Cnc – Objektauswahl NGC Seite 1

Total Page:16

File Type:pdf, Size:1020Kb

Cnc – Objektauswahl NGC Seite 1 Cnc – Objektauswahl NGC Seite 1 NGC 2503 NGC 2540 NGC 2565 NGC 2593 NGC 2619 NGC 2643 NGC 2677 NGC 2731 Seite 2 NGC 2507 NGC 2545 NGC 2569 NGC 2594 NGC 2620 NGC 2647 NGC 2678 NGC 2734 NGC 2512 NGC 2553 NGC 2570 NGC 2595 NGC 2621 NGC 2648 NGC 2679 NGC 2735 NGC 2513 NGC 2554 NGC 2572 NGC 2596 NGC 2622 NGC 2651 NGC 2680 NGC 2737 NGC 2514 NGC 2556 NGC 2575 NGC 2598 NGC 2623 NGC 2657 NGC 2682 NGC 2738 NGC 2522 NGC 2557 NGC 2576 NGC 2599 NGC 2624 NGC 2661 NGC 2711 NGC 2741 NGC 2526 NGC 2558 NGC 2577 NGC 2604 NGC 2625 NGC 2664 NGC 2720 NGC 2743 NGC 2530 NGC 2560 NGC 2581 NGC 2607 NGC 2628 NGC 2667 NGC 2725 NGC 2744 NGC 2535 NGC 2562 NGC 2582 NGC 2608 NGC 2632 NGC 2672 NGC 2728 NGC 2745 NGC 2536 NGC 2563 NGC 2592 NGC 2611 NGC 2637 NGC 2673 NGC 2730 NGC 2747 Sternbild- Zur Objektauswahl: Nummer anklicken Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken Cnc – Objektauswahl NGC Seite 2 NGC 2749 NGC 2775 NGC 2797 Seite 1 NGC 2750 NGC 2777 NGC 2801 NGC 2751 NGC 2783 NGC 2802 NGC 2752 NGC 2786 NGC 2804 NGC 2753 NGC 2789 NGC 2807 NGC 2761 NGC 2790 NGC 2809 NGC 2764 NGC 2791 NGC 2812 NGC 2766 NGC 2794 NGC 2813 NGC 2773 NGC 2795 NGC 2819 NGC 2774 NGC 2796 NGC 2824 Sternbild- Zur Objektauswahl: Nummer anklicken Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken Cnc Übersichtskarte Auswahl NGC 2503_2512 Aufsuchkarte Auswahl NGC 2507_2514_2522_2530 Aufsuchkarte Auswahl NGC 2513_2526 Aufsuchkarte Auswahl NGC 2535_2536_2554 Aufsuchkarte Auswahl NGC 2540 Aufsuchkarte Auswahl N 2545_53_56_57_58_60_62_63_65_69_70_77_82_95_98_99 Aufsuchkarte Auswahl NGC 2572_2581_2593_2596 Aufsuchkarte Auswahl NGC 2575_2576_2592_2594 Aufsuchkarte Auswahl NGC 2604_2607_2608_2619 Aufsuchkarte Auswahl NGC 2611_2620_2621_2622_2623 Aufsuchkarte Auswahl NGC 2624_25_32_37_43_47_67_72_73_77 Aufsuchkarte Auswahl NGC 2628 Aufsuchkarte Auswahl NGC 2648_2661_2664 Aufsuchkarte Auswahl NGC 2651_57_78_82_2720_25_28 Aufsuchkarte Auswahl NGC 2679_2680 Aufsuchkarte Auswahl N 2711_30_34_41_44_45_47_49_51_52_61_74_91_94_95_97_2802_03_19 Aufsuchkarte Auswahl NGC 2731_2773_2775_2777 Aufsuchkarte Auswahl NGC 2735_2743_2750_2753_2824 Aufsuchkarte Auswahl NGC 2737_38_39_64_90_2801_04_07_09_12_13 Aufsuchkarte Auswahl NGC 2766_2783_2789_2796 Aufsuchkarte Auswahl NGC 2786 Aufsuchkarte Auswahl Auswahl NGC 2503 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2507_2514 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2512 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2513 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2522_2530 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2526 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2535_2536 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2540 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2545_2553 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2554 ÜbersichtskarteNGC Aufsuch- karte Auswahl Aufsuch- NGC 2556_57_60_62_63_69_70 ÜbersichtskarteNGC karte Auswahl NGC 2558 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2565_2577 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2572 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2575 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2576 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2581 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2582 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2592_2594 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2593_2596 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2595_2598 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2599 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2604 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2607 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2608_2619 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2611_2620_2621_2622 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2623 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2624_2625_2632 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2628 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2637_2643_2647 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2648 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2651 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2657 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2661_2664 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2667_2672_2673_2677 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2678_2682 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2679_2680 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2711 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2720_2725_2728 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2730_2734 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2731 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2735 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2737_2738 ÜbersichtskarteNGC Aufsuch- karte Auswahl Aufsuch- NGC 2741_44_45_47_49_51_52 ÜbersichtskarteNGC karte Auswahl NGC 2743_2750_2753 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2761 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2764 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2766 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2773_2775_2777 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2774 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2783_2789 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2786 ÜbersichtskarteNGC Aufsuch- karte Auswahl Aufsuch- NGC 2790_2801_04_07_09_12_13 ÜbersichtskarteNGC karte Auswahl NGC 2791_2794_2795_2797 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2796 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2802_2803 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2819 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2824 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2503 p m m = 15. 0 1.‘1 x 1.‘0 NGC 2503 DetailfotoNGC Übersichts- karte Auswahl NGC 2507 p m m = 13. 2 2.‘5 x 2.‘1 NGC 2507 DetailfotoNGC Übersichts- karte Auswahl NGC 2512 p m m = 14. 2 1.‘7 x 1.‘2 NGC 2512 DetailfotoNGC Übersichts- karte Auswahl NGC 2513 p m m = 12. 8 2.‘5 x 2.‘1 NGC 2513 DetailfotoNGC Übersichts- karte Auswahl NGC 2514 p m m = 14. 4 1.‘1 x 1.‘1 NGC 2514 DetailfotoNGC Übersichts- karte Auswahl NGC 2522 p m m = 14. 4 0.‘9 x 0.‘3 NGC 2522 DetailfotoNGC Übersichts- karte Auswahl IC 2228 NGC 2526 p m m = 14. 6 0.‘8 x 0.‘4 NGC 2526 DetailfotoNGC Übersichts- karte Auswahl NGC 2530 p m m = 14. 2 1.‘4 x 1.‘0 NGC 2530 DetailfotoNGC Übersichts- karte Auswahl NGC 2535 p m m = 13. 1 3.‘0 x 1.‘7 NGC 2536 p m m = 14. 7 0.‘9 x 0.‘6 NGC 2535_2536 DetailfotoNGC Übersichts- karte Auswahl NGC 2540 p m m = 14. 5 1.‘3 x 0.‘9 NGC 2540 DetailfotoNGC Übersichts- karte Auswahl NGC 2545 p m m = 13. 2 2.‘2 x 1.‘3 NGC 2545 DetailfotoNGC Übersichts- karte Auswahl NGC 2553 p m m = 15. 0 0.‘8 x 0.‘6 NGC 2553 DetailfotoNGC Übersichts- karte Auswahl NGC 2554 p m m = 12. 7 3.‘4 x 2.‘6 NGC 2554 DetailfotoNGC Übersichts- karte Auswahl NGC 2556 p m m = 15. 5 0.‘4 x 0.‘2 NGC 2556 DetailfotoNGC Übersichts- karte Auswahl NGC 2557 p m m = 14. 2 1.‘4 x 1.‘3 NGC 2557 DetailfotoNGC Übersichts- karte Auswahl NGC 2558 p m m = 13. 9 2.‘0 x 1.‘6 NGC 2558 DetailfotoNGC Übersichts- karte Auswahl NGC 2560 p m m = 14. 9 1.‘7 x 0.‘5 NGC 2560 DetailfotoNGC Übersichts- karte Auswahl NGC 2562 p m m = 13. 9 1.‘4 x 1.‘0 NGC 2563 p m m = 13. 4 2.‘3 x 1.‘8 NGC 2562_2563 DetailfotoNGC Übersichts- karte Auswahl NGC 2565 p m m = 13. 8 1.‘9 x 0.‘9 NGC 2565 DetailfotoNGC Übersichts- karte Auswahl NGC 2569 p m m = 15. 3 0.‘6 x 0.‘5 NGC 2570 p m m = 15. 4 1.‘2 x 0.‘6 N 2569_2570 DetailfotoN Übersichts- karte Auswahl NGC 2572 p m m = 14. 8 1.‘6 x 0.‘5 NGC 2572 DetailfotoNGC Übersichts- karte Auswahl NGC 2575 p m m = 13. 4 2.‘5 x 2.‘1 NGC 2575 DetailfotoNGC Übersichts- karte Auswahl NGC 2576 p m m = 15. 4 1.‘7 x 0.‘3 NGC 2576 DetailfotoNGC Übersichts- karte Auswahl NGC 2577 p m m = 13. 4 2.‘1 x 1.‘3 NGC 2577 DetailfotoNGC Übersichts- karte Auswahl NGC 2581 p m m = 14. 5 1.‘0 x 0.‘8 NGC 2581 DetailfotoNGC Übersichts- karte Auswahl NGC 2582 p m m = 14. 3 1.‘3 x 1.‘3 NGC 2582 DetailfotoNGC Übersichts- karte Auswahl NGC 2592 p m m = 13. 6 1.‘7 x 1.‘4 NGC 2594 p m m = 15. 0 0.‘6 x 0.‘6 NGC 2592_2594 DetailfotoNGC Übersichts- karte Auswahl NGC 2593 p m m = 14. 9 1.‘0 x 0.‘5 NGC 2593 DetailfotoNGC Übersichts- karte Auswahl NGC 2595 p m m = 12. 9 3.‘1 x 2.‘4 NGC 2595 DetailfotoNGC Übersichts- karte Auswahl NGC 2596 p m m = 14. 2 1.‘4 x 0.‘5 NGC 2596 DetailfotoNGC Übersichts- karte Auswahl NGC 2598 p m m = 14. 7 1.‘3 x 0.‘5 NGC 2598 DetailfotoNGC Übersichts- karte Auswahl NGC 2599 p m m = 13. 2 2.‘4 x 2.‘4 NGC 2599 DetailfotoNGC Übersichts- karte Auswahl NGC 2604 p m m = 13. 5 1.‘9 x 1.‘8 NGC 2604 DetailfotoNGC Übersichts- karte Auswahl NGC 2607 p m m = 14. 9 1.‘5 x 1.‘5 NGC 2607 DetailfotoNGC Übersichts- karte Auswahl NGC 2608 p m m = 12. 8 2.‘5 x 1.‘6 NGC 2608 DetailfotoNGC Übersichts- karte Auswahl NGC 2611 p m m = 15. 5 0.‘7 x 0.‘2 NGC 2611 DetailfotoNGC Übersichts- karte Auswahl NGC 2619 p m m = 13. 6 2.‘6 x 1.‘8 NGC 2619 DetailfotoNGC Übersichts- karte Auswahl NGC 2620 p m m = 14. 4 1.‘9 x 0.‘4 NGC 2621 p m m = 15. 4 0.‘7 x 0.‘4 NGC 2620_2621 DetailfotoNGC Übersichts- karte Auswahl NGC 2622 p m m = 14. 8 0.‘7 x 0.‘4 NGC 2622 DetailfotoNGC Übersichts- karte Auswahl NGC 2623 p m m = 14. 4 0.‘7 x 0.‘6 NGC 2623 DetailfotoNGC Übersichts- karte Auswahl NGC 2624 p m m = 14. 5 0.‘7 x 0.‘6 NGC 2625 p m m = 15. 9 NGC 2624_2625 DetailfotoNGC 0.‘4 x 0.‘4 Übersichts- karte Auswahl NGC 2628 p m m = 14. 1 1.‘1 x 1.‘1 NGC 2628 DetailfotoNGC Übersichts- karte Auswahl NGC 2632 p m m = 3. 9 95.‘ NGC 2632 DetailfotoNGC Übersichts- karte Auswahl NGC 2637 p m m = 15. 3 0.‘5 x 0.‘4 NGC 2637 DetailfotoNGC Übersichts- karte Auswahl NGC 2643 p m m = 15. 5 0.‘6 x 0.‘4 NGC 2643 DetailfotoNGC Übersichts- karte Auswahl NGC 2647 p m m = 15. 0 0.‘8 x 0.‘5 NGC 2647 DetailfotoNGC Übersichts- karte Auswahl NGC 2648 p m m = 12.
Recommended publications
  • Observational Studies of the Galaxy Peculiar Velocity Field
    OBSERVATIONAL STUDIES OF THE GALAXY PECULIAR VELOCITY FIELD by Philip Andrew James Astrophysics Group Blackett Laboratory Imperial College of Science, Technology and Medicine London SW7 2BZ A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College November 1988 1 ABSTRACT This thesis describes two observational studies of the peculiar velocity field of galaxies over scales of 50-100 Jr1 Mpc, and the consequences of these measurements for cosmological theories. An introduction is given to observational cosmology, emphasising the crucial questions of the nature of the dark matter and the formation of structure. The principal cosmological models are discussed, and the role of observations in developing these models is stressed. Consideration is given to those observations that are likely to prove good discriminators between the competing models, particular emphasis being given to studies of the coherent velocities of samples of galaxies. The first new study presented here uses optical photometry and redshifts, from the literature, for First Ranked Cluster Galaxies (FRCG’s). These galaxies are excellent standard candles, and thus ideal for peculiar velocity studies. A simple one­ dimensional analysis detects no relative motion between the Local Group of galaxies and 60 FRCG’s with redshifts of up to 15000 kms-1. This is shown to imply a streaming motion of the cluster galaxies of at least 600 kms_1 relative to the CBR. The second observational study is a reanalysis of the Rubin et al. (1976a,b) sample of Sc galaxies. Near-IR photometry is used in our reanalysis to minimise the effects of extinction and to facilitate the use of luminosity indicators in reducing the effects of selection biases.
    [Show full text]
  • Curriculum Vitae Avishay Gal-Yam
    January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award.
    [Show full text]
  • Comprehensive Broadband X-Ray and Multiwavelength Study of Active Galactic Nuclei in Local 57 Ultra/Luminous Infrared Galaxies Observed with Nustar And/Or Swift/BAT
    Draft version July 26, 2021 Typeset using LATEX twocolumn style in AASTeX631 Comprehensive Broadband X-ray and Multiwavelength Study of Active Galactic Nuclei in Local 57 Ultra/luminous Infrared Galaxies Observed with NuSTAR and/or Swift/BAT Satoshi Yamada ,1 Yoshihiro Ueda ,1 Atsushi Tanimoto ,2 Masatoshi Imanishi ,3, 4 Yoshiki Toba ,1, 5 Claudio Ricci ,6, 7, 8 and George C. Privon 9 1Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan 2Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan 3National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588, Japan 4Department of Astronomical Science, Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 5Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan 6N´ucleo de Astronom´ıade la Facultad de Ingenier´ıa,Universidad Diego Portales, Av. Ej´ercito Libertador 441, Santiago, Chile 7Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People's Republic of China 8George Mason University, Department of Physics & Astronomy, MS 3F3, 4400 University Drive, Fairfax, VA 22030, USA 9National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA (Received April 13, 2021; Revised June 11, 2021; Accepted Jul, 2021) ABSTRACT We perform a systematic X-ray spectroscopic analysis of 57 local ultra/luminous infrared galaxy systems (containing 84 individual galaxies) observed with Nuclear Spectroscopic Telescope Array and/or Swift/BAT. Combining soft X-ray data obtained with Chandra, XMM-Newton, Suzaku and/or Swift/XRT, we identify 40 hard (>10 keV) X-ray detected active galactic nuclei (AGNs) and con- strain their torus parameters with the X-ray clumpy torus model XCLUMPY (Tanimoto et al.
    [Show full text]
  • Bias Mitigation in Galaxy Zoo Using Machine Learning Techniques
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Bias Mitigation in Galaxy Zoo Using Machine Learning Techniques Permalink https://escholarship.org/uc/item/7241p065 Author Silva do Nascimento Neto, Pedro Publication Date 2019 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Bias Mitigation in Galaxy Zoo Using Machine Learning Techniques DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Pedro Silva do Nascimento Neto Dissertation Committee: Professor Wayne Hayes, Chair Professor Aaron Barth Professor Eric Mjolsness 2019 c 2019 Pedro Silva do Nascimento Neto DEDICATION To my beloved wife, Elise. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES x LIST OF ALGORITHMS xii ACKNOWLEDGMENTS xiii CURRICULUM VITAE xv ABSTRACT OF THE DISSERTATION xvii 1 Introduction 1 2 Spiral Galaxy Recognition Using Arm Analysis and Random Forests 4 2.1 Introduction . 5 2.1.1 Related Work . 8 2.1.2 Regression, Not Classification, Because Galaxy Morphology Is Contin- uous, Not Discrete . 11 2.2 Methods . 13 2.3 Results . 17 2.3.1 Features, Trees, and Forests . 17 2.3.2 Adding SpArcFiRe Features . 18 2.3.3 Feature Quality . 26 2.3.4 Comparison with Other Regression Methods . 28 2.4 Conclusions . 30 3 The Chirality Bias in Galaxy Zoo 1 32 3.1 Introduction . 33 3.2 Nature of the bias . 36 3.2.1 More S-wise than Z-wise spins for all values of \spirality" .
    [Show full text]
  • Understanding the H2/HI Ratio in Galaxies 3
    Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]
  • 1987Apj. . .318. .1613 the Astrophysical Journal, 318:161-174
    .1613 The Astrophysical Journal, 318:161-174,1987 July 1 © 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. .318. 1987ApJ. A STUDY OF A FLUX-LIMITED SAMPLE OF IRAS GALAXIES1 Beverly J. Smith and S. G. Kleinmann University of Massachusetts J. P. Huchra Harvard-Smithsonian Center for Astrophysics AND F. J. Low Steward Observatory, University of Arizona Received 1986 September 3 ; accepted 1986 December 11 ABSTRACT We present results from a study of all 72 galaxies detected by IRAS in band 3 at flux levels >2 Jy and lying the region 8h < a < 17h, 23?5 < <5 < 32?5. Redshifts and accurate four-color IRAS photometry were 8 2 obtained for the entire sample. The 60 jtm luminosities of these galaxies lie in the range 4 x 10 (JF/o/100) L0 2 2 to 5 x lO^iTo/lOO) L0. The 60 jtm luminosity function at the high-luminosity end is proportional to L~ ; 10 below L = 10 L0 the luminosity function flattens. This is in agreement with previous results. We find a distinction between the morphology and infrared colors of the most luminous and the least luminous galaxies, leading to the suggestion that the observed luminosity function is produced by two different classes of objects. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed in blue luminosity than those optically selected, in the sense that the IRAS sample includes few galaxies of low absolute blue luminosity. We also find that the space distribution of the two samples differ: the density enhancement of IRAS galaxies is only that of the optically selected galaxies in the core of the Coma Cluster, raising the question whether source counts of IRAS galaxies can be used to deduce the mass distribution in the universe.
    [Show full text]
  • Physics ABSTRACT SIMULATION of INTERACTING GALAXY PAIR ARP
    Research Paper Volume : 2 | Issue : 8 | August 2013 • ISSN No 2277 - 8179 Physics SIMULATION OF INTERACTING KEYWORDS : Arp 82, interacting galaxy GALAXY PAIR ARP 82 pairs, simulation of NGC2535 and NGC2536. Mariwan A. Rasheed Department of Physics, School of Science, University of Sulaimani ABSTRACT In the present work, the interaction between the two galaxies (NGC2535 and NGC2536) is simulated. And according to the simulation the interaction causes the two arc tails in the big galaxy NGC253, in which the southern tail of the galaxy is bigger than the northern tail and the southern tail is connected with the smaller galaxy NGC2336 through a bridge. For the initial conditions, such as mass ratio, distance, and the radius of the two galaxies that I have put in this work, gives a best picture of the two interacted galaxies which named as Arp 82. INTRODUCTION: by the gravitation, and the rings distort gradually, therefore the When galaxies interact they may merge into a large one or af- fect on each other without merging. These interactions make the whole disks of the galaxies reshape to produce the peculiar changes in the shape and the geometry of the two galaxies, in galaxies.distribution of particles of the outer rings dislocate at first, then which the result is the construction of peculiar galaxies. Such The initial conditions of mass, position, and the distance that have been put in this work are: peculiar galaxies are classified in atlas and catalog, Vorontsov- Velyaminov 1959 and 1977, Arp 1966, Karachentsev 1972. - Msun, radi- - 10 Arp 82 which can be considered as M51-type galaxies, Lauri For NGC2535 galaxy: the centroid mass =2.51×10 tails,kainen while et al, the 1998 second is an galaxy example is ofthe two small interacting galaxy which pair of known galax us=1.62 kpc, halo radius=9.72kpc.10 While for NGC 2536 galaxy: asies a NGC2535 companion and of NGC2536.
    [Show full text]
  • Dark Energy and Extending the Geodesic Equations of Motion: Connecting the Galactic and Cosmological Length Scales
    General Relativity and Gravitation (2011) DOI 10.1007/s10714-010-1043-z RESEARCHARTICLE A. D. Speliotopoulos Dark energy and extending the geodesic equations of motion: connecting the galactic and cosmological length scales Received: 23 May 2010 / Accepted: 16 June 2010 c The Author(s) 2010 Abstract Recently, an extension of the geodesic equations of motion using the Dark Energy length scale was proposed. Here, we apply this extension to analyz- ing the motion of test particles at the galactic scale and longer. A cosmological check of the extension is made using the observed rotational velocity curves and core sizes of 1,393 spiral galaxies. We derive the density profile of a model galaxy using this extension, and with it, we calculate σ8 to be 0.73±0.12; this is within +0.049 experimental error of the WMAP value of 0.761−0.048. We then calculate R200 to be 206±53 kpc, which is in reasonable agreement with observations. Keywords Dark energy, Galactic density profile, Density fluctuations, Extensions of the geodesic equations of motion, Galactic rotation curves 1 Introduction In a previous paper [1], we constructed an extension of the geodesic equations of motion (GEOM). This construction is possible because with the discovery of +0.82 −30 3 Dark Energy, ΛDE = (7.21−0.84) × 10 g/cm [2; 3; 4], there is now a length 1/2 scale, λDE = c/(ΛDEG) , associated with the universe. As this length scale is also not associated with the mass of any known particle, this extension does not violate various statements of the equivalence principle.
    [Show full text]
  • Division C Rules Manual
    Exploring the World of Science Division C Rules Manual Division C (Gr. 9-12) SCIENCE OLYMPIAD, INC. © 2020 WELCOME TO THE 2020 SCIENCE OLYMPIAD! This Rules Manual will help you prepare to compete in Invitational, Regional, State and National Tournaments held across the United States annually. Each Science Olympiad event has a corresponding page on the Science Olympiad national website complete with free resources, training handouts and useful links. All users of this manual are subject to the Terms of Use Agreement. To compete, users must first join the Science Olympiad program in their home state and become registered members. See our website for info on Membership, Policies and Terms of Use at www.soinc.org Division C (Grades 9-12) Membership Rules A team may have up to fifteen (15) members. A maximum of seven (7) 12th grade students is permitted on a Division C team. Division B (Grades 6-9) Membership Rules A team may have up to fifteen (15) members. A maximum of five (5) 9th grade students is permitted on a Division B team. Because middle schools that do not have grades 7, 8 or 9 are at a slight disadvantage, they may invite any combination of up to five (5) of their last year’s 6th, 7th or 8th grade students to be part of the team. Possible examples can be found on the Science Olympiad website. Students Below Grade Level Designations Science Olympiad encourages students to participate in the Division that matches current Science Olympiad grade level designations. However, to support the inclusion of students who wish to participate in Science Olympiad, schools with grade levels lower than those stated in a Division are permitted to invite members below the grade level designations.
    [Show full text]
  • LARGE-SCALE STAR FORMATION TRIGGERING in the LOW-MASS ARP 82 SYSTEM: a NEARBY EXAMPLE of GALAXY DOWNSIZING BASED on UV/OPTICAL/MID-IR IMAGING Mark Hancock,1 Beverly J
    The Astronomical Journal, 133:676–693, 2007 February # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. LARGE-SCALE STAR FORMATION TRIGGERING IN THE LOW-MASS ARP 82 SYSTEM: A NEARBY EXAMPLE OF GALAXY DOWNSIZING BASED ON UV/OPTICAL/MID-IR IMAGING Mark Hancock,1 Beverly J. Smith,1 Curtis Struck,2 Mark L. Giroux,1 Philip N. Appleton,3 Vassilis Charmandaris,4,5,6 and William T. Reach3 Received 2006 August 3; accepted 2006 October 12 ABSTRACT As part of our Spitzer Spirals, Bridges, and Tails project to help understand the effects of galaxy interactions on star formation, we analyze Galaxy Evolution Explorer UV, Southeastern Association for Research in Astronomy optical, and Spitzer IR images of the interacting galaxy pair Arp 82 (NGC 2535/6) and compare to a numerical simulation of the interaction. We investigate the multiwavelength properties of several individual star-forming complexes (clumps). Using optical and UV colors, EW(H ), and population synthesis models we constrain the ages of the clumps and find 6 9 that the median clump age is 9 Myr. The clumps have masses ranging from a few ; 10 to 10 M .Ingeneral,the clumps in the tidal features have ages similar to those in the spiral region, but are less massive. The clumps provide 33%, 36%, and 70% of the far-UV, 8.0 m, and 24 m emission, respectively. The 8 and 24 m luminosities are used to es- timate the far-IR luminosities and the star formation rates of the clumps. The total clump star formation rate is 2:0 Æ À1 À1 0:8 M yr , while the entire Arp 82 system is forming stars at a rate of 4:9 Æ 2:0 M yr .Wefind,forthefirsttime, stars in the H i arc to the southeast of the NGC 2535 disk.
    [Show full text]
  • Cancer and Gemini N E
    Cancer and Gemini N E Arp 12 Arp 287 Arp 243 Arp 82 Arp 247 Arp 167 Arp 58 Arp 165 Arp 89 Arp ID RA Dec Mag Size Con U2K DSA 12 NGC 2608 08 35 17.0 +28 28 27 13.0b 2.2 x 1.3’ Cnc 75L 35R 58 UGC 4457 08 31 58.1 +19 12 48 14.2p 1.8 x 0.9’ Cnc 75L 47R PGC 23937 - - 82 NGC 2535 08 11 13.2 +25 12 22 13.3b 3.3 x 1.8’ Cnc 75L 35R NGC 2536 14.7b 0.9 x 0.7’ 89 NGC 2648 08 42 40.1 +14 17 10 12.7p 3.2 x 1.0’ Cnc 94L 47R MCG +2-22-6 15.4p 0.8 x 0.1’ 165 NGC 2418 07 36 37.9 +17 53 06 13.2p 1.8’ Gem 75R 48L 167 NGC 2672 08 49 22.3 +19 04 30 12.7b 2.9 x 2.7’ Cnc 74R 47R NGC 2673 14.1 1.2’ 243 NGC 2623 08 38 24.2 +25 45 01 14.0b 2.4 x 0.7’ Cnc 75L 35R 247 IC 2338 08 23 34.4 +21 20 43 14.7 0.7 x 0.5’ Cnc 75L 47R IC 2339 15.0b 0.7 x 0.5’ 287 NGC 2735 09 02 38.6 +25 56 06 14.1b 1.2 x 0.4’ Cnc 74R 35L NGC 2735A 16.8 0.2’ 212 Arp 12 Split armed spiral galaxy N Observing Notes: E 22" @ 377 and 458x NGC 2608 - Bright 5:2 elongated NGC 2604 patch with a much brighter bar running the full length of the halo.
    [Show full text]