 HD 219134 g 0.034 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 h 0.280 6.8 WISE J0720-0846 0.081 WISE J0720-0846 62.000 6.8 GJ 667 C 0.330 GJ 667 C e 0.009 6.8 GJ 667 C 0.330 GJ 667 C f 0.009 Page 1 exoplanet.eu_catalog 6.8 GJ 667 C 0.330 GJ 667 C c 0.012 6.8 GJ 667 C 0.330 GJ 667 C g 0.015 6.8 GJ 667 C 0.330 GJ 667 C d 0.016 6.8 GJ 667 C 0.330 GJ 667 C b 0.018 7.6 HD 95872 0.950 HD 95872 b 4.600 7.7 Fomalhaut 1.920 Fomalhaut b 3.000 8.5 61 Vir 0.950 61 Vir b 0.016 8.5 61 Vir 0.950 61 Vir c 0.057 8.5 61 Vir 0.950 61 Vir d 0.072 8.9 GJ 785 0.780 GJ 785 b 0.053 8.9 GJ 785 0.780 GJ 785 c 0.076 9.0 GJ 433 0.480 GJ 433 b 0.017 9.0 GJ 433 0.480 GJ 433 c 0.140 9.1 GJ 849 0.490 GJ 849 c 0.770 9.1 GJ 849 0.490 GJ 849 b 0.900 9.2 HD 102365 0.850 HD 102365 b 0.050 9.4 GJ 176 0.490 GJ 176 b 0.027 10.0 WISE 1217+16 A 0.030 WISE 1217+16 A b 22.000 10.0 GJ 536 0.520 GJ 536 b 0.017 10.2 GJ 436 0.452 GJ 436 b 0.070 10.3 GJ 649 0.540 GJ 649 c 0.030 10.3 GJ 649 0.540 GJ 649 b 0.328 10.3 HD 62509 1.470 HD 62509 b 2.900 10.5 WISE 0458+6434 A 0.019 WISE 0458+6434 b 13.000 10.7 HD 147379 0.580 HD 147379 b 0.078 10.9 GJ 86 0.800 GJ 86 A b 4.010 11.0 HD 3651 0.790 HD 3651 c 0.090 11.0 HD 3651 0.790 HD 3651 b 0.231 11.0 HIP 57050 0.340 HIP 57050 b 0.298 11.0 HIP 57050 0.340 HIP 57050 c 68.060 11.1 HIP 65426 1.960 HIP 65426 b 9.000 11.2 HD 85512 0.690 HD 85512 b 0.011 11.7 Ross 458 (AB) 0.600 Ross 458 (AB) c 11.300 12.0 GJ 1132 0.181 GJ 1132 b 0.005 12.1 TRAPPIST-1 0.080 TRAPPIST-1 d 0.001 12.1 TRAPPIST-1 0.080 TRAPPIST-1 e 0.002 12.1 TRAPPIST-1 0.080 TRAPPIST-1 f 0.002 12.1 TRAPPIST-1 0.080 TRAPPIST-1 b 0.003 12.1 TRAPPIST-1 0.080 TRAPPIST-1 g 0.004 12.1 TRAPPIST-1 0.080 TRAPPIST-1 c 0.004 12.1 TRAPPIST-1 0.080 TRAPPIST-1 h 12.2 2M 0746+20 0.120 2M 0746+20 b 30.000 12.3 GJ 179 0.357 GJ 179 b 0.820 12.3 55 Cnc 0.905 55 Cnc e 0.025 12.3 55 Cnc 0.905 55 Cnc f 0.148 12.3 55 Cnc 0.905 55 Cnc c 0.178 12.3 55 Cnc 0.905 55 Cnc b 0.840 12.3 55 Cnc 0.905 55 Cnc d 3.860 12.5 LHS 1140 0.146 LHS 1140 b 0.021 Page 2 exoplanet.eu_catalog 12.6 HD 69830 0.860 HD 69830 c 0.165 12.6 HD 69830 0.860 HD 69830 d 0.253 Page 3 exoplanet.eu_catalog Page 4 exoplanet.eu_catalog Page 5 exoplanet.eu_catalog Page 6 exoplanet.eu_catalog Page 7 exoplanet.eu_catalog Page 8 exoplanet.eu_catalog Page 9 exoplanet.eu_catalog Page 10 exoplanet.eu_catalog Page 11 exoplanet.eu_catalog Page 12 exoplanet.eu_catalog Page 13 exoplanet.eu_catalog Page 14 exoplanet.eu_catalog Page 15 exoplanet.eu_catalog Page 16 exoplanet.eu_catalog Page 17 exoplanet.eu_catalog Page 18 exoplanet.eu_catalog Page 19 exoplanet.eu_catalog Page 20 exoplanet.eu_catalog Page 21 exoplanet.eu_catalog Page 22 exoplanet.eu_catalog Page 23 exoplanet.eu_catalog Page 24 exoplanet.eu_catalog Page 25 exoplanet.eu_catalog Page 26 exoplanet.eu_catalog Page 27 exoplanet.eu_catalog Page 28 exoplanet.eu_catalog Page 29 exoplanet.eu_catalog Page 30 exoplanet.eu_catalog Page 31 exoplanet.eu_catalog Page 32 exoplanet.eu_catalog Page 33 exoplanet.eu_catalog Page 34 exoplanet.eu_catalog Page 35 exoplanet.eu_catalog Page 36 exoplanet.eu_catalog Page 37 exoplanet.eu_catalog Page 38 exoplanet.eu_catalog Page 39 exoplanet.eu_catalog Page 40 exoplanet.eu_catalog Page 41 exoplanet.eu_catalog Page 42 exoplanet.eu_catalog Page 43 exoplanet.eu_catalog Page 44 exoplanet.eu_catalog Page 45 exoplanet.eu_catalog Page 46 exoplanet.eu_catalog Page 47 exoplanet.eu_catalog Page 48 exoplanet.eu_catalog Page 49 exoplanet.eu_catalog Page 50 exoplanet.eu_catalog Page 51 exoplanet.eu_catalog Page 52 exoplanet.eu_catalog Page 53 exoplanet.eu_catalog Page 54 exoplanet.eu_catalog Page 55 exoplanet.eu_catalog Page 56 exoplanet.eu_catalog Page 57 exoplanet.eu_catalog Page 58 exoplanet.eu_catalog Page 59 exoplanet.eu_catalog Page 60 exoplanet.eu_catalog Page 61 exoplanet.eu_catalog Page 62 exoplanet.eu_catalog Page 63 exoplanet.eu_catalog Page 64 exoplanet.eu_catalog Page 65 exoplanet.eu_catalog Page 66 exoplanet.eu_catalog Page 67 exoplanet.eu_catalog Page 68 exoplanet.eu_catalog Page 69 exoplanet.eu_catalog Page 70 exoplanet.eu_catalog Page 71 exoplanet.eu_catalog Page 72 exoplanet.eu_catalog Page 73 exoplanet.eu_catalog Page 74 exoplanet.eu_catalog Page 75 exoplanet.eu_catalog Page 76 exoplanet.eu_catalog Page 77.
Recommended publications
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Arxiv:2102.09424V2 [Astro-Ph.EP] 20 Feb 2021 the first Exoplanet
    Draft version February 23, 2021 Typeset using LATEX twocolumn style in AASTeX63 Planets Across Space and Time (PAST). I. Characterizing the Memberships of Galactic Components and Stellar Ages: Revisiting the Kinematic Methods and Applying to Planet Host Stars Di-Chang Chen,1, 2 Ji-Wei Xie,1, 2 Ji-Lin Zhou,1, 2 Su-Bo Dong,3 Chao Liu,4, 5 Hai-Feng Wang,6 Mao-Sheng Xiang,7, 8 Yang Huang,9 Ali Luo,7 and Zheng Zheng10 1School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China 2Key Laboratory of Modern Astronomy and Astrophysics, Ministry of Education, Nanjing 210023, China 3Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China 4Key Lab of Space Astronomy and Technology, National Astronomical Observatories, CAS, 100101, China 5University of Chinese Academy of Sciences, Beijing, 100049, China. 6South-Western Institute for Astronomy Research, Yunnan University, Kunming, 650500, China; LAMOST Fellow 7National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 8Max-Planck Institute for Astronomy, K¨onigstuhl17, D-69117 Heidelberg, Germany 9South-Western Institute for Astronomy Research, Yunnan University, Kunming, 650500, China 10Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 ABSTRACT Over 4,000 exoplanets have been identified and thousands of candidates are to be confirmed. The relations between the characteristics of these planetary systems and the kinematics, Galactic compo- nents, and ages of their host stars have yet to be well explored. Aiming to addressing these questions, we conduct a research project, dubbed as PAST (Planets Across Space and Time). To do this, one of the key steps is to accurately characterize the planet host stars.
    [Show full text]
  • The HARPS-N Rocky Planet Search. I. HD 219134 B: a Transiting Rocky Planet in a Multi-Planet System at 6.5 Pc from the Sun
    The HARPS-N Rocky Planet Search. I. HD 219134 b: A transiting rocky planet in a multi-planet system at 6.5 pc from the Sun Motalebi, F., Udry, S., Gillon, M., Lovis, C., Ségransan, D., Buchhave, L. A., Demory, B. O., Malavolta, L., Dressing, C. D., Sasselov, D., Rice, K., Charbonneau, D., Cameron, A. C., Latham, D., Molinari, E., Pepe, F., Affer, L., Bonomo, A. S., Cosentino, R., ... Watson, C. A. (2015). The HARPS-N Rocky Planet Search. I. HD 219134 b: A transiting rocky planet in a multi-planet system at 6.5 pc from the Sun. Astronomy and Astrophysics, 584, [A72]. https://doi.org/10.1051/0004-6361/201526822 Published in: Astronomy and Astrophysics Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2015, ESO Reproduced with permission from Astronomy & Astrophysics General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected].
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Arxiv:2103.02709V1
    Draft version September 19, 2021 Typeset using LATEX default style in AASTeX63 A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyn's Star Anna Bortle,1 Hallie Fausey,1 Jinbiao Ji,1 Sarah Dodson-Robinson,1 Victor Ramirez Delgado,1 and John Gizis1 1University of Delaware Department of Physics and Astronomy 217 Sharp Lab Newark, DE 19716 USA ABSTRACT Radial-velocity (RV) planet searches are often polluted by signals caused by gas motion at the star's surface. Stellar activity can mimic or mask changes in the RVs caused by orbiting planets, resulting in false positives or missed detections. Here we use Gaussian Process (GP) regression to disentangle the contradictory reports of planets vs. rotation artifacts in Kapteyn's star (Anglada-Escud´eet al. 2014; Robertson et al. 2015a; Anglada-Escud´eet al. 2016). To model rotation, we use joint quasi-periodic kernels for the RV and Hα signals, requiring that their periods and correlation timescales be the same. We find that the rotation period of Kapteyn's star is 125 days, while the characteristic active-region lifetime is 694 days. Adding a planet to the RV model produces a best-fit orbital period of 100 years, or 10 times the observing time baseline, indicating that the observed RVs are best explained by star rotation only. We also find no significant periodic signals in residual RV data sets constructed by subtracting off realizations of the best-fit rotation model and conclude that both previously reported \planets" are artifacts of the star's rotation and activity. Our results highlight the pitfalls of using sinusoids to model quasi-periodic rotation signals.
    [Show full text]
  • A Naprendszer-Hasonlósági Index
    Szegedi Tudományegyetem Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék Szakdolgozat A Naprendszer-hasonlósági index Készítette: Mészáros Richárd Fizika BSc szakos hallgató Témavezető: Dr. Szatmáry Károly egyetemi tanár Szeged 2020 Tartalomjegyzék 1. Bevezetés……………………………………………………………………..2 2. Az exobolygók felfedezési módszerei………………………………………..2 2.1. Közvetlen módszerek………………………………………………..2 2.2. Közvetett módszerek………………………………………..……….3 3. Az exobolygók osztályozása………………………………………...……….6 4. A Föld-hasonlósági index…………………………………………………….7 5. A Naprendszer-hasonlósági index……………………………………………8 5.1. Első verzió……………………………………………….…………..8 5.2. Második verzió……………………………………………………..11 5.3. Eredmények……………………………………………………...…13 6. Összefoglalás………………………………………………………………..24 Köszönetnyilvánítás……………………………………………………………24 Irodalomjegyzék………………………………………………………………..25 1 1. Bevezetés A felfedezett exobolygók asztrobiológiai potenciáljának vizsgálatára 2011-ben bevezetésre került a Föld-hasonlósági index (ESI, Schulze-Makuch et al. 2011,[2]). Dolgozatom témájául a felfedezett exobolygó rendszerek hasonló módon való vizsgálatát választottam. A második és harmadik fejezetben összefoglalom az exobolygók keresési módszereit és ezen bolygók típusait. A negyedik fejezetben röviden bemutatom a Föld-hasonlósági indexet. Az ötödik fejezetben a Föld-hasonlósági index mintájára bevezetem a Naprendszer-hasonlósági index fogalmát. Ismertetem kiszámításának módját, és alkalmazom a legalább 4 bolygót tartalmazó exobolygó rendszerekre. A kapott eredményekből
    [Show full text]
  • Download This Article in PDF Format
    A&A 635, A6 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936326 & c ESO 2020 Astrophysics MCMCI: A code to fully characterise an exoplanetary system? A. Bonfanti1 and M. Gillon2 1 Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, 19C Allée du 6 Août, 4000 Liège, Belgium e-mail: [email protected] 2 Astrobiology Research Unit, Université de Liège, Allée du 6 Août 19, 4000 Liège, Belgium Received 16 July 2019 / Accepted 29 December 2019 ABSTRACT Context. Useful information can be retrieved by analysing the transit light curve of a planet-hosting star or induced radial velocity oscillations. However, inferring the physical parameters of the planet, such as mass, size, and semi-major axis, requires preliminary knowledge of some parameters of the host star, especially its mass or radius, which are generally inferred through theoretical evolu- tionary models. Aims. We seek to present and test a whole algorithm devoted to the complete characterisation of an exoplanetary system thanks to the global analysis of photometric or radial velocity time series combined with observational stellar parameters derived either from spectroscopy or photometry. Methods. We developed an integrated tool called MCMCI. This tool combines the Markov chain Monte Carlo (MCMC) approach of analysing photometric or radial velocity time series with a proper interpolation within stellar evolutionary isochrones and tracks, known as isochrone placement, to be performed at each chain step, to retrieve stellar theoretical parameters such as age, mass, and radius. Results. We tested the MCMCI on the HD 219134 multi-planetary system hosting two transiting rocky super Earths and on WASP-4, which hosts a bloated hot Jupiter.
    [Show full text]
  • From the Stellar Properties of HD219134 to the Internal
    Astronomy & Astrophysics manuscript no. HD219134˙published © ESO 2019 October 31, 2019 From the stellar properties of HD 219134 to the internal compositions of its transiting exoplanets. R. Ligi1, C. Dorn2, A. Crida3;4, Y. Lebreton5;6, O. Creevey3, F. Borsa1, D. Mourard3, N. Nardetto3, I. Tallon-Bosc7, F. Morand3, E. Poretti1. 1 INAF-Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate, Italy e-mail: [email protected] 2 University of Zurich, Institut of Computational Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland 3 Universite´ Coteˆ d’Azur, Observatoire de la Coteˆ d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice cedex 4, France 4 Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France 5 LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cite,´ 92195 Meudon Cedex, France 6 Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France 7 Univ. Lyon, Univ. Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis- Laval, France Received 5 July 2019 / Accepted 20 September 2019 ABSTRACT Context. The harvest of exoplanet discoveries has opened the area of exoplanet characterisation. But this cannot be achieved without a careful analysis of the host star parameters. Aims. The system of HD 219134 hosts two transiting exoplanets and at least two additional non-transiting exoplanets. We revisit the properties of this system using direct measurements of the stellar parameters to investigate the composition of the two transiting exoplanets.
    [Show full text]
  • From the Star to the Transiting Exoplanets: Characterisation of the HD 219134 System R
    From the star to the transiting exoplanets: Characterisation of the HD 219134 system R. Ligi, C. Dorn, A. Crida, Y. Lebreton, O. Creevey, F. Borsa, N. Nardetto, I. Tallon-Bosc, F. Morand, E. Poretti To cite this version: R. Ligi, C. Dorn, A. Crida, Y. Lebreton, O. Creevey, et al.. From the star to the transiting exoplanets: Characterisation of the HD 219134 system. SF2A 2019, May 2019, NICE, France. hal-03044535 HAL Id: hal-03044535 https://hal.archives-ouvertes.fr/hal-03044535 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SF2A 2019 P. Di Matteo, O. Creevey, A. Crida, G. Kordopatis, J. Malzac, J.-B. Marquette, M. N’Diaye, O. Venot (eds) FROM THE STAR TO THE TRANSITING EXOPLANETS : CHARACTERISATION OF THE HD 219134 SYSTEM R. Ligi1, C. Dorn2, A. Crida3; 4, Y. Lebreton5; 6, O. Creevey3, F. Borsa1, D. Mourard3, N. Nardetto3, I. Tallon-Bosc7, F. Morand3 and E. Poretti1 Abstract. Exoplanets’ properties are directly linked to that of their host star. This is even more true in the case of transiting exoplanets, where the planetary radius cannot be derived if the stellar radius is unknown.
    [Show full text]
  • From the Stellar Properties of HD 219134 to the Internal Compositions of Its Transiting Exoplanets R
    A&A 631, A92 (2019) https://doi.org/10.1051/0004-6361/201936259 Astronomy & © ESO 2019 Astrophysics From the stellar properties of HD 219134 to the internal compositions of its transiting exoplanets R. Ligi1, C. Dorn2, A. Crida3,4, Y. Lebreton5,6, O. Creevey3, F. Borsa1, D. Mourard3, N. Nardetto3, I. Tallon-Bosc7, F. Morand3, and E. Poretti1 1 INAF – Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy e-mail: [email protected] 2 Institut of Computational Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland 3 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France 4 Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France 5 LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, 92195 Meudon Cedex, France 6 Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) – UMR 6251, 35000 Rennes, France 7 Univ. Lyon, Univ. Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR 5574, 69230 Saint-Genis-Laval, France Received 5 July 2019 / Accepted 20 September 2019 ABSTRACT Context. The harvest of exoplanet discoveries has opened the area of exoplanet characterisation. But this cannot be achieved without a careful analysis of the host star parameters. Aims. The system of HD 219134 hosts two transiting exoplanets and at least two additional non-transiting exoplanets. We revisit the properties of this system using direct measurements of the stellar parameters to investigate the composition of the two transiting exoplanets.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Arxiv:2101.07500V2 [Astro-Ph.EP] 12 May 2021
    Astronomy & Astrophysics manuscript no. LIFE_paper_1_revision1 ©ESO 2021 May 13, 2021 Large Interferometer For Exoplanets (LIFE): I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission S.P. Quanz1; 2,?, M. Ottiger1, E. Fontanet1, J. Kammerer3; 4, F. Menti1, F. Dannert1, A. Gheorghe1, O. Absil5, V.S. Airapetian6, E. Alei1; 2, R. Allart7, D. Angerhausen1; 2, S. Blumenthal8, L.A. Buchhave9, J. Cabrera10, Ó. Carrión-González11, G. Chauvin12, W.C. Danchi6, C. Dandumont13, D. Defrère14, C. Dorn15, D. Ehrenreich16, S. Ertel17; 18 M. Fridlund19; 20, A. García Muñoz11, C. Gascón21, J. H. Girard22, A. Glauser1, J.L. Grenfell10, G. Guidi1; 2, J. Hagelberg16, R. Helled15, M.J. Ireland4, M. Janson23, R.K. Kopparapu6, J. Korth24, T. Kozakis9, S. Kraus25, A. Léger26, L. Leedjärv27, T. Lichtenberg8, J. Lillo-Box28, H. Linz29, R. Liseau20, J. Loicq13, V. Mahendra30, F. Malbet12, J. Mathew4, B. Mennesson31, M.R. Meyer32, L. Mishra33; 16; 2, K. Molaverdikhani29; 34, L. Noack35, A.V. Oza33, E. Pallé36; 37, H. Parviainen36; 37, A. Quirrenbach34, H. Rauer10, I. Ribas21; 38, M. Rice39, A. Romagnolo40, S. Rugheimer8, E.W. Schwieterman41, E. Serabyn31, S. Sharma42, K.G. Stassun43, J. Szulágyi1, H.S. Wang1; 2, F. Wunderlich10, M.C. Wyatt44, and the LIFE Collaboration45 (Affiliations can be found after the references) Received: <date> / Accepted: <date> ABSTRACT Context. One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale that can spatially separate the signals from exoplanets and their host stars and thus directly scrutinize the exoplanets and their atmospheres.
    [Show full text]