<I>Arthrinium</I>
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists. -
Arthrinium Setostromum (Apiosporaceae, Xylariales), a Novel Species Associated with Dead Bamboo from Yunnan, China
Asian Journal of Mycology 2(1): 254–268 (2019) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/2/1/16 Arthrinium setostromum (Apiosporaceae, Xylariales), a novel species associated with dead bamboo from Yunnan, China Jiang HB1,2,3, Hyde KD1,2, Doilom M1,2,4, Karunarathna SC2,4,5, Xu JC2,4 and Phookamsak R1,2,4* 1 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2 Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 3 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 4 East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, Yunnan, China 5 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Jiang HB, Hyde KD, Doilom M, Karunarathna SC, Xu JC, Phookamsak R 2019 – Arthrinium setostromum (Apiosporaceae, Xylariales), a novel species associated with dead bamboo from Yunnan, China. Asian Journal of Mycology 2(1), 254–268, Doi 10.5943/ajom/2/1/16 Abstract Arthrinium setostromum sp. nov., collected from dead branches of bamboo in Yunnan Province of China, is described and illustrated with the sexual and asexual connections. The sexual morph of the new taxon is characterized by raised, dark brown to black, setose, lenticular, 1–3- loculate ascostromata, immersed in a clypeus, unitunicate, 8-spored, broadly clavate to cylindric- clavate asci and hyaline apiospores, surrounded by an indistinct mucilaginous sheath. The asexual morph develops holoblastic, monoblastic conidiogenesis with globose to subglobose, dark brown, 0–1-septate conidia. -
AR TICLE a Phylogenetic Re-Evaluation of Arthrinium
IMA FUNGUS · VOLUME 4 · NO 1: 133–154 doi:10.5598/imafungus.2013.04.01.13 A phylogenetic re-evaluation of Arthrinium ARTICLE Pedro W. Crous1, 2, 3, and Johannes Z. Groenewald1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; corresponding author e-mail: [email protected] 2Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands 3Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands Abstract: Although the genus Arthrinium (sexual morph Apiospora) is commonly isolated as an endophyte from a Key words: range of substrates, and is extremely interesting for the pharmaceutical industry, its molecular phylogeny has never Apiospora been resolved. Based on morphology and DNA sequence data of the large subunit nuclear ribosomal RNA gene (LSU, Apiosporaceae 28S) and the internal transcribed spacers (ITS) and 5.8S rRNA gene of the nrDNA operon, the genus Arthrinium is ITS shown to belong to Apiosporaceae in Xylariales. Arthrinium is morphologically and phylogenetically circumscribed, and LSU the sexual genus Apiospora treated as synonym on the basis that Arthinium is older, more commonly encountered, Ascomycota and more frequently used in literature. An epitype is designated for Arthrinium pterospermum, and several well-known Sordariomycetes [ >+ Systematics (TEF), beta-tubulin (TUB) and internal transcribed spacer (ITS1, 5.8S, ITS2) gene regions. Newly described are A. hydei on Bambusa tuldoides from Hong Kong, A. kogelbergense on dead culms of Restionaceae from South Africa, A. malaysianum on Macaranga hullettii from Malaysia, A. ovatum on Arundinaria hindsii from Hong Kong, A. -
The Mycobiome of Symptomatic Wood of Prunus Trees in Germany
The mycobiome of symptomatic wood of Prunus trees in Germany Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) Naturwissenschaftliche Fakultät I – Biowissenschaften – der Martin-Luther-Universität Halle-Wittenberg vorgelegt von Herrn Steffen Bien Geb. am 29.07.1985 in Berlin Copyright notice Chapters 2 to 4 have been published in international journals. Only the publishers and the authors have the right for publishing and using the presented data. Any re-use of the presented data requires permissions from the publishers and the authors. Content III Content Summary .................................................................................................................. IV Zusammenfassung .................................................................................................. VI Abbreviations ......................................................................................................... VIII 1 General introduction ............................................................................................. 1 1.1 Importance of fungal diseases of wood and the knowledge about the associated fungal diversity ...................................................................................... 1 1.2 Host-fungus interactions in wood and wood diseases ....................................... 2 1.3 The genus Prunus ............................................................................................. 4 1.4 Diseases and fungal communities of Prunus wood .......................................... -
Fungal Systematics and Evolution PAGES 1–9
VOLUME 2 DECEMBER 2018 Fungal Systematics and Evolution PAGES 1–9 doi.org/10.3114/fuse.2018.02.01 Arthrinium species associated with bamboo and reed plants in China N. Jiang1, J. Li2, C.M. Tian1* 1The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China 2General Station of Forest Pest Management, State Forestry Administration, Shenyang 110034, China *Corresponding author: [email protected] Key words: Abstract: Arthrinium species are presently recognised based on a combination of morphological characteristics Apiosporaceae and internal transcribed spacer (ITS) sequence data. In the present study fresh Arthrinium specimens from bamboo Arthrinium gaoyouense and reed plants were collected in China. Morphological comparison and phylogenetic analyses were subsequently Arthrinium qinlingense performed for species identification. From the results obtained two new species, Arthrinium gaoyouense and taxonomy A. qinlingense are proposed, and three known species, Arthrinium arundinis, A. paraphaeospermum and A. yunnanum are identified based on morphological characteristics from the host and published DNA sequence data. Published online: 22 May 2018. INTRODUCTION The asexual morph of Arthrinium species can be easily recognised based on its dark, aseptate, lenticular conidia Arthrinium (Kunze 1817) is a globally distributed genus inhabiting with a hyaline rim or germ slit (Singh et al. 2012). However, a wide range of hosts and substrates, including air, soil debris, identification of Arthrinium to species level is not easy with plants, lichens, marine algae (Agut & Calvo 2004, Senanayake only the asexual morph because of their relatively conserved Editor-in-Chief etProf. al dr . P.W. 2015, Crous, DaiWesterdijk et al Fungal . -
EVALUATING the ENDOPHYTIC FUNGAL COMMUNITY in PLANTED and WILD RUBBER TREES (Hevea Brasiliensis)
ABSTRACT Title of Document: EVALUATING THE ENDOPHYTIC FUNGAL COMMUNITY IN PLANTED AND WILD RUBBER TREES (Hevea brasiliensis) Romina O. Gazis, Ph.D., 2012 Directed By: Assistant Professor, Priscila Chaverri, Plant Science and Landscape Architecture The main objectives of this dissertation project were to characterize and compare the fungal endophytic communities associated with rubber trees (Hevea brasiliensis) distributed in wild habitats and under plantations. This study recovered an extensive number of isolates (more than 2,500) from a large sample size (190 individual trees) distributed in diverse regions (various locations in Peru, Cameroon, and Mexico). Molecular and classic taxonomic tools were used to identify, quantify, describe, and compare the diversity of the different assemblages. Innovative phylogenetic analyses for species delimitation were superimposed with ecological data to recognize operational taxonomic units (OTUs) or ―putative species‖ within commonly found species complexes, helping in the detection of meaningful differences between tree populations. Sapwood and leaf fragments showed high infection frequency, but sapwood was inhabited by a significantly higher number of species. More than 700 OTUs were recovered, supporting the hypothesis that tropical fungal endophytes are highly diverse. Furthermore, this study shows that not only leaf tissue can harbor a high diversity of endophytes, but also that sapwood can contain an even more diverse assemblage. Wild and managed habitats presented high species richness of comparable complexity (phylogenetic diversity). Nevertheless, main differences were found in the assemblage‘s taxonomic composition and frequency of specific strains. Trees growing within their native range were dominated by strains belonging to Trichoderma and even though they were also present in managed trees, plantations trees were dominated by strains of Colletotrichum. -
Phylogenetic Delimitation of Apiospora and Arthrinium
VOLUME 7 JUNE 2021 Fungal Systematics and Evolution PAGES 197–221 doi.org/10.3114/fuse.2021.07.10 Phylogenetic delimitation of Apiospora and Arthrinium Á. Pintos1#, P. Alvarado2#* 1Interdisciplinary Ecology Group, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5 Palma de Mallorca, Spain 2ALVALAB, Dr. Fernando Bongera st., Severo Ochoa Bldg. S1.04, 33006 Oviedo, Spain #These authors contributed equally *Corresponding author: [email protected] Key words: Abstract: In the present study six species of Arthrinium (including a new taxon, Ar. crenatum) are described and subjected Apiosporaceae to phylogenetic analysis. The analysis of ITS and 28S rDNA, as well as sequences of tef1 and tub2 exons suggests that Cyperaceae Arthrinium s. str. and Apiospora represent independent lineages within Apiosporaceae. Morphologically, Arthrinium and Juncaceae Apiospora do not seem to have clear diagnostic features, although species of Arthrinium often produce variously shaped new taxa conidia (navicular, fusoid, curved, polygonal, rounded), while most species of Apiospora have rounded (face view) / lenticular Poaceae (side view) conidia. Ecologically, most sequenced collections of Arthrinium were found on Cyperaceae or Juncaceae in Sordaryomycetes temperate, cold or alpine habitats, while those of Apiospora were collected mainly on Poaceae (but also many other plant taxonomy host families) in a wide range of habitats, including tropical and subtropical regions. A lectotype for Sphaeria apiospora (syn.: Ap. montagnei, type species of Apiospora) is selected among the original collections preserved at the PC fungarium, and the putative identity of this taxon, found on Poaceae in Mediterranean lowland habitats, is discussed. Fifty-five species of Arthrinium are combined to Apiospora, and a key to species of Arthrinium s. -
Endophytic Microorganism from the Endangered Plant Nervilia Fordii (Hance) Schltr
Endophytic Microorganism From the Endangered Plant Nervilia Fordii (Hance) Schltr. In the Southwest Karst Area of China: Isolation, Genetic Diversity and Potential Functional Discovery Xiao-Ming Tan Guangxi University of Chinese Medicine, Guangxi Key Laboratory Cultivation Base of TCM Prevention and Treatment of Obesity Xin-Feng Yang Guangxi University of Chinese Medicine, Guangxi Key Laboratory Cultivation Base of TCM Prevention and Treatment of Obesity Ya-Qin Zhou ( [email protected] ) Guangxi Botanical Garden of Medicinal Plant Peng Fu Guangxi University of Chinese Medicine, Guangxi Key Laboratory Cultivation Base of TCM Prevention and Treatment of Obesity Shi-Yi Hu Guangxi University of Chinese Medicine, Guangxi Key Laboratory Cultivation Base of TCM Prevention and Treatment of Obesity Zhong-Heng Shi Guangxi University of Chinese Medicine, Guangxi Key Laboratory Cultivation Base of TCM Prevention and Treatment of Obesity Research Article Keywords: Nervilia fordii, vulnerable perennial herb, Bletilla striata seeds, various endophytic fungi, orchids Posted Date: April 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-413613/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/12 Abstract The plant Nervilia fordii (Hance) Schltr. is known for its antimicrobial and antitumor properties. It is a rare and vulnerable perennial herb of the Orchidaceae family. In this study, 984 isolates were isolated from various tissues of N. fordii. and were identied through the sequence analyses of the internal transcribed spacer region of the rRNA gene. Except for 12 unidentied fungi, all others were aliated to at least 39 genera of 14 orders of Ascomycota (72.66%) and Basidiomycota (19.00%). -
Two New Species of Arthrinium (Apiosporaceae, Xylariales) Associated with Bamboo from Yunnan, China
Mycosphere 7 (9): 1332–1345 (2016) www.mycosphere.org ISSN 2077 7019 Article – special issue Doi 10.5943/mycosphere/7/9/7 Copyright © Guizhou Academy of Agricultural Sciences Two new species of Arthrinium (Apiosporaceae, Xylariales) associated with bamboo from Yunnan, China Dai DQ1,*, Jiang HB1, Tang LZ1, Bhat DJ2,3 1 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 2 Formerly, Department of Botany, Goa University, Goa, India 3 No. 128/1-J, Azad Housing Society, Curca, Goa Velha-403108, India Corresponding author: Dong-Qin Dai, email: [email protected] Dai DQ, Jiang HB, Tang LZ, Bhat DJ 2016 – Two new species of Arthrinium (Apiosporaceae, Xylariales) associated with bamboo from Yunnan, China. Mycosphere 7 (9), 1332–1345, Doi 10.5943/mycosphere/7/9/7 Abstract Arthrinium, a globally distributed genus, is characterized by basauxic conidiogenesis in its asexual morph, with globose to subglobose conidia, which are usually lenticular in side view and obovioid and brown to dark brown. The sexual morph develops multi-locular perithecial stromata with hyaline apiospores usually surrounded by a thick gelatinous sheath. Four Arthrinium species collected in Kunming, China, are described and illustrated in this paper. Based on the morphology and analyses of ITS sequence data, we introduce two new species of Arthrinium. Arthrinium garethjonesii and A. neosubglobosa spp. nov. are provided with descriptions of sexual morphs and compared with phylogenetically close taxa. Arthrinium hydei and A. hyphopodii are new records on their sexual morphs. Keywords – bambusicolous fungi – phylogeny – Sordariomycetes – taxonomy Introduction Arthrinium Kunze ex Fr. -
Eight New Arthrinium Species from China
A peer-reviewed open-access journal MycoKeys 34: 1–24 (2018) Eight new Arthrinium species from China 1 doi: 10.3897/mycokeys.34.24221 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Eight new Arthrinium species from China Mei Wang1,2,*, Xiao-Ming Tan3,*, Fang Liu1, Lei Cai1,2 1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China 2 University of Chinese Academy of Sciences, Beijing 100049, PR China 3 College of Navel Orange, Gannan Normal University, Ganzhou, Jiangxi, 341000, PR China Corresponding author: Lei Cai ([email protected]) Academic editor: P. Cannon | Received 4 February 2018 | Accepted 7 April 2018 | Published 3 May 2018 Citation: Wang M, Tan X-M, Liu F, Cai L (2018) Eight new Arthrinium species from China. MycoKeys 34: 1–24. https://doi.org/10.3897/mycokeys.34.24221 Abstract The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morpho- logical characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species. -
An Online Resource for Marine Fungi
Fungal Diversity https://doi.org/10.1007/s13225-019-00426-5 (0123456789().,-volV)(0123456789().,- volV) An online resource for marine fungi 1,2 3 1,4 5 6 E. B. Gareth Jones • Ka-Lai Pang • Mohamed A. Abdel-Wahab • Bettina Scholz • Kevin D. Hyde • 7,8 9 10 11 12 Teun Boekhout • Rainer Ebel • Mostafa E. Rateb • Linda Henderson • Jariya Sakayaroj • 13 6 6,17 14 Satinee Suetrong • Monika C. Dayarathne • Vinit Kumar • Seshagiri Raghukumar • 15 1 16 6 K. R. Sridhar • Ali H. A. Bahkali • Frank H. Gleason • Chada Norphanphoun Received: 3 January 2019 / Accepted: 20 April 2019 Ó School of Science 2019 Abstract Index Fungorum, Species Fungorum and MycoBank are the key fungal nomenclature and taxonomic databases that can be sourced to find taxonomic details concerning fungi, while DNA sequence data can be sourced from the NCBI, EBI and UNITE databases. Nomenclature and ecological data on freshwater fungi can be accessed on http://fungi.life.illinois.edu/, while http://www.marinespecies.org/provides a comprehensive list of names of marine organisms, including information on their synonymy. Previous websites however have little information on marine fungi and their ecology, beside articles that deal with marine fungi, especially those published in the nineteenth and early twentieth centuries may not be accessible to those working in third world countries. To address this problem, a new website www.marinefungi.org was set up and is introduced in this paper. This website provides a search facility to genera of marine fungi, full species descriptions, key to species and illustrations, an up to date classification of all recorded marine fungi which includes all fungal groups (Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota and fungus-like organisms e.g. -
Differential Proteomics Based on TMT and PRM Reveal the Resistance
H OH metabolites OH Article Differential Proteomics Based on TMT and PRM Reveal the Resistance Response of Bambusa pervariabilis × Dendrocalamopisis grandis Induced by AP-Toxin Qianqian He, Xinmei Fang, Tianhui Zhu, Shan Han, Hanmingyue Zhu and Shujiang Li * College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road in Wenjiang District, Chengdu 611130, China * Correspondence: [email protected]; Tel.: +86-186-0835-7494 Received: 30 June 2019; Accepted: 8 August 2019; Published: 10 August 2019 Abstract: Bambusa pervariabilis McClure Dendrocalamopsis grandis (Q.H.Dai & X.l.Tao ex Keng f.) × Ohrnb. blight is a widespread and dangerous forest fungus disease, and has been listed as a supplementary object of forest phytosanitary measures. In order to study the control of B. pervariabilis D. grandis blight, this experiment was carried out. In this work, a toxin purified from the × pathogen Arthrinium phaeospermum (Corda) Elli, which causes blight in B. pervariabilis D. grandis, × with homologous heterogeneity, was used as an inducer to increase resistance to B. pervariabilis D. × grandis. A functional analysis of the differentially expressed proteins after induction using a tandem mass tag labeling technique was combined with mass spectrometry and liquid chromatography mass spectrometry in order to effectively screen for the proteins related to the resistance of B. pervariabilis D. × grandis to blight. After peptide labeling, a total of 3320 unique peptides and 1791 quantitative proteins were obtained by liquid chromatography mass spectrometry analysis. Annotation and enrichment analysis of these peptides and proteins using the Gene ontology and Kyoto Encyclopedia of Genes and Genomes databases with bioinformatics software show that the differentially expressed protein functional annotation items are mainly concentrated on biological processes and cell components.