The Detectability of Nightside City Lights on Exoplanets

Total Page:16

File Type:pdf, Size:1020Kb

The Detectability of Nightside City Lights on Exoplanets Draft version September 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The Detectability of Nightside City Lights on Exoplanets Thomas G. Beatty1 1Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721; [email protected] ABSTRACT Next-generation missions designed to detect biosignatures on exoplanets will also be capable of plac- ing constraints on the presence of technosignatures (evidence for technological life) on these same worlds. Here, I estimate the detectability of nightside city lights on habitable, Earth-like, exoplan- ets around nearby stars using direct-imaging observations from the proposed LUVOIR and HabEx observatories. I use data from the Soumi National Polar-orbiting Partnership satellite to determine the surface flux from city lights at the top of Earth's atmosphere, and the spectra of commercially available high-power lamps to model the spectral energy distribution of the city lights. I consider how the detectability scales with urbanization fraction: from Earth's value of 0.05%, up to the limiting case of an ecumenopolis { or planet-wide city. I then calculate the minimum detectable urbanization fraction using 300 hours of observing time for generic Earth-analogs around stars within 8 pc of the Sun, and for nearby known potentially habitable planets. Though Earth itself would not be detectable by LUVOIR or HabEx, planets around M-dwarfs close to the Sun would show detectable signals from city lights for urbanization levels of 0.4% to 3%, while city lights on planets around nearby Sun-like stars would be detectable at urbanization levels of & 10%. The known planet Proxima b is a particu- larly compelling target for LUVOIR A observations, which would be able to detect city lights twelve times that of Earth in 300 hours, an urbanization level that is expected to occur on Earth around the mid-22nd-century. An ecumenopolis, or planet-wide city, would be detectable around roughly 50 nearby stars by both LUVOIR and HabEx, and a survey of these systems would place a 1 σ upper limit of . 2% on the frequency of ecumenopolis planets in the Solar neighborhood assuming no detections. Keywords: exoplanets: habitable planets { exoplanets: detection methods: direct imaging { exoplanets: structure: surface characteristics 1. INTRODUCTION technosignatures are observable signals which indicate The search for biosignatures on potentially habitable the presence of technological life on an exoplanet or in exoplanets has driven much of the recent planning in the a star system (Tarter 2007; Wright et al. 2018). An exoplanet community for the next generation of space ideal technosignature would be a long-lived, unambigu- telescopes. In particular, the National Academies' Ex- ous, observable property of another civilization that (for oplanet Science Strategy and Astrobiology Strategy re- simplicity) requires relatively little extrapolation from ports both recommended the development of a large, conditions on Earth (Sheikh 2020). space-based, direct-imaging observatory that would be For the last several decades the main methods of capable of directly detecting emission from habitable searching for technosignatures have been radio (e.g., arXiv:2105.09990v2 [astro-ph.EP] 2 Sep 2021 Earth-like exoplanets. At the moment, the two pri- Worden et al. 2017) or optical (e.g., Howard et al. 2004) mary observatory architectures under consideration are monitoring projects to look for signals actively being the Large UV/Optical/IR Surveyor (LUVOIR, The LU- broadcast by a nearby technological civilization. The VOIR Team 2019) and the Habitable Exoplanet Obser- lack of a technosignature detection from these projects vatory (HabEx, Gaudi et al. 2020). Either would pro- implies that the frequency of other technological life in vide a dramatic increase in our ability to characterize the Solar neighborhood is low, that other technological exoplanet atmospheres and search for biosignatures. life is not strongly broadcasting in the radio or optical, As our ability to characterize exoplanets improves, we that our detection sensitivities are low, or some combi- also move closer to the direct detection of technosigna- nation of these three. tures on exoplanets. Similar in concept to biosignatures, The development over the last fifteen years of the facil- ities and techniques necessary to precisely characterize 2 Beatty Figure 1. The nightside of Earth shows significant emission from city lights in the optical. This is a composite, cloud-free, image of Earth's city lights compiled using Day/Night Band observations taken using the Visible Infrared Imaging Radiometer Suite instrument on the Soumi National Polar-orbiting Partnership satellite (Rom´anet al. 2018). Searching for the emission from city lights is a compelling technosignature because it requires very little extrapolation from current conditions on Earth, should be relatively long-lived presuming an urbanized civilization, and offers a very distinct spectroscopic signature that is difficult to cause via natural processes. This places the emission from nightside city lights high on the list of potential technosignatures to consider (Sheikh 2020). the atmospheres of exoplanets gives us a new way to use of silicon-based photovoltaic arrays, which would search for technosignatures, and to do so in a way that show a significantly different reflection spectrum than does not rely on active broadcasts, by directly examin- vegetation. Berdyugina & Kuhn(2019) considered the ing potentially habitable planets themselves. While this more general problem of identifying artificial surface fea- approach will likely result in narrower searches (in terms tures on Proxima b, which might be possible using next- of number of targets) than the radio and optical broad- generation space telescopes. Socas-Navarro(2018) in- cast surveys, directly searching for technosignatures on vestigated the observational signatures of dense satellite exoplanets is sensitive to a much wider range of possi- constellations in orbit about an Earth-like exoplanet, ble phenomena (e.g., Kipping & Teachey 2016; Wright and found that for Earth-analogs with M-dwarf pri- et al. 2016). Assuming such a direct search finds no maries this may be observable in transit data. Vides significant detections, this also likely means that tighter et al.(2019) determined that relatively low powered (10s constraints could be placed on the last three terms in the of kW) laser pulses would be detectable from nearby Drake Equation (Drake 1962) than for a typical radio or Sun-like stars in direct imaging observations from the optical broadcast survey. Gemini Planet Imager and the Roman Space Telescope. Searching for technosignatures on exoplanets also has A bit more grimly, Stevens et al.(2016) noted that the the virtue of being able to piggy-back on the observa- increased atmospheric dust and clouds caused by a large tions necessary to detect biosignatures on these same nuclear war could be observable on an exoplanet, though planets. For example, the deep spectroscopic obser- it would likely be difficult to distinguish this from the vations needed to successfully detect biosignatures on impact of a large asteroid. an Earth-analog exoplanet using either LUVOIR and More specifically on possible atmospheric technosig- HabEx (e.g., Wang et al. 2018) will also be capable of natures, both Lin et al.(2014) and Kopparapu et al. detecting { or at least meaningfully constraining { cer- (2021) have investigated the detectability of industrial tain technosignatures. In this sense many of these ob- pollution in an Earth-analog's atmosphere. Lin et al. servations will be \free" in terms of observing time, and (2014) looked at chlorofluorocarbons, since these are ex- the expected signals from likely technosignatures should tremely unlikely to be generated via biotic or geologic be looked for in these future data sets. processes, and found concentrations ten times that in Already, significant thought has been put into what Earth's atmosphere would be detectable using 30 to 50 some of these technosignatures might look like. Lingam hours of time on the James Webb Space Telescope for & Loeb(2017) considered the technosignature on the Earth-analogs orbiting white dwarfs. Kopparapu et al. surface of an Earth-like exoplanet caused by large-scale (2021) considered pollution from nitrogen dioxide and Detecting Nightside City Lights 3 ) Latitudinally-Integrated Disk-Integrated 1 0.9 . 0.14 g 0.8 e ) d 2 2 0.12 0.7 m c m c 1 0.6 0.10 1 s s g 0.5 r g 0.08 e r ( e ( x 0.4 u y l 0.06 t i F s 0.3 e n c e 0.04 t a f n 0.2 r I u e S 0.02 c 0.1 a f r u 0.0 0.00 S 150 100 50 0 50 100 150 150 100 50 0 50 100 150 Longitude (deg.) Longitude (deg.) Figure 2. While the latitudinally-integrated surface intensity from Earth (left panel) varies significantly as a function of longitude, the complete disk-integrated surface flux is relatively constant with longitude at 0:071 erg s−1 cm−2. Note too that this average surface flux value is significantly lower than the peak emission in city centers (e.g., the few square kilometers around Times Square in New York City reach 47 erg s−1 cm−2 sr−1). This reflects the fact that the total area covered by cities on Earth is low, at approximately 0.05%. estimated that the 15m LUVOIR A architecture would flux output and the spectrum of the emitted radiation be capable of detecting Earth's level of nitrogen dioxide at the top of the atmosphere. Recent space-based ob- pollution using 400 hours of observing time on a system servations of Earth have generated several high-quality at 10 pc. datasets of Earth's city lights as seen from low Earth The emission from city lights on the nightsides of exo- orbit (Figure1), which I used to make these estimates.
Recommended publications
  • Modeling Super-Earth Atmospheres in Preparation for Upcoming Extremely Large Telescopes
    Modeling Super-Earth Atmospheres In Preparation for Upcoming Extremely Large Telescopes Maggie Thompson1 Jonathan Fortney1, Andy Skemer1, Tyler Robinson2, Theodora Karalidi1, Steph Sallum1 1University of California, Santa Cruz, CA; 2Northern Arizona University, Flagstaff, AZ ExoPAG 19 January 6, 2019 Seattle, Washington Image Credit: NASA Ames/JPL-Caltech/T. Pyle Roadmap Research Goals & Current Atmosphere Modeling Selecting Super-Earths for State of Super-Earth Tool (Past & Present) Follow-Up Observations Detection Preliminary Assessment of Future Observatories for Conclusions & Upcoming Instruments’ Super-Earths Future Work Capabilities for Super-Earths M. Thompson — ExoPAG 19 01/06/19 Research Goals • Extend previous modeling tool to simulate super-Earth planet atmospheres around M, K and G stars • Apply modified code to explore the parameter space of actual and synthetic super-Earths to select most suitable set of confirmed exoplanets for follow-up observations with JWST and next-generation ground-based telescopes • Inform the design of advanced instruments such as the Planetary Systems Imager (PSI), a proposed second-generation instrument for TMT/GMT M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (1) Neptune Mass Range of Interest Earth Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (2) A Approximate Habitable Zone Host Star Spectral Type F G K M Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Atmosphere Modeling Tool Evolution of Atmosphere Model • Solar System Planets & Moons ~ 1980’s (e.g., McKay et al. 1989) • Brown Dwarfs ~ 2000’s (e.g., Burrows et al. 2001) • Hot Jupiters & Other Giant Exoplanets ~ 2000’s (e.g., Fortney et al.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • The Hunt for Exomoons with Kepler (Hek)
    The Astrophysical Journal, 777:134 (17pp), 2013 November 10 doi:10.1088/0004-637X/777/2/134 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). III. THE FIRST SEARCH FOR AN EXOMOON AROUND A HABITABLE-ZONE PLANET∗ D. M. Kipping1,6, D. Forgan2, J. Hartman3, D. Nesvorny´ 4,G.A.´ Bakos3, A. Schmitt7, and L. Buchhave5 1 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 2 Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK 3 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 05844, USA 4 Department of Space Studies, Southwest Research Institute, Boulder, CO 80302, USA 5 Niels Bohr Institute, Copenhagen University, Denmark Received 2013 June 4; accepted 2013 September 8; published 2013 October 22 ABSTRACT Kepler-22b is the first transiting planet to have been detected in the habitable zone of its host star. At 2.4 R⊕, Kepler-22b is too large to be considered an Earth analog, but should the planet host a moon large enough to maintain an atmosphere, then the Kepler-22 system may yet possess a telluric world. Aside from being within the habitable zone, the target is attractive due to the availability of previously measured precise radial velocities and low intrinsic photometric noise, which has also enabled asteroseismology studies of the star. For these reasons, Kepler-22b was selected as a target-of-opportunity by the “Hunt for Exomoons with Kepler” (HEK) project. In this work, we conduct a photodynamical search for an exomoon around Kepler-22b leveraging the transits, radial velocities, and asteroseismology plus several new tools developed by the HEK project to improve exomoon searches.
    [Show full text]
  • 2018 Workshop on Autonomy for Future NASA Science Missions
    NOTE: This document was prepared by a team that participated in the 2018 Workshop on Autonomy for Future NASA Science Missions. It is for informational purposes to inform discussions regarding the use of autonomy in notional science missions and does not specify Agency plans or directives. 2018 Workshop on Autonomy for Future NASA Science Missions: Ocean Worlds Design Reference Mission Reports Table of Contents Introduction .................................................................................................................................... 2 The Ocean Worlds Design Reference Mission Report .................................................................... 3 Ocean Worlds Design Reference Mission Report Summary ........................................................ 20 1 NOTE: This document was prepared by a team that participated in the 2018 Workshop on Autonomy for Future NASA Science Missions. It is for informational purposes to inform discussions regarding the use of autonomy in notional science missions and does not specify Agency plans or directives. Introduction Autonomy is changing our world; commercial enterprises and academic institutions are developing and deploying drones, robots, self-driving vehicles and other autonomous capabilities to great effect here on Earth. Autonomous technologies will also play a critical and enabling role in future NASA science missions, and the Agency requires a specific strategy to leverage these advances and infuse them into its missions. To address this need, NASA sponsored the
    [Show full text]
  • Catching up with Barnard's Star. Dave Eagle Within the Constellation Of
    Catching Up with Barnard’s Star. Dave Eagle Within the constellation of Ophiuchus lies Barnard’s Star. It is a fairly faint red dwarf star of magnitude 9.53, six light years from Earth, so is fairly close to us. Its luminosity is 1/2,500th that of the Sun and 16% its mass. The diameter is estimated at about 140,000 miles, so it’s quite a small, faint star and well below naked eye visibility. So why is this star so well known? In 1916 Edward Barnard looked at a photographic plate of the area. When he compared this to a similar plate made in 1894, he noticed that one of the stars had moved between the time of the two plates being taken. Although all the stars in the sky in reality are all moving quite fast, from our remote vantage point on Earth most stars appear to appear virtually static during our lifetime as their apparent motion is extremely small. Barnard’s star, being so close and moving so fast, is one of the stars that bucks this trend. So fast indeed that it will subtend the apparent diameter equivalent to the Moon or Sun in about 176 years. So compared to other stars it is really shifting. The star is travelling at 103 miles per second and is approaching us at about 87 miles per second. In about 8,000 years it will become the closest star to us, at just under 4 light years and will have brightened to magnitude 8.6. Peter van de Camp caused great excitement in the 1960’s when he claimed to have discovered a planet (or more) around the star, due to wobbles superimposed on its movement.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • 10 Megaregions Reconsidered: Urban Futures and the Future of the Urban
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Loughborough University Institutional Repository 1 10 Megaregions reconsidered: urban futures and the future of the urban John Harrison and Michael Hoyler 10.1 An introduction to (more than just) a debate on megaregions We live in a world of competing urban, regional and other spatial imaginaries. This book’s chief concern has been with one such spatial imaginary – the megaregion. More particularly, its theme has been the assertion that the megaregion constitutes globalization’s new urban form. Yet, what is clear is that the intellectual and practical literatures underpinning the megaregion thesis are not internally coherent and this is the cause of considerable confusion over the precise role of megaregions in globalization. This book has offered one solution through its focus on the who, how and why of megaregions much more than the what and where of megaregions. In short, moving the debate forward from questions of definition, identification and delimitation to questions of agency (who or what is constructing megaregions), process (how are megaregions being constructed), and specific interests (why are megaregions being constructed) is the contribution of this book. The individual chapters have interrogated many of the claims and counter-claims made about megaregions through examples as diverse as California, the US Great Lakes, Texas and the Gulf Coast, Greater Paris, Northern England, Northern Europe, and China’s Pearl River Delta. But, as with any such volume, our approach has offered up as many new questions as it has provided answers.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • The Denver Observer July 2018
    The Denver JULY 2018 OBSERVER The globular cluster, Messier 19, one of this month’s targets in “July Skies,” in a Hubble Space Telescope image. Credit: NASA, ESA, STScI and I. King (Univer- sity of California – Berkeley) JULY SKIES by Zachary Singer The Solar System ’scopes towards the planets when they’re Sky Calendar The big news for July is that Mars comes highest in the sky on a given night, to get the 6 Last-Quarter Moon to opposition on the 27th, meaning that it sharpest image—but Mars is worth viewing 12 New Moon will be at its highest in the south on that date naked-eye when it’s rising. Surprised? The 19 First-Quarter Moon around 1 AM, and also more or less at its red (well, orange) planet appears even redder 27 Full Moon largest as seen from Earth. Now, don’t let that when rising, making for much deeper color. fool you—Mars is already very good as July It’s a guilty pleasure on an aesthetic level, if begins, showing a disk 21” across, which is not a scientific one. If you want to indulge better than we got two years ago, and only yourself, Mars rises around 10:30 PM at In the Observer slightly smaller than the 24” expected at the beginning of July, an hour earlier mid- the end of the month. (Observations in my month, and about 8:20 PM at month’s end. President’s Message . .2 6-inch reflector at the end of June showed an Meanwhile, Mercury is an evening Society Directory.
    [Show full text]
  • Double Star Measurements at the Southern Sky with a 50 Cm Reflector in 2016
    Vol. 13 No. 4 October 1, 2017 Journal of Double Star Observations Page 495 Double Star Measurements at the Southern Sky with a 50 cm Reflector in 2016 Rainer Anton Altenholz/Kiel, Germany e-mail: rainer.anton”at”ki.comcity.de Abstract: A 50 cm Ritchey-Chrétien reflector was used for recordings of double stars with a CCD webcam, and measurements of 95 pairs were mostly obtained from “lucky images”, and in some cases by speckle interferometry. The image scale was calibrated with reference systems from the recently published Gaia catalogue of precise position data. For several pairs, deviations from currently assumed orbits were found. Some images of noteworthy systems are also pre- sented. “Chameleon” (PointGrey) with exposure times ranging Introduction from less than a millisecond to several tens of msec, Recordings of double star images were mostly eval- depending on the star brightness, on the filter being uated with “lucky imaging”: Seeing effects are effec- used, and on the seeing. Recordings were usually made tively reduced by using short exposure times, and selec- with a red or near infrared filter, in order to reduce ef- tion of only the best images for stacking, which results fects from chromatic aberrations of the Barlow lens, as in virtually diffraction limited images. In addition, well as from the seeing. Only the best frames, typically speckle interferometry was applied in some cases, as several tens and up to more than 100, were selected, large numbers of speckle images were found in several registered, and stacked. The pixel size of 3.75 µm recordings, caused by rather variable seeing conditions square results in a nominal resolution of 0.096 arcsec/ during this observing campaign.
    [Show full text]
  • Cities and Their Vital Systems: Infrastructure Past, Present, and Future
    Cities and Their Vital Systems: Infrastructure Past, Present, and Future i Series on Technology and Social Priorities NATIONAL ACADEMY OF ENGINEERING CitiesCitiesCities andandand TheirTheirTheir VitalVitalVital SystemsSystemsSystems Infrastructure Past, Present, and Future Jesse H. Ausubel and Robert Herman Editors NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyright National Academy of Sciences. All rights reserved. Cities and Their Vital Systems: Infrastructure Past, Present, and Future ii National Academy Press 2101 Constitution Avenue, NW Washington, DC 20418 NOTICE: The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sci- ences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievement of engineers. Dr. Robert M. White is president of the National Academy of Engineering. Funds for the National Academy of Engineering's Symposium Series on Technology and Social Priorities were provided by the Andrew W. Mellon Foundation, Carnegie Corporation of New York, and the Academy's Technology Agenda Program. This publication has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee. The views expressed in this volume are those of the authors and are not presented as the views of the Mellon Foundation, Carnegie Corporation, or the National Academy of Engineering. Library of Congress Cataloging-in-Publication Data Cities and their vital systems.
    [Show full text]