The Xylariaceae As Model Example for a Unified Nomenclature Following
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clemson University Tigerprints All Dissertations Dissertations 5-2014 Evaluation and Development of Nisin-Containing Packaging for Ready-To-Eat Meats, Utilizing Methods
Clemson University TigerPrints All Dissertations Dissertations 5-2014 Evaluation and Development of Nisin-Containing Packaging for Ready-to-Eat Meats, Utilizing Methods Feasible for Future Commercialization Angela Morgan Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Morgan, Angela, "Evaluation and Development of Nisin-Containing Packaging for Ready-to-Eat Meats, Utilizing Methods Feasible for Future Commercialization" (2014). All Dissertations. 1769. https://tigerprints.clemson.edu/all_dissertations/1769 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. EVALUATION AND DEVELOPMENT OF NISIN-CONTAINING PACKAGING FOR READY-TO-EAT MEATS, UTILIZING METHODS FEASIBLE FOR FUTURE COMMERCIALIZATION ___________________________________________________________ A Dissertation Presented to the Graduate School of Clemson University ___________________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Food Technology ___________________________________________________________ by Angela Morgan May 2014 ___________________________________________________________ Accepted by: Kay Cooksey, Ph.D., Committee Chair Terri Bruce, Ph.D. Duncan Darby, Ph.D. Aaron Brody, Ph.D. ABSTRACT Antimicrobial food packaging -
Volatile Hydrocarbons from Endophytic Fungi and Their Efficacy in Fuel Production and Disease Control B
Naik Egyptian Journal of Biological Pest Control (2018) 28:69 Egyptian Journal of https://doi.org/10.1186/s41938-018-0072-x Biological Pest Control REVIEW ARTICLE Open Access Volatile hydrocarbons from endophytic fungi and their efficacy in fuel production and disease control B. Shankar Naik Abstract Endophytic fungi are the microorganisms which asymptomatically colonize internal tissues of plant roots and shoots. Endophytes produce a broad spectrum of odorous compounds with different physicochemical and biological properties that make them useful in both industry and agriculture. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds with high densities, which include terpenes, flavonoids, alkaloids, quinines, cyclohexanes, and hydrocarbons. Many of these compounds showed anti-microbial, anti-oxidant, anti-neoplastic, anti-leishmanial and anti-proliferative activities, cytotoxicity, and fuel production. In this review, the role of volatile compounds produced by fungal endophytes in fuel production and their potential application in biological control is discussed. Keywords: Endophytic fungi, Biocontrol, Biofuel, Mycodiesel, Volatile organic compounds Background activities, and cytotoxicity (Firakova et al. 2007;Korpiet Endophytic fungi are the microorganisms, which asymp- al. 2009; Kharwar et al. 2011; Zhao et al. 2016 and Wu et tomatically colonize the internal tissues of plant roots and al. 2016). shoots (Bacon and White 2000). Endophytes provide Volatile organic compounds (VOCs) are a large group beneficial effects on host plants in deterring pathogens, of carbon-based chemicals with low molecular weights herbivores, increased tolerance to stress drought, low soil and high vapor pressure produced by living organisms as fertility, and enhancement of plant biomass (Redman et al. -
Phylogeny of Rosellinia Capetribulensis Sp. Nov. and Its Allies (Xylariaceae)
Mycologia, 97(5), 2005, pp. 1102–1110. # 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 Phylogeny of Rosellinia capetribulensis sp. nov. and its allies (Xylariaceae) J. Bahl1 research of the fungi occurring on palms has shown R. Jeewon this particular substrate to be a source of fungal K.D. Hyde diversity (Fro¨hlich and Hyde 2000, Taylor and Hyde Centre for Research in Fungal Diversity, Department of 2003). In continuing studies, we discovered saprobic Ecology & Biodiversity, The University of Hong Kong, fungi on fronds of various palm species (i.e., Pokfulam Road, Hong Kong S.A.R., P.R. China Archontopheonix, Calamus, Livistona) in Northern Queensland and revealed a number of unique fungi. We describe a new species in the genus Rosellinia Abstract: A new Rosellinia species, R. capetribulensis from Calamus sp. isolated from Calamus sp. in Australia is described. R. Most work on Rosellinia has focused on species capetribulensis is characterized by perithecia im- from different geographical regions. Petrini (1992, mersed within a carbonaceous stroma surrounded 2003) compared Rosellinia species from temperate by subiculum-like hyphae, asci with large, barrel- zones and New Zealand. Rogers et al (1987) noted the shaped amyloid apical apparatus and large dark rarity of Rosellinia species in tropical rain forests of brown spores. Morphologically, R. capetribulensis North Sulawesi, Indonesia. In studies of fungi from appears to be similar to R. bunodes, R. markhamiae palm hosts, Smith and Hyde (2001) indexed twelve and R. megalospora. To gain further insights into the Rosellinia species from tropical palm hosts. Rosellinia phylogeny of this new taxon we analyzed the ITS-5.8S species are not frequently isolated when compared to rDNA using maximum parsimony and likelihood other xylariacieous fungi recorded from palm leaf methods. -
Volatile Constituents of Endophytic Fungi Isolated from Aquilaria Sinensis with Descriptions of Two New Species of Nemania
life Article Volatile Constituents of Endophytic Fungi Isolated from Aquilaria sinensis with Descriptions of Two New Species of Nemania Saowaluck Tibpromma 1,2,3,†, Lu Zhang 4,†, Samantha C. Karunarathna 1,2,3, Tian-Ye Du 1,2,3, Chayanard Phukhamsakda 5,6 , Munikishore Rachakunta 7 , Nakarin Suwannarach 8,9 , Jianchu Xu 1,2,3,*, Peter E. Mortimer 1,2,3,* and Yue-Hu Wang 4,* 1 CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] (S.T.); [email protected] (S.C.K.); [email protected] (T.-Y.D.) 2 World Agroforestry Centre, East and Central Asia, Kunming 650201, China 3 Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China 4 Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] 5 Institute of Plant Protection, College of Agriculture, Jilin Agricultural University, Changchun 130118, China; [email protected] 6 Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China 7 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] Citation: Tibpromma, S.; Zhang, L.; 8 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Karunarathna, S.C.; Du, T.-Y.; [email protected] Phukhamsakda, C.; Rachakunta, M.; 9 Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Suwannarach, N.; Xu, J.; Mortimer, Chiang Mai 50200, Thailand P.E.; Wang, Y.-H. -
Phylogenetic Assignment of the Fungicolous Hypoxylon Invadens (Ascomycota, Xylariales) and Investigation of Its Secondary Metabolites
microorganisms Article Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites Kevin Becker 1,2 , Christopher Lambert 1,2,3 , Jörg Wieschhaus 1 and Marc Stadler 1,2,* 1 Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; [email protected] (K.B.); [email protected] (C.L.); [email protected] (J.W.) 2 German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany 3 Department for Molecular Cell Biology, Helmholtz Centre for Infection Research GmbH (HZI) Inhoffenstraße 7, 38124 Braunschweig, Germany * Correspondence: [email protected]; Tel.: +49-531-6181-4240; Fax: +49-531-6181-9499 Received: 23 July 2020; Accepted: 8 September 2020; Published: 11 September 2020 Abstract: The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H. fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H. invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H. invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H. invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). -
Studies in the Genus Phylacia (Xylariaceae)
Studies in the Genus Phylacia (Xylariaceae) Katia F. Rodrigues and Gary J. Samuels Rodrigues, Katia F. and Gary J. Samuels (The New York Botanical Garden, Bronx, NY 10458, U.S.A.). Studies in the genus Phylacia (Xylariaceae). Mem. New York Bot. Gard. 49: 290-297. 1989. Phylacia bomba var. macrospora is described as new. Phylacia globosa, P. poculiformis, and P. bomba var. bomba are redescribed. Geniculosporium anamorphs developed in cultures derived from single ascospore isolations of Phylacia globosa and P. bomba var. macrospora. Geniculosporium conidiophores developed on young sexual stro- mata of P. poculiformis in nature. These anamorphs indicate that the genus Phylacia is a member of the Xylariaceae. Asci of P. bomba var. macrospora and P. poculiformis are described, as are asci, croziers, and ascogenous hyphae of P. poculiformis. Uma nova variedade e descrita, Phylacia bomba var. macrospora. Phylacia globosa, P. poculiformis e P. bomba var. bomba sao redescritas. Anamorfos pertencentes ao genero Geniculosporium desenvolveram-se em culturas derivadas de isolamentos de ascosporos singulares de P. globosa e P. bomba var. macrospora. Conidioforos de Geniculosporium foram encontrados na natureza, crescendo em estroma sexual juvem de P. poculiformis. Estes anamorfos indicant que o genero Phylacia pertence a Xylariaceae. Key Words: Xylariaceae, Phylacia, Geniculosporium, taxonomy Introduction and carbonaceous ascomata are common to un related ascomycetes. The asci of Phylacia, which Phylacia Lev. is a genus of unusual and highly apparently have been rarely seen [e.g., Ellis & distinctive tropical ascomycetes. Ascomata in the Everhart, 1892, for Phylacia sagraeana (Mont.) genus are black and carbonaceous. Asci are glo Mont. (pi. 38, fig. -
Resurrection and Emendation of the Hypoxylaceae, Recognised from a Multigene Phylogeny of the Xylariales
Mycol Progress DOI 10.1007/s11557-017-1311-3 ORIGINAL ARTICLE Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales Lucile Wendt1,2 & Esteban Benjamin Sir3 & Eric Kuhnert1,2 & Simone Heitkämper1,2 & Christopher Lambert1,2 & Adriana I. Hladki3 & Andrea I. Romero4,5 & J. Jennifer Luangsa-ard6 & Prasert Srikitikulchai6 & Derek Peršoh7 & Marc Stadler1,2 Received: 21 February 2017 /Revised: 12 April 2017 /Accepted: 19 April 2017 # The Author(s) 2017. This article is an open access publication Abstract A multigene phylogeny was constructed, including polymerase II (RPB2), and beta-tubulin (TUB2). Specimens a significant number of representative species of the main were selected based on more than a decade of intensive mor- lineages in the Xylariaceae and four DNA loci the internal phological and chemotaxonomic work, and cautious taxon transcribed spacer region (ITS), the large subunit (LSU) of sampling was performed to cover the major lineages of the the nuclear rDNA, the second largest subunit of the RNA Xylariaceae; however, with emphasis on hypoxyloid species. The comprehensive phylogenetic analysis revealed a clear-cut This article is part of the “Special Issue on ascomycete systematics in segregation of the Xylariaceae into several major clades, honor of Richard P. Korf who died in August 2016”. which was well in accordance with previously established morphological and chemotaxonomic concepts. One of these The present paper is dedicated to Prof. Jack D. Rogers, on the occasion of his fortcoming 80th birthday. clades contained Annulohypoxylon, Hypoxylon, Daldinia,and other related genera that have stromatal pigments and a Section Editor: Teresa Iturriaga and Marc Stadler nodulisporium-like anamorph. -
Miller 138..147
Chlorostroma subcubisporum gen. et sp. nov. and notes on the systematic position of Thuemenella cubispora A. N. Miller1, Larissa N. Vasilyeva2 & Jack D. Rogers3 1 Section for Biodiversity, Illinois Natural History Survey, Champaign, Illinois 61820-6970 USA 2 Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Vladivostok 690022 Russia 3 Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430 USA Miller A. N., L. N. Vasilyeva & J. D. Rogers (2007) Chlorostroma sub- cubisporum gen. et. sp. nov. and notes on the systematic position of Thuemenella cubispora. Sydowia 59: xxx-xxx. Chlorostroma subcubisporum is a new genus and species erected to accom- modate a taxon featuring a green stroma bearing perithecia, asci with an apex that does not become blue in iodine, and subcubical brown ascospores with a promi- nent germination slit. The two extant collections are inhabitants of Hypoxylon stromata from North Carolina. Although this taxon seems to be a member of family Xylariaceae (Xylariales, Ascomycota), its position is equivocal owing to anomalies in cultures and molecular data. Thuemenella cubispora, which C. subcubisporum resembles in general ascus and ascospore morphology, was tentatively considered by others to be a member of family Xylariaceae primarily on the basis of its Nodulisporiumlike anamorph. Molecular data presented herein supports this taxonomic disposition. Keywords: ascomycetes, pyrenomycetes, Great Smoky Mountains National Park. In the course of a survey of the mycobiota of the Great Smoky Mountains National Park in North Carolina we collected a pyr- enomycetous fungus inhabiting stromata of Hypoxylon perforatum (Schwein.:Fr.) Fr. that we believe to represent a previously unde- scribed genus and species. -
The Phylogenetic Position of Rhopalostroma As Inferred from a Polythetic Approach
Persoonia 25, 2010: 11–21 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158510X524231 The phylogenetic position of Rhopalostroma as inferred from a polythetic approach M. Stadler1, J. Fournier2, S. Gardt3, D. Peršoh3 Key words Abstract The xylariaceous genus Rhopalostroma comprises a small conglomerate of stromatic, angiosperm- associated pyrenomycetes, which have so far exclusively been reported from the palaeotropics, above all from Ascomycota tropical Africa and South Asia. Morphological and chemotaxonomic studies had suggested their close relationship chemosystematics to the genera Daldinia and Hypoxylon. However, those results were mainly based on herbarium specimens, and extrolites no molecular phylogenetic data were available on Rhopalostroma. During a foray in Côte d’Ivoire, fresh material of fungi R. angolense was collected, cultured and studied by microscopic methods and by secondary metabolite profiling Rhopalostroma using high performance liquid chromatography coupled with diode array and mass spectrometric detection. In ad- Xylariales dition, ITS nrDNA sequences of the cultures were generated and compared to those of representative Xylariaceae taxa, to evaluate the phylogenetic affinities of this fungus. The results showed that R. angolense is closely related to the daldinoid Xylariaceae, and in particular to the predominantly neotropical genera Phylacia and Thamnomyces. Article info Received: 22 March 2010; Accepted: 29 June 2010; Published: 27 July 2010. INTRODUCTION molecular phylogenetic data (Bitzer et al. 2008, Stadler et al. 2010b). Ruwenzoria, a recently described tropical xylariaceous The genus Rhopalostroma was erected by Hawksworth (1977) genus (Stadler et al. 2010a), also features early deliquescent to accommodate a series of palaeotropical pyrenomycetes that asci that are devoid of an amyloid apical apparatus. -
An Annotated Check-List of Ascomycota Reported from Soil and Other Terricolous Substrates in Egypt A
Journal of Basic & Applied Mycology 2 (2011): 1-27 1 © 2010 by The Society of Basic & Applied Mycology (EGYPT) An annotated check-list of Ascomycota reported from soil and other terricolous substrates in Egypt A. F. Moustafa* & A. M. Abdel – Azeem Department of Botany, Faculty of Science, University of Suez *Corresponding author: e-mail: Canal, Ismailia 41522, Egypt [email protected] Received 26/6/2010, Accepted 6/4 /2011 ____________________________________________________________________________________________________ Abstract: By screening of available sources of information, it was possible to figure out a range of 310 taxa that could be representing Egyptian Ascomycota up to the present time. In this treatment, concern was given to ascomycetous fungi of almost all terricolous substrates while phytopathogenic and aquatic forms are not included. According to the scheme proposed by Kirk et al. (2008), reported taxa in Egypt belonged to 88 genera in 31 families, and 11 orders. In view of this scheme, very few numbers of taxa remained without certain taxonomic position (incertae sedis). It is also worthy to be mentioned that among species included in the list, twenty-eight are introduced to the ascosporic mycobiota as novel taxa based on type materials collected from Egyptian habitats. The list includes also 19 species which are considered new records to the general mycobiota of Egypt. When species richness and substrate preference, as important ecological parameters, are considered, it has been noticed that Egyptian Ascomycota shows some interesting features noteworthy to be mentioned. At the substrate level, clay soils, came first by hosting a range of 108 taxa followed by desert soils (60 taxa). -
臺灣紅樹林海洋真菌誌 林 海 Marine Mangrove Fungi 洋 真 of Taiwan 菌 誌 Marine Mangrove Fungimarine of Taiwan
臺 灣 紅 樹 臺灣紅樹林海洋真菌誌 林 海 Marine Mangrove Fungi 洋 真 of Taiwan 菌 誌 Marine Mangrove Fungi of Taiwan of Marine Fungi Mangrove Ka-Lai PANG, Ka-Lai PANG, Ka-Lai PANG Jen-Sheng JHENG E.B. Gareth JONES Jen-Sheng JHENG, E.B. Gareth JONES JHENG, Jen-Sheng 國 立 臺 灣 海 洋 大 G P N : 1010000169 學 售 價 : 900 元 臺灣紅樹林海洋真菌誌 Marine Mangrove Fungi of Taiwan Ka-Lai PANG Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Chilung 20224, Taiwan (R.O.C.) Jen-Sheng JHENG Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Chilung 20224, Taiwan (R.O.C.) E. B. Gareth JONES Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120, Thailand 國立臺灣海洋大學 National Taiwan Ocean University Chilung January 2011 [Funded by National Science Council, Taiwan (R.O.C.)-NSC 98-2321-B-019-004] Acknowledgements The completion of this book undoubtedly required help from various individuals/parties, without whom, it would not be possible. First of all, we would like to thank the generous financial support from the National Science Council, Taiwan (R.O.C.) and the center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University. Prof. Shean- Shong Tzean (National Taiwan University) and Dr. Sung-Yuan Hsieh (Food Industry Research and Development Institute) are thanked for the advice given at the beginning of this project. Ka-Lai Pang would particularly like to thank Prof. -
Prilozi Contributions
ISSN 1857–9027 e-ISSN 1857–9949 MAKEDONSKA AKADEMIJA NA NAUKITE I UMETNOSTITE ODDELENIE ZA PRIRODNO-MATEMATI^KI I BIOTEHNI^KI NAUKI MACEDONIAN ACADEMY OF SCIENCES AND ARTS SECTION OF NATURAL, MATHEMATICAL AND BIOTECHNICAL SCIENCES PRILOZI CONTRIBUTIONS 40 (2) СКОПЈЕ – SKOPJE 2019 Publisher: Macedonian Academy of Sciences and Arts Editor-in-Chief Gligor Jovanovski, Macedonia Guest editors Kiril Sotirovski, Macedonia Viktor Gjamovski, Macedonia Co-editor-in-Chief Dončo Dimovski, Macedonia E d i t o r i a l B o a r d: Sjur Baardsen, Norway Lars Lonnstedt, Sweden Ivan Blinkov, Macedonia Vlado Matevski, Macedonia Blažo Boev, Macedonia Dubravka Matković-Čalogović, Croatia Stevo Božinovski, USA Nenad Novkovski, Macedonia Mitrofan Cioban, Moldova Nikola Panov, Macedonia Andraž Čarni, Slovenia Shushma Patel, England Ludwik Dobrzynski, France Dejan Prelević, Germany Gjorgji Filipovski, Macedonia Kiril Sotirovski, Macedonia Viktor Gjamovski, Macedonia Hari M. Srivastava, Canada Marjan Gušev, Macedonia Ivo Šlaus, Croatia Gordan Karaman, Montenegro Bogdan Šolaja, Serbia Borislav Kobiljski, Serbia Franci Štampar, Slovenia Dénes Loczy, Hungary Petar Zhelev, Bulgaria * Editorial assistant: Sonja Malinovska * Macedonian language adviser: Sofija Cholakovska-Popovska * Technical editor: Sonja Malinovska * Printed by: MAR-SAZ – Skopje * Number of copies: 300 * 2019 Published twice a year The Contributions, Sec. Nat. Math. Biotech. Sci. is indexed in: Chemical Abstracts, Mathematical Reviews, Google Scholar, EBSCO and DOAJ http://manu.edu.mk/contributions/NMBSci/ Прилози, Одд. прир. мат. биотех. науки, МАНУ Том Бр. стр. Скопје 40 2 145–276 2019 Contributions, Sec. Nat. Math. Biotech. Sci., MASA Vol. No. pp. Skopje T ABL E O F CONTENTS Marjan Andreevski, Duško Mukaetov CONTENT OF EXCHANGEABLE CATIONS IN ALBIC LUVISOLS IN THE REPUBLIC OF MACEDONIA ........................................................................................................