Download Full Article in PDF Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversification of Fungal Chitinases and Their Functional Differentiation in 2 Histoplasma Capsulatum 3
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.137125; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Diversification of fungal chitinases and their functional differentiation in 2 Histoplasma capsulatum 3 4 Kristie D. Goughenour1*, Janice Whalin1, 5 Jason C. Slot2, Chad A. Rappleye1# 6 7 1 Department of Microbiology, Ohio State University 8 2 Department of Plant Pathology, Ohio State University 9 10 11 #corresponding author: 12 [email protected] 13 614-247-2718 14 15 *current affiliation: 16 Division of Pulmonary and Critical Care Medicine 17 University of Michigan 18 VA Ann Arbor Healthcare System, Research Service 19 Ann Arbor, Michigan, USA 20 21 22 running title: Fungal chitinases 23 24 keywords: chitinase, GH18, fungi, Histoplasma 25 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.137125; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 26 ABSTRACT 27 Chitinases enzymatically hydrolyze chitin, a highly abundant biomolecule with many potential 28 industrial and medical uses in addition to their natural biological roles. Fungi are a rich source of 29 chitinases, however the phylogenetic and functional diversity of fungal chitinases are not well 30 understood. -
Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae
Journal of Fungi Article Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae Mohammad Sayari 1,2,*, Magrieta A. van der Nest 1,3, Emma T. Steenkamp 1, Saleh Rahimlou 4 , Almuth Hammerbacher 1 and Brenda D. Wingfield 1 1 Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; [email protected] (M.A.v.d.N.); [email protected] (E.T.S.); [email protected] (A.H.); brenda.wingfi[email protected] (B.D.W.) 2 Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada 3 Biotechnology Platform, Agricultural Research Council (ARC), Onderstepoort Campus, Pretoria 0110, South Africa 4 Department of Mycology and Microbiology, University of Tartu, 14A Ravila, 50411 Tartu, Estonia; [email protected] * Correspondence: [email protected]; Fax: +1-204-474-7528 Abstract: Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using Citation: Sayari, M.; van der Nest, a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species M.A.; Steenkamp, E.T.; Rahimlou, S.; of the Ceratocystidaceae were identified. -
Monilochaetes and Allied Genera of the Glomerellales, and a Reconsideration of Families in the Microascales
available online at www.studiesinmycology.org StudieS in Mycology 68: 163–191. 2011. doi:10.3114/sim.2011.68.07 Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales M. Réblová1*, W. Gams2 and K.A. Seifert3 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43 Průhonice, Czech Republic; 2Molenweg 15, 3743CK Baarn, The Netherlands; 3Biodiversity (Mycology and Botany), Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: We examined the phylogenetic relationships of two species that mimic Chaetosphaeria in teleomorph and anamorph morphologies, Chaetosphaeria tulasneorum with a Cylindrotrichum anamorph and Australiasca queenslandica with a Dischloridium anamorph. Four data sets were analysed: a) the internal transcribed spacer region including ITS1, 5.8S rDNA and ITS2 (ITS), b) nc28S (ncLSU) rDNA, c) nc18S (ncSSU) rDNA, and d) a combined data set of ncLSU-ncSSU-RPB2 (ribosomal polymerase B2). The traditional placement of Ch. tulasneorum in the Microascales based on ncLSU sequences is unsupported and Australiasca does not belong to the Chaetosphaeriaceae. Both holomorph species are nested within the Glomerellales. A new genus, Reticulascus, is introduced for Ch. tulasneorum with associated Cylindrotrichum anamorph; another species of Reticulascus and its anamorph in Cylindrotrichum are described as new. The taxonomic structure of the Glomerellales is clarified and the name is validly published. As delimited here, it includes three families, the Glomerellaceae and the newly described Australiascaceae and Reticulascaceae. Based on ITS and ncLSU rDNA sequence analyses, we confirm the synonymy of the anamorph generaDischloridium with Monilochaetes. -
Ceratocystidaceae Exhibit High Levels of Recombination at the Mating-Type (MAT) Locus
Accepted Manuscript Ceratocystidaceae exhibit high levels of recombination at the mating-type (MAT) locus Melissa C. Simpson, Martin P.A. Coetzee, Magriet A. van der Nest, Michael J. Wingfield, Brenda D. Wingfield PII: S1878-6146(18)30293-9 DOI: 10.1016/j.funbio.2018.09.003 Reference: FUNBIO 959 To appear in: Fungal Biology Received Date: 10 November 2017 Revised Date: 11 July 2018 Accepted Date: 12 September 2018 Please cite this article as: Simpson, M.C., Coetzee, M.P.A., van der Nest, M.A., Wingfield, M.J., Wingfield, B.D., Ceratocystidaceae exhibit high levels of recombination at the mating-type (MAT) locus, Fungal Biology (2018), doi: https://doi.org/10.1016/j.funbio.2018.09.003. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Title 2 Ceratocystidaceae exhibit high levels of recombination at the mating-type ( MAT ) locus 3 4 Authors 5 Melissa C. Simpson 6 [email protected] 7 Martin P.A. Coetzee 8 [email protected] 9 Magriet A. van der Nest 10 [email protected] 11 Michael J. Wingfield 12 [email protected] 13 Brenda D. -
A Conspectus of the Filamentous Marine Fungi of Sweden
Botanica Marina 2020; 63(2): 141–153 Sanja Tibell*, Leif Tibell, Ka-Lai Pang and E.B. Gareth Jones A conspectus of the filamentous marine fungi of Sweden https://doi.org/10.1515/bot-2018-0114 mostly based on morphological studies, however often the Received 16 December, 2018; accepted 8 May, 2019; online first 2 very small size of these organisms and/or the insufficient July, 2019 morphological distinctive features limit considerably the census of the biodiversity of this component. For marine Abstract: Marine filamentous fungi have been little stud- fungi, the recent application of molecular approaches ied in Sweden, which is remarkable given the depth and offers a useful tool for the census of their biodiversity, width of mycological studies in the country since the time where a wealth of hidden biodiversity is still to be uncov- of Elias Fries. Seventy-four marine fungi are listed for ered. However, there are still different shortcomings and Sweden based on historical records and recent collections, downsides that prevent the extensive use of molecular data of which 16 are new records for the country. New records without the support of classical taxonomic identification. for the country are based on morphological identification Marine wood long remained the main focus for studies of species mainly from marine wood, and most of them of marine filamentous fungi (MFF), however studies by from the Swedish West Coast. In some instances, the iden- Zuccaro et al. (2008), and Suryanarayanan (2012) have tifications have been made by comparisons of sequences shown a rich diversity of these fungi also associated with obtained from cultures with reference sequences in Gen- marine algae (Jones et al. -
Comparative Genomics of Knoxdaviesia Species in the Core Cape Subregion
Comparative genomics of Knoxdaviesia species in the Core Cape Subregion by Janneke Aylward Dissertation presented for the degree of Doctor of Philosophy in the Faculty of Science at Stellenbosch University Supervisor: Prof. Léanne L. Dreyer Co-supervisors: Dr. Francois Roets Prof. Emma T. Steenkamp Prof. Brenda D. Wingfield Prof. Michael J. Wingfield March 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Janneke Aylward Date: March 2017 Copyright © 2017 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za ABSTRACT Knoxdaviesia capensis and K. proteae are saprotrophic fungi that inhabit the seed cones (infructescences) of Protea plants in the Core Cape Subregion (CCR) of South Africa. Arthropods, implicated in the pollination of Protea species, disperse these native fungi from infructescences to young flower heads (inflorescences). Knoxdaviesia proteae is a specialist restricted to one Protea species, while the generalist K. capensis occupies a range of Protea species. Within young flower heads, Knoxdaviesia species grow vegetatively, but switch to sexual reproduction once flower heads mature into enclosed infructescences. Nectar becomes depleted and infructescences are colonised by numerous other organisms, including the arthropod vectors of the fungi. The aim of this dissertation was to study the ecology of K. -
Patterns of Coevolution Between Ambrosia Beetle Mycangia and the Ceratocystidaceae, with Five New Fungal Genera and Seven New Species
Persoonia 44, 2020: 41–66 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.02 Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae, with five new fungal genera and seven new species C.G. Mayers1, T.C. Harrington1, H. Masuya2, B.H. Jordal 3, D.L. McNew1, H.-H. Shih4, F. Roets5, G.J. Kietzka5 Key words Abstract Ambrosia beetles farm specialised fungi in sapwood tunnels and use pocket-like organs called my- cangia to carry propagules of the fungal cultivars. Ambrosia fungi selectively grow in mycangia, which is central 14 new taxa to the symbiosis, but the history of coevolution between fungal cultivars and mycangia is poorly understood. The Microascales fungal family Ceratocystidaceae previously included three ambrosial genera (Ambrosiella, Meredithiella, and Phia Scolytinae lophoropsis), each farmed by one of three distantly related tribes of ambrosia beetles with unique and relatively symbiosis large mycangium types. Studies on the phylogenetic relationships and evolutionary histories of these three genera two new typifications were expanded with the previously unstudied ambrosia fungi associated with a fourth mycangium type, that of the tribe Scolytoplatypodini. Using ITS rDNA barcoding and a concatenated dataset of six loci (28S rDNA, 18S rDNA, tef1-α, tub, mcm7, and rpl1), a comprehensive phylogeny of the family Ceratocystidaceae was developed, including Inodoromyces interjectus gen. & sp. nov., a non-ambrosial species that is closely related to the family. Three minor morphological variants of the pronotal disk mycangium of the Scolytoplatypodini were associated with ambrosia fungi in three respective clades of Ceratocystidaceae: Wolfgangiella gen. -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
Bertia Moriformis
© Demetrio Merino Alcántara [email protected] Condiciones de uso Bertia moriformis (Tode) De Not., G. bot. ital. 1(1): 335 (1844) Bertiaceae, Coronophorales, Hypocreomycetidae, Sordariomycetes, Pezizomycotina, Ascomycota, Fungi ≡ Astoma moriforme (Tode) Gray, Nat. Arr. Brit. Pl. (London) 1: 524 (1821) ≡ Bertia moriformis f. macrospora Sibilia, Ann. Bot., Roma 18(2): 261 (1929) ≡ Bertia moriformis (Tode) De Not., G. bot. ital. 1(1): 335 (1844) f. moriformis ≡ Bertia moriformis (Tode) De Not., G. bot. ital. 1(1): 335 (1844) var. moriformis ≡ Bertia moriformis var. multiseptata Sivan., Trans. Br. mycol. Soc. 70(3): 385 (1978) = Bertia multiseptata (Sivan.) Huhndorf, A.N. Mill. & F.A. Fernández, Mycol. Res. 108(12): 1387 (2004) ≡ Psilosphaeria moriformis (Tode) Stev., Mycol. Scot.: 386 (1879) = Sphaeria claviformis Sowerby, Col. fig. Engl. Fung. Mushr. 3: 139 (1803) ≡ Sphaeria moriformis Tode, Fung. mecklenb. sel. (Lüneburg) 2: 22 (1791) = Sphaeria rubiformis Sowerby, Col. fig. Engl. Fung. Mushr. 3: 156 (1803) = Sphaeria rugosa Grev. Material estudiado: Francia, Aquitania, Urdós, Sansanet, 30T XN9941, 1,329 m, en madera caída de Fagus sylvatica,1-VII-2014, leg. Dianora Estrada, Joaquín Fernández y Demetrio Merino, JA-CUSSTA: 8209. Descripción macroscópica: Peritecios agrupados formando una pequeña mora globosa, rugosa, de color negro y de (0.46) 0.51 - 0.63 (0.66) x (0.35) 0.42 - 0.60 (0.62) mm; N = 18; Me = 0.58 x 0.51 mm. Descripción microscópica: Ascas claviformes, octospóricas, no amiloides y con las esporas irregularmente dispuestas, de un ancho de 10.05 - 15.63 µm; N = 7; Me = 13.20 µm. Ascosporas de fusiformes a alantoides, con un septo transversal central difícilmente observable, multigutula- das, hialinas, lisas y de (32.60) 34.96 - 42.57 (43.80) x (4.36) 4.61 - 6.17 (6.53) µm; Q = (5.90) 6.52 - 7.99 (8.99); N = 26; Me = 38.82 x 5.39 µm; Qe = 7.27. -
Genetic Diversity and Population Structure of Corollospora Maritima Sensu Lato: New Insights from Population Genetics
Botanica Marina 2016; 59(5): 307–320 Patricia Veleza,*, Jaime Gasca-Pinedab, Akira Nakagiri, Richard T. Hanlin and María C. González Genetic diversity and population structure of Corollospora maritima sensu lato: new insights from population genetics DOI 10.1515/bot-2016-0058 Received 22 June, 2016; accepted 24 August, 2016; online first proven to decrease genetic diversity, a conservation genet- 26 September, 2016 ics approach to assess this matter is urgent. Our results revealed the occurrence of five genetic lineages with dis- Abstract: The study of genetic variation in fungi has been tinctive environmental preferences and an overlapping poor since the development of the theoretical underpin- geographical distribution, agreeing with previous studies nings of population genetics, specifically in marine taxa. reporting physiological races within this species. Corollospora maritima sensu lato is an abundant cosmo- Keywords: dispersal; gene flow; ITS rDNA; marine Asco- politan marine fungus, playing a crucial ecological role in mycota; molecular ecology. the intertidal environment. We evaluated the extent and distribution of the genetic diversity in the nuclear riboso- mal internal transcribed spacer region of 110 isolates of this ascomycete from 19 locations in the Gulf of Mexico, Introduction Caribbean Sea and Pacific Ocean. The diversity estimates Sandy beach ecosystems harbor a unique biodiversity, demonstrated that C. maritima sensu lato possesses a high which is highly adapted to endure dynamic and extreme genetic diversity compared to other cosmopolitan fungi, conditions. This biodiversity performs critical habitat with the highest levels of variability in the Caribbean Sea. functions, providing a range of ecological services not Globally, we registered 28 haplotypes, out of which 11 available through other ecosystems (McLachlan and were specific to the Caribbean Sea, implying these popu- Brown 2006, Schlacher and Connolly 2009). -
Co-Adaptations Between Ceratocystidaceae Ambrosia Fungi and the Mycangia of Their Associated Ambrosia Beetles
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles Chase Gabriel Mayers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Biology Commons, Developmental Biology Commons, and the Evolution Commons Recommended Citation Mayers, Chase Gabriel, "Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles" (2018). Graduate Theses and Dissertations. 16731. https://lib.dr.iastate.edu/etd/16731 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles by Chase Gabriel Mayers A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Microbiology Program of Study Committee: Thomas C. Harrington, Major Professor Mark L. Gleason Larry J. Halverson Dennis V. Lavrov John D. Nason The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Chase Gabriel Mayers, 2018. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,