Ascomycota: Sordariomycetes)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biscogniauxia Granmoi (Xylariaceae) in Europe
©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Osten. Z.Pilzk 8(1999) 139 Biscogniauxia granmoi (Xylariaceae) in Europe THOMAS L£SS0E CHRISTIAN SCHEUER Botanical Institute, Copenhagen University Institut fiir Botanik der Karl-Franzens-Universitat Oster Farimagsgade 2D Holteigasse 6 DK-1353 Copenhagen K, Denmark A-8010 Graz, Austria e-mail: [email protected] e-mail: [email protected] ALFRED GRANMO Trornso Museum, University of Tromse N-9037 Tromso, Norway e-mail: [email protected] Received 5. 7. 1999 Key words: Xylariaceae, Biscogniauxia. - Taxonomy, distribution. - Fungi of Europe, Asia. Abstract: Biscogniauxia granmoi, growing on Prunus padus (incl. var. pubescens = Padus asiatica) is reported from Europe and Asia, with material from Austria, Latvia, Norway, Poland, and Far Eastern Russia. It is compared with B. nummulana s. str., B. capnodes and B. simphcior. The taxon was included in the recent revision of Biscogniauxia by JU & al. {1998, Mycotaxon 66: 50) under the name "B. pruni GRANMO, L/ESS0E & SCHEUER" nom. prov. Zusammenfassung: Biscogniauxia granmoi, die bisher ausschließlich auf Prunus padus (inkl. var pubescens = Padus asiatica) gefunden wurde, wird aufgrund von Aufsammlungen aus Europa und Asien vorgestellt. Die bisherigen Belege stammen aus Österreich, Litauen, Norwegen, Polen und dem femöstlichen Teil Rußlands. Die Unterschiede zu B. nummulana s. Str., B. capnodes und H simphaor werden diskutiert. Dieses Taxon wurde unter dem Namen "B. pruni Granmo, l.aessoe & Scheuer" nom. prov. schon von JU & al. (1998, Mycotaxon 66: 50) in ihre Revision der Gattung Biscogniauxia aufge- nommen. The genus Biscogniauxia KUNTZE (Xylariaceae) was resurrected and amended by POUZAR (1979, 1986) for a group of Xylariaceae with applanate dark stromata that MILLER (1961) treated in Hypoxylon BULL., and for a group of species with thick, discoid stromata formerly placed in Nummularia TUL. -
Taxaarea Relationship and Neutral Dynamics Influence the Diversity Of
bs_bs_banner Environmental Microbiology (2012) 14(6), 1488–1499 doi:10.1111/j.1462-2920.2012.02737.x Taxa–area relationship and neutral dynamics influence the diversity of fungal communities on senesced tree leavesemi_2737 1488..1499 Larry M. Feinstein* and Christopher B. Blackwood to environmental changes may be enhanced with Department of Biological Sciences, Kent State increased understanding of the processes that regulate University, Kent, Ohio, USA fungal distributions. Variation in composition of ecological communities is commonly divided into two components: alpha diversity (number and evenness of taxa within a Summary sampling unit) and beta diversity (taxa turnover among This study utilized individual senesced sugar maple areas) (Gaston and Blackburn, 2000). and beech leaves as natural sampling units within For macroorganisms, it has been frequently observed which to quantify saprotrophic fungal diversity. Quan- that there is a correlation between the size of habitat tifying communities in individual leaves allowed us to patches or survey areas and the most fundamental determine if fungi display a classic taxa–area relation- measure of alpha diversity, number of taxa detected ship (species richness increasing with area). We (Rosenzweig, 1995; Connor and McCoy, 2001; Lomolino, found a significant taxa–area relationship for sugar 2001; Drakare et al., 2006). The ‘taxa–area relationship’ maple leaves, but not beech leaves, consistent with (TAR) refers to the shape of the increase in number of Wright’s species-energy theory. This suggests that taxa with increasing area, and has been most often mod- energy availability as affected plant biochemistry is a elled as a power law (S = cAz) where S is number of key factor regulating the scaling relationships of species, A is area, c is the intercept in log-log space, and fungal diversity. -
A Novel Bambusicolous Fungus from China, Arthrinium Chinense (Xylariales)
DOI 10.12905/0380.sydowia72-2020-0077 Published online 4 February 2020 A novel bambusicolous fungus from China, Arthrinium chinense (Xylariales) Ning Jiang1, Ying Mei Liang2 & Cheng Ming Tian1,* 1 The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China 2 Museum of Beijing Forestry University, Beijing Forestry University, Beijing 100083, China * e-mail: [email protected] Jiang N., Liang Y.M. & Tian C.M. (2020) A novel bambusicolous fungus from China, Arthrinium chinense (Xylariales). – Sydowia 72: 77–83. Arthrinium (Apiosporaceae, Xylariales) is a globally distributed genus inhabiting various substrates, mostly plant tissues. Arthrinium specimens from bamboo culms were characterized on the basis of morphology and phylogenetic inference, which suggested that they are different from all known species. Hence, the new taxon, Arthrinium chinense, is proposed. Arthrinium chinense can be distinguished from the phylogenetically close species, A. paraphaeospermum and A. rasikravindrae, by much shorter conidia. Keywords: Apiosporaceae, bamboo, taxonomy, molecular phylogeny. – 1 new species. Bambusoideae (bamboo) is an important plant ium qinlingense C.M. Tian & N. Jiang, a species de- subfamily comprising multiple genera and species scribed from Fargesia qinlingensis in Qinling moun- widely distributed in China. Taxonomy of bamboo- tains (Shaanxi, China; Jiang et al. 2018), we also associated fungi has been studied worldwide in the collected dead and dying culms of Fargesia qinlin- past two decades, and more than 1000 fungal spe- gensis in order to find it. cies have been recorded (Hyde et al. 2002a, b). Re- cently, additional fungal species from bamboo were Materials and methods described in China on the basis of morphology and molecular evidence (Dai et al. -
The Genera Excluded from the Amphisphaeriaceae, Cainiaceae and Clypeosphaeriaceae
Fungal Diversity 2 (March 1999) Studies on Amphisphaeriales: The genera excluded from the Amphisphaeriaceae, Cainiaceae and Clypeosphaeriaceae Ji-Chuan Kangl, Kevin D. Hydel• and Richard Y.c. Kontf I Fungal Diversity Research Project, Department of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong; * email: [email protected] 2 Department of Biology and Chemistry, City University of Hong Kong, Tat Chee A venue, Kowloon, Hong Kong Kang, J.C., Hyde, K.D. and Kong, R.Y.C. (1999). Studies on Amphisphaeriales: The genera excluded from the Amphisphaeriaceae, Cainiaceae and Clypeosphaeriaceae. Fungal Diversity 2: 135-151. The Amphisphaeriaceae and the Cainiaceae have been narrowly defined, while the Clypeosphaeriaceae was broadly defined and considered a relatively large assemblage of ascomycetes whose affinities are uncertain. In this paper, the remaining genera previously included in the Amphisphaeriaceae (sensu lato) are dealt with. Fasciatispora having unicellular brown ascospores, and Seynesia and Collodiscula having brown ascospores and an Acanthodochium anamorph are similar to xylariaceous taxa and therefore considered best placed in the Xylariaceae. Muelleromyces has a parasitic habit on leaves, clypeate ascomata and asci with a J- apical ring and resembles Phyllachora, and is placed in the Phyllachoraceae. Melomastia is redescribed and illustrated and placed in the Pleurotremataceae. Chitonospora, Dyrithium and lodosphaeria are redescribed and illustrated, while Amphisphaerella, Ascotaiwania, Flagellosphaeria, Lindquistomyces, Manokwaria, Mukhakesa, Neohypodiscus, Urosporellopsis and Xylochora are discussed. These genera are placed in Ascomycetes incertae sedis as the available morphological data are inadequate to confidently conclude their taxonomic positions. Key words: Ascomycetes incertae sedis, Phyllachoraceae, Pleurotremataceae, taxonomy, Xylariaceae. Introduction The broadly defined Amphisphaeriaceae G. -
University of California Santa Cruz Responding to An
UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes. -
Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A. -
Phylogenetic Assignment of the Fungicolous Hypoxylon Invadens (Ascomycota, Xylariales) and Investigation of Its Secondary Metabolites
microorganisms Article Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites Kevin Becker 1,2 , Christopher Lambert 1,2,3 , Jörg Wieschhaus 1 and Marc Stadler 1,2,* 1 Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; [email protected] (K.B.); [email protected] (C.L.); [email protected] (J.W.) 2 German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany 3 Department for Molecular Cell Biology, Helmholtz Centre for Infection Research GmbH (HZI) Inhoffenstraße 7, 38124 Braunschweig, Germany * Correspondence: [email protected]; Tel.: +49-531-6181-4240; Fax: +49-531-6181-9499 Received: 23 July 2020; Accepted: 8 September 2020; Published: 11 September 2020 Abstract: The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H. fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H. invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H. invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H. invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). -
Resurrection and Emendation of the Hypoxylaceae, Recognised from a Multigene Phylogeny of the Xylariales
Mycol Progress DOI 10.1007/s11557-017-1311-3 ORIGINAL ARTICLE Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales Lucile Wendt1,2 & Esteban Benjamin Sir3 & Eric Kuhnert1,2 & Simone Heitkämper1,2 & Christopher Lambert1,2 & Adriana I. Hladki3 & Andrea I. Romero4,5 & J. Jennifer Luangsa-ard6 & Prasert Srikitikulchai6 & Derek Peršoh7 & Marc Stadler1,2 Received: 21 February 2017 /Revised: 12 April 2017 /Accepted: 19 April 2017 # The Author(s) 2017. This article is an open access publication Abstract A multigene phylogeny was constructed, including polymerase II (RPB2), and beta-tubulin (TUB2). Specimens a significant number of representative species of the main were selected based on more than a decade of intensive mor- lineages in the Xylariaceae and four DNA loci the internal phological and chemotaxonomic work, and cautious taxon transcribed spacer region (ITS), the large subunit (LSU) of sampling was performed to cover the major lineages of the the nuclear rDNA, the second largest subunit of the RNA Xylariaceae; however, with emphasis on hypoxyloid species. The comprehensive phylogenetic analysis revealed a clear-cut This article is part of the “Special Issue on ascomycete systematics in segregation of the Xylariaceae into several major clades, honor of Richard P. Korf who died in August 2016”. which was well in accordance with previously established morphological and chemotaxonomic concepts. One of these The present paper is dedicated to Prof. Jack D. Rogers, on the occasion of his fortcoming 80th birthday. clades contained Annulohypoxylon, Hypoxylon, Daldinia,and other related genera that have stromatal pigments and a Section Editor: Teresa Iturriaga and Marc Stadler nodulisporium-like anamorph. -
Discovery of the Teleomorph of the Hyphomycete, Sterigmatobotrys Macrocarpa, and Epitypification of the Genus to Holomorphic Status
available online at www.studiesinmycology.org StudieS in Mycology 68: 193–202. 2011. doi:10.3114/sim.2011.68.08 Discovery of the teleomorph of the hyphomycete, Sterigmatobotrys macrocarpa, and epitypification of the genus to holomorphic status M. Réblová1* and K.A. Seifert2 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43, Průhonice, Czech Republic; 2Biodiversity (Mycology and Botany), Agriculture and Agri- Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: Sterigmatobotrys macrocarpa is a conspicuous, lignicolous, dematiaceous hyphomycete with macronematous, penicillate conidiophores with branches or metulae arising from the apex of the stipe, terminating with cylindrical, elongated conidiogenous cells producing conidia in a holoblastic manner. The discovery of its teleomorph is documented here based on perithecial ascomata associated with fertile conidiophores of S. macrocarpa on a specimen collected in the Czech Republic; an identical anamorph developed from ascospores isolated in axenic culture. The teleomorph is morphologically similar to species of the genera Carpoligna and Chaetosphaeria, especially in its nonstromatic perithecia, hyaline, cylindrical to fusiform ascospores, unitunicate asci with a distinct apical annulus, and tapering paraphyses. Identical perithecia were later observed on a herbarium specimen of S. macrocarpa originating in New Zealand. Sterigmatobotrys includes two species, S. macrocarpa, a taxonomic synonym of the type species, S. elata, and S. uniseptata. Because no teleomorph was described in the protologue of Sterigmatobotrys, we apply Article 59.7 of the International Code of Botanical Nomenclature. We epitypify (teleotypify) both Sterigmatobotrys elata and S. macrocarpa to give the genus holomorphic status, and the name S. -
Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists. -
Pestalotioid Fungi from Restionaceae in the Cape Floral Kingdom
STUDIES IN MYCOLOGY 55: 175–187. 2006. Pestalotioid fungi from Restionaceae in the Cape Floral Kingdom Seonju Lee1*, Pedro W. Crous2 and Michael J. Wingfield1 1Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lunnon Road, Hillcrest, Pretoria 0002, South Africa; 2Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands *Correspondence: Seonju Lee, [email protected] Abstract: Eight pestalotioid fungi were isolated from the Restionaceae growing in the Cape Floral Kingdom of South Africa. Sarcostroma restionis, Truncatella megaspora, T. restionacearum and T. spadicea are newly described. New records include Pestalotiopsis matildae, Sarcostroma lomatiae, Truncatella betulae and T. hartigii. To resolve generic affiliations, phylogenetic analyses were performed on ITS (ITS1, 5.8S, ITS2) and part of 28S rDNA. DNA data support the original generic concept of Truncatella, which encompasses Pestalotiopsis species having 3-septate conidia. The genus Sarcostroma is retained as separate from Seimatosporium. Taxonomic novelties: Pestalotiopsis matildae (Richatt) S. Lee & Crous comb. nov., Truncatella betulae (Morochk.) S. Lee & Crous comb. nov., Sarcostroma restionis S. Lee & Crous sp. nov., Truncatella megaspora S. Lee & Crous sp. nov., Truncatella restionacearum S. Lee & Crous sp. nov., Truncatella spadicea S. Lee & Crous sp. nov. Key words: Fungi imperfecti, fynbos, microfungi, South Africa, systematics. INTRODUCTION MATERIALS AND METHODS The Restionaceae (restios) is a monocotyledonous Isolates family distributed in the Southern Hemisphere, which Field collections were made in Western Cape Province includes more than 30 genera and about 400 species nature reserves and in undisturbed areas of the fynbos (Figs 1–6). In Africa approximately 330 species are during 2000–2002. -
Arthrinium Setostromum (Apiosporaceae, Xylariales), a Novel Species Associated with Dead Bamboo from Yunnan, China
Asian Journal of Mycology 2(1): 254–268 (2019) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/2/1/16 Arthrinium setostromum (Apiosporaceae, Xylariales), a novel species associated with dead bamboo from Yunnan, China Jiang HB1,2,3, Hyde KD1,2, Doilom M1,2,4, Karunarathna SC2,4,5, Xu JC2,4 and Phookamsak R1,2,4* 1 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2 Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 3 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 4 East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, Yunnan, China 5 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Jiang HB, Hyde KD, Doilom M, Karunarathna SC, Xu JC, Phookamsak R 2019 – Arthrinium setostromum (Apiosporaceae, Xylariales), a novel species associated with dead bamboo from Yunnan, China. Asian Journal of Mycology 2(1), 254–268, Doi 10.5943/ajom/2/1/16 Abstract Arthrinium setostromum sp. nov., collected from dead branches of bamboo in Yunnan Province of China, is described and illustrated with the sexual and asexual connections. The sexual morph of the new taxon is characterized by raised, dark brown to black, setose, lenticular, 1–3- loculate ascostromata, immersed in a clypeus, unitunicate, 8-spored, broadly clavate to cylindric- clavate asci and hyaline apiospores, surrounded by an indistinct mucilaginous sheath. The asexual morph develops holoblastic, monoblastic conidiogenesis with globose to subglobose, dark brown, 0–1-septate conidia.