Influence of Temperature, Inoculation Interval, and Dosage on Biofumigation with Muscodor Albus to Control Postharvest Gray Mold on Grapes

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Temperature, Inoculation Interval, and Dosage on Biofumigation with Muscodor Albus to Control Postharvest Gray Mold on Grapes Influence of Temperature, Inoculation Interval, and Dosage on Biofumigation with Muscodor albus to Control Postharvest Gray Mold on Grapes F. Mlikota Gabler, Institute for Adriatic Crops, Put Duilova 11, 21000 Split, Croatia; R. Fassel, PACE International, LLC, Visalia, CA 93291; J. Mercier, AgraQuest Inc., Davis, CA 95616; and J. L. Smilanick, United States Depart- ment of Agriculture–Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648 trol gray mold are needed that are safe, ABSTRACT effective, and economical (1,15,16,21,23). Mlikota Gabler, F., Fassel, R., Mercier, J., and Smilanick, J. L. 2006. Influence of temperature, Alternatives to sulfur dioxide for control of inoculation interval, and dosage on biofumigation with Muscodor albus to control postharvest postharvest gray mold include near-harvest gray mold on grapes. Plant Dis. 90:1019-1025. ethanol or biological control agent applica- tions (11,15) and postharvest immersion of Control of postharvest gray mold, caused by Botrytis cinerea, on Thompson Seedless grape by grapes in bicarbonates, chlorine, ethanol, biofumigation with a rye grain formulation of Muscodor albus, a fungus that produces volatiles or heated water (14,16,21,23). However, lethal to many microorganisms, was evaluated. The influences of temperature, biofumigant dos- methods requiring additional postharvest age, and interval between inoculation and treatment on disease incidence and severity on de- tached single berries were assessed. When biofumigation began within 24 h after inoculation, processing and handling increase costs and higher M. albus dosages (≥50 g of the M. albus grain formulation per kilogram of grapes at 20ºC could alter the appearance of the berries or or 100 g/kg at 5ºC) stopped infections and control persisted after M. albus removal. Biofumiga- cause detachment of berries from the clus- tion was more effective at 20 than 5ºC. Among inoculated clusters inside clamshell boxes incu- ter rachis. Altering the orientation of the bated for 7 days at 15ºC, gray mold incidence was reduced from 20.2% among untreated grape wax platelets on the surface of the berries fruit to less than 1%, when ≥5 g of the formulation per kilogram of grapes was added. Among by rubbing caused by excessive handling grape berries commercially packaged in ventilated polyethylene cluster bags incubated for 7 can destroy the bloom, which is the effect days at 15ºC, gray mold incidence was 40.5% among untreated fruit and 11.1 or 6.7% when the of light reflected and diffused by the over- formulation at 5 or 20 g/kg, respectively, had been added. In the same packaging, among grape lapping wax platelets. This gives the cuti- berries incubated for 28 days at 0.5ºC, gray mold incidence was 42.8% among untreated fruit cle a shine rather than the desirable luster and 4.8 or 4.0% when the formulation at 5 or 10 g/kg, respectively, had been added. Lower dos- effect (24). Alternatives requiring addi- ages (≤20 g/kg) suppressed disease development while M. albus was present; however, after tional processing are unlikely to be imple- their removal, B. cinerea resumed growth and gray mold incidence increased. Placement of M. mented by California table grape growers, albus inside grape packages significantly controlled gray mold and may be a feasible approach who normally pack their fruit into com- to manage postharvest decay of table grape. mercial packages in vineyards (9). The main advantage of fumigation to control postharvest decay compared with other Gray mold, caused by Botrytis cinerea ide fumigation during initial forced-air approaches is that it does not require proc- Pers., causes pre- and postharvest decay of cooling of the grape berries, followed by essing or manual handling of the grapes. table grapes. B. cinerea is especially trou- 2- to 6-h-long weekly fumigation during Most grape storage facilities in California blesome because of its rapid growth rate cold storage (17). In export packages, sul- are designed for sulfur dioxide fumigation and ability to spread among berries even at fur dioxide generator sheets are used, and use it routinely. A number of alterna- cold temperatures (–0.5ºC). Infections that which continuously emit a low concentra- tives, including fumigants (5,22,25– cause postharvest losses can originate from tion of gas within the packages (1,11). 27,32,33) and controlled atmospheres spores on the surface of the berries, micro- Sulfur dioxide fumigation effectively (7,8), have been investigated for the con- scopic latent infections that occur before controls gray mold, but bleaching injury to trol of postharvest decay of table grapes harvest during the growing season, or in- berries, particularly among those detached with some success. A novel alternative for fection of mechanical wounds (10,11). The from the cluster rachis, and injury to the controlling postharvest decay is biological fungus produces abundant aerial mycelium rachis itself occur among commercially fumigation, or biofumigation, with the which spreads from infected to healthy stored grapes (9). After fumigation with fungus Muscodor albus Worapong, berries, so that an uncontrolled infection sulfur dioxide, grape berries become more Strobel, and Hess (18,20). M. albus, which from a single berry can spread to an entire susceptible to subsequent infections by B. was isolated from a cinnamon tree in Hon- package of grape berries. Postharvest gray cinerea (30) that can occur during trans- duras, is a non-spore-producing fungus of mold usually is controlled by sulfur diox- portation and marketing. Although the the family Xylariaceae. The volatiles pro- tolerance for sulfite residues (10 µg/g) is duced by M. albus, a mixture of low mo- Corresponding author: F. Mlikota Gabler rarely exceeded in commercial practice lecular weight compounds, are biocidal or E-mail: [email protected] (4), excessive residues of sulfur dioxide biostatic to a broad variety of microorgan- can occur when it accumulates in wounded isms (29,31), including Botrytis cinerea, Current address of F. Mlikota Gabler: USDA-ARS or detached berries (28). Also, sulfur diox- Geotrichum citri-aurantii, G. candidum, San Joaquin Valley Agricultural Sciences Center, ide is not accepted for organic grapes un- Monilinia fructicola, Penicillium digi- 9611 South Riverbend Ave, Parlier, CA 93648. der current certification rules, and some tatum, and P. expansum (18,20), and con- Accepted for publication 12 March 2006. regulatory agencies do not allow the dis- trolled brown rot of peach (18), gray mold charge of sulfur dioxide to the air after and blue mold of apple (18), and green fumigation. mold and sour rot of lemon (20). Isobu- DOI: 10.1094/PD-90-1019 Because of the issues associated with tyric acid emission was closely associated This article is in the public domain and not copy- sulfite residues, sulfur dioxide emissions, with antifungal activity at both 4 and 21ºC rightable. It may be freely reprinted with custom- ary crediting of the source. The American Phyto- and sulfur dioxide’s negative impact on when Muscodor albus had been grown on pathological Society, 2006. grape quality, alternative strategies to con- a rye grain substrate (13). A preliminary Plant Disease / August 2006 1019 report (19) also indicated that M. albus sterile water to an absorbance of 0.25 at mold, gray mold incidence and severity could control postharvest gray mold of 425 nm as determined by a spectropho- were assessed. The amount and appearance table grapes at temperatures encountered tometer. This density contained 1 × 106 of M. albus mycelium present on the rye during commercial storage (–0.5 to 1ºC), conidia/ml and was diluted with sterile grain formulation at the end of incubation transportation (2 to 5ºC), and marketing deionized water to obtain the desired spore also was observed. The experiment was (15 to 20ºC) (17). In 2004, M. albus was concentrations. done twice. submitted to the United States Environ- Biofumigant. M. albus formulation The effect of temperature, M. albus mental Protection Agency for registration consisted of rye grain colonized with M. formulation dosage, and type of packag- to control postharvest diseases of food and albus strain 620 was grown according to ing on postharvest gray mold of grape nonfood crops, and to control preplant Mercier and Jiménez (18). The grain cul- clusters. Grape clusters were divided into diseases of seeds, bulbs, and tubers (2). ture was air dried at room temperature and small clusters of approximately 100 g each Sulfur dioxide and other fumigant gases stored at –8ºC prior to use. The desiccated and randomized so that a portion of each that are applied externally must penetrate M. albus rye grain culture was activated by cluster was represented in each treatment. into the grape packages to be effective. adding an equal weight of deionized water Approximately 300 ml of 105 conidia/ml Luvisi et al. (17) reported that some types 2 to 3 h prior to use (13). In all experi- was sprayed over about 50 kg of grape of table grape packaging impeded sulfur ments, M. albus was placed in an open-top clusters. Unless stated otherwise, the grape dioxide penetration more than others, al- plastic container and was never in direct clusters were inoculated about 3 h prior to though commercial packages in use today contact with grape berries. treatment. M. albus grain culture was acti- are designed to facilitate penetration of The effect of temperature, interval be- vated 2 h prior to treatment, as described sulfur dioxide and cooling air (9,17). One tween inoculation and biofumigation, previously. approach to avoid issues associated with and M. albus formulation dosage on Experiments conducted at 15°C. M. the penetration of fumigants applied exter- postharvest gray mold on detached albus formulation was placed inside a nally is to place the biofumigant M. albus grape berries. Two temperatures (20 and clamshell container with grape clusters.
Recommended publications
  • Clemson University Tigerprints All Dissertations Dissertations 5-2014 Evaluation and Development of Nisin-Containing Packaging for Ready-To-Eat Meats, Utilizing Methods
    Clemson University TigerPrints All Dissertations Dissertations 5-2014 Evaluation and Development of Nisin-Containing Packaging for Ready-to-Eat Meats, Utilizing Methods Feasible for Future Commercialization Angela Morgan Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Morgan, Angela, "Evaluation and Development of Nisin-Containing Packaging for Ready-to-Eat Meats, Utilizing Methods Feasible for Future Commercialization" (2014). All Dissertations. 1769. https://tigerprints.clemson.edu/all_dissertations/1769 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. EVALUATION AND DEVELOPMENT OF NISIN-CONTAINING PACKAGING FOR READY-TO-EAT MEATS, UTILIZING METHODS FEASIBLE FOR FUTURE COMMERCIALIZATION ___________________________________________________________ A Dissertation Presented to the Graduate School of Clemson University ___________________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Food Technology ___________________________________________________________ by Angela Morgan May 2014 ___________________________________________________________ Accepted by: Kay Cooksey, Ph.D., Committee Chair Terri Bruce, Ph.D. Duncan Darby, Ph.D. Aaron Brody, Ph.D. ABSTRACT Antimicrobial food packaging
    [Show full text]
  • Volatile Hydrocarbons from Endophytic Fungi and Their Efficacy in Fuel Production and Disease Control B
    Naik Egyptian Journal of Biological Pest Control (2018) 28:69 Egyptian Journal of https://doi.org/10.1186/s41938-018-0072-x Biological Pest Control REVIEW ARTICLE Open Access Volatile hydrocarbons from endophytic fungi and their efficacy in fuel production and disease control B. Shankar Naik Abstract Endophytic fungi are the microorganisms which asymptomatically colonize internal tissues of plant roots and shoots. Endophytes produce a broad spectrum of odorous compounds with different physicochemical and biological properties that make them useful in both industry and agriculture. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds with high densities, which include terpenes, flavonoids, alkaloids, quinines, cyclohexanes, and hydrocarbons. Many of these compounds showed anti-microbial, anti-oxidant, anti-neoplastic, anti-leishmanial and anti-proliferative activities, cytotoxicity, and fuel production. In this review, the role of volatile compounds produced by fungal endophytes in fuel production and their potential application in biological control is discussed. Keywords: Endophytic fungi, Biocontrol, Biofuel, Mycodiesel, Volatile organic compounds Background activities, and cytotoxicity (Firakova et al. 2007;Korpiet Endophytic fungi are the microorganisms, which asymp- al. 2009; Kharwar et al. 2011; Zhao et al. 2016 and Wu et tomatically colonize the internal tissues of plant roots and al. 2016). shoots (Bacon and White 2000). Endophytes provide Volatile organic compounds (VOCs) are a large group beneficial effects on host plants in deterring pathogens, of carbon-based chemicals with low molecular weights herbivores, increased tolerance to stress drought, low soil and high vapor pressure produced by living organisms as fertility, and enhancement of plant biomass (Redman et al.
    [Show full text]
  • The Xylariaceae As Model Example for a Unified Nomenclature Following
    This article was downloaded by: [Helmholtz Zentrum Fuer], [Marc Stadler] On: 13 May 2013, At: 09:12 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Mycology: An International Journal on Fungal Biology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tmyc20 The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (1F1N) concept Marc Stadler a , Eric Kuhnert a , Derek Peršoh b & Jacques Fournier c a Department Microbial Drugs , Helmholtz-Centre for Infection Research and Technical University of Braunschweig , Inhoffenstrasse 7, 38124 , Braunschweig , Germany b Department of Mycology , University of Bayreuth, Universitätsstrasse 30 , 95440 , Bayreuth , Germany c Las Muros, Rimont , Ariége , 09420 , France To cite this article: Marc Stadler , Eric Kuhnert , Derek Peršoh & Jacques Fournier (2013): The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (1F1N) concept, Mycology: An International Journal on Fungal Biology, 4:1, 5-21 To link to this article: http://dx.doi.org/10.1080/21501203.2013.782478 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • Recent Progress in Biodiversity Research on the Xylariales and Their Secondary Metabolism
    The Journal of Antibiotics (2021) 74:1–23 https://doi.org/10.1038/s41429-020-00376-0 SPECIAL FEATURE: REVIEW ARTICLE Recent progress in biodiversity research on the Xylariales and their secondary metabolism 1,2 1,2 Kevin Becker ● Marc Stadler Received: 22 July 2020 / Revised: 16 September 2020 / Accepted: 19 September 2020 / Published online: 23 October 2020 © The Author(s) 2020. This article is published with open access Abstract The families Xylariaceae and Hypoxylaceae (Xylariales, Ascomycota) represent one of the most prolific lineages of secondary metabolite producers. Like many other fungal taxa, they exhibit their highest diversity in the tropics. The stromata as well as the mycelial cultures of these fungi (the latter of which are frequently being isolated as endophytes of seed plants) have given rise to the discovery of many unprecedented secondary metabolites. Some of those served as lead compounds for development of pharmaceuticals and agrochemicals. Recently, the endophytic Xylariales have also come in the focus of biological control, since some of their species show strong antagonistic effects against fungal and other pathogens. New compounds, including volatiles as well as nonvolatiles, are steadily being discovered from these fi 1234567890();,: 1234567890();,: ascomycetes, and polythetic taxonomy now allows for elucidation of the life cycle of the endophytes for the rst time. Moreover, recently high-quality genome sequences of some strains have become available, which facilitates phylogenomic studies as well as the elucidation of the biosynthetic gene clusters (BGC) as a starting point for synthetic biotechnology approaches. In this review, we summarize recent findings, focusing on the publications of the past 3 years.
    [Show full text]
  • Emarcea Castanopsidicola Gen. Et Sp. Nov. from Thailand, a New Xylariaceous Taxon Based on Morphology and DNA Sequences
    STUDIES IN MYCOLOGY 50: 253–260. 2004. Emarcea castanopsidicola gen. et sp. nov. from Thailand, a new xylariaceous taxon based on morphology and DNA sequences Lam. M. Duong2,3, Saisamorn Lumyong3, Kevin D. Hyde1,2 and Rajesh Jeewon1* 1Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China; 2Mushroom Research Centre, 128 Mo3 Ban Phadeng, PaPae, Maetaeng, Chiang Mai 50150, Thailand 3Department of Biology, Chiang Mai University, Chiang Mai, Thailand *Correspondence: Rajesh Jeewon, [email protected] Abstract: We describe a unique ascomycete genus occurring on leaf litter of Castanopsis diversifolia from monsoonal forests of northern Thailand. Emarcea castanopsidicola gen. et sp. nov. is typical of Xylariales as ascomata develop beneath a blackened clypeus, ostioles are papillate and asci are unitunicate with a J+ subapical ring. The ascospores in Emarcea cas- tanopsidicola are, however, 1-septate, hyaline and long fusiform, which distinguishes it from other genera in the Xylariaceae. In order to substantiate these morphological findings, we analysed three sets of sequence data generated from ribosomal DNA gene (18S, 28S and ITS) under different optimality criteria. We analysed this data to provide further information on the phylogeny and taxonomic position of this new taxon. All phylogenies were essentially similar and there is conclusive mo- lecular evidence to support the establishment of Emarcea castanopsidicola within the Xylariales. Results indicate that this taxon bears close phylogenetic affinities to Muscodor (anamorphic Xylariaceae) and Xylaria species and therefore this genus is best accommodated in the Xylariaceae. Taxonomic novelties: Emarcea Duong, R. Jeewon & K.D.
    [Show full text]
  • Biological Control of Postharvest Diseases of Fruits and Vegetables – Davide Spadaro
    AGRICULTURAL SCIENCES – Biological Control of Postharvest Diseases of Fruits and Vegetables – Davide Spadaro BIOLOGICAL CONTROL OF POSTHARVEST DISEASES OF FRUITS AND VEGETABLES Davide Spadaro AGROINNOVA Centre of Competence for the Innovation in the Agro-environmental Sector and Di.Va.P.R.A. – Plant Pathology, University of Torino, Grugliasco (TO), Italy Keywords: antibiosis, bacteria, biocontrol agents, biofungicide, biomass, competition, formulation, fruits, fungi, integrated disease management, parasitism, plant pathogens, postharvest, preharvest, resistance, vegetables, yeast Contents 1. Introduction 2. Postharvest diseases 3. Postharvest disease management 4. Biological control 5. The postharvest environment 6. Isolation of antagonists 7. Selection of antagonists 8. Mechanisms of action 9. Molecular characterization 10. Biomass production 11. Stabilization 12. Formulation 13. Enhancement of biocontrol 14. Extension of use of antagonists 15. Commercial development 16. Biofungicide products 17. Conclusions Acknowledgements Glossary Bibliography Biographical Sketch Summary Biological control using antagonists has emerged as one of the most promising alternatives to chemicals to control postharvest diseases. Since the 1990s, several biocontrol agents (BCAs) have been widely investigated against different pathogens and fruit crops. Many biocontrol mechanisms have been suggested to operate on fruit including competition, biofilm formation, production of diffusible and volatile antibiotics, parasitism, induction of host resistance, through
    [Show full text]
  • Control of Green Mold and Sour Rot of Stored Lemon by Biofumigation with Muscodor Albus
    Biological Control 32 (2005) 401–407 www.elsevier.com/locate/ybcon Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus Julien Merciera,¤, J.L. Smilanickb a AgraQuest, Inc., 1530 Drew Avenue, Davis, CA 95616, USA b USDA/ARS San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648, USA Received 27 August 2004; accepted 1 December 2004 Available online 7 January 2005 Abstract Control of postharvest lemon diseases by biofumigation with the volatile-producing fungus Muscodor albus was investigated. In vitro exposure to M. albus volatile compounds for 3 days killed Penicillium digitatum and Geotrichum citri-aurantii, causes of green mold and sour rot of lemons, respectively. Lemons were wound-inoculated with P. digitatum and placed in closed 11-L plastic boxes with rye grain cultures of M. albus at ambient temperature. There was no contact between the fungus and the fruit. Biofumigation for 24–72 h controlled green mold signiWcantly, even when treatment began 24 h after inoculation. EVectiveness was related to the amount of M. albus present. In tests conducted inside a 11.7-m3 degreening room with 5 ppm ethylene at 20 °C, green mold incidence on lemons was reduced on average from 89.8 to 26.2% after exposure to M. albus for 48 h. Ethylene accelerates color development in harvested citrus fruit. M. albus had no eVect on color development. Biofumigation in small boxes immediately after inoculation con- trolled sour rot, but was ineVective if applied 24 h later. G. citri-aurantii may be less sensitive to the volatile compounds than P.
    [Show full text]
  • Technical Document for Muscodor Albus QST 20799 Also Referred To
    US Environmental Protection Agency Office of Pesticide Programs BIOPESTICIDE REGISTRATION ACTION DOCUMENT MUSCODOR ALBUS QST 20799 (QST 20799® TECHNICAL) (End-use Products ARABESQUE™, ANDANTE™, GLISSADE™) PC Code 006503 Setember 25, 2005 Muscodor albus QST 20799 September 23, 2005 Page 1 of 44 Biopesticide Registration Action Document Final Draft BIOPESTICIDE REGISTRATION ACTION DOCUMENT MUSCODOR ALBUS QST 20799 (QST 20799® TECHNICAL) (End-use Products ARABESQUE™, ANDANTE™, GLISSADE™) PC Code 006503 Biopesticides and Pollution Prevention Division Office of Pesticide Programs U.S. Environmental Protection Agency 1801 Bell Street Arlington, VA 22202 Muscodor albus QST 20799 September 23, 2005 Biopesticide Registration Action Document Final Draft TABLE OF CONTENTS Muscodor albus Strain QST 20799 (PC Code 006503) I. EXECUTIVE SUMMARY/FACT SHEET ........................... Page 1 of 44 II. OVERVIEW ................................................... Page 5 of 44 A. Product Overview ............................................ Page 5 of 44 B. Use Profile ................................................... Page 5 of 44 C. Estimated Usage ............................................. Page 7 of 44 D. Data Requirements ........................................... Page 7 of 44 E. Regulatory History ............................................ Page 8 of 44 III. SCIENCE ASSESSMENT ...................................... Page 10 of 44 A. Physical and Chemical Properties Assessment .................... Page 10 of 44 1. Product Identity and Mode of Action
    [Show full text]
  • Efficacy of the Biofumigant Fungus Muscodor Albus (Ascomycota
    BIOLOGICAL AND MICROBIAL CONTROL Efficacy of the Biofumigant Fungus Muscodor albus (Ascomycota: Xylariales) for Control of Codling Moth (Lepidoptera: Tortricidae) in Simulated Storage Conditions 1 L. A. LACEY, D. R. HORTON, D. C. JONES, H. L. HEADRICK, AND L. G. NEVEN USDAÐARS, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Road, Wapato, WA 98951 J. Econ. Entomol. 102(1): 43Ð49 (2009) ABSTRACT Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), a serious pest of pome fruit, is a threat to exportation of apples (Malus spp.) because of the possibility of shipping infested fruit. The need for alternatives to fumigants such as methyl bromide for quarantine security of exported fruit has encouraged the development of effective fumigants with reduced side effects. The endophytic fungus Muscodor albus Worapong, Strobel and Hess (Ascomycota: Xylariales) produces volatile compounds that are biocidal for several pest organisms, including plant pathogens and insect pests. The objectives of our research were to determine the effects of M. albus volatile organic compounds (VOCs) on codling moth adults, neonate larvae, larvae in infested apples, and diapausing cocooned larvae in simulated storage conditions. Fumigation of adult codling moth with VOCs produced by M. albus for 3 d and incubating in fresh air for 24 h at 25ЊC resulted in 81% corrected mortality. Four- and 5-d exposures resulted in higher mortality (84 and 100%, respectively), but control mortality was also high due to the short life span of the moths. Exposure of neonate larvae to VOCs for3donapples and incubating for 7 d resulted in 86% corrected mortality. Treated larvae were predominantly Þrst instars, whereas 85% of control larvae developed to second and third instars.
    [Show full text]
  • Downloaded from 1 Week at 25±2 °C on PDA Were Carried out According to the Genbank
    Ann Microbiol (2013) 63:1341–1351 DOI 10.1007/s13213-012-0593-6 ORIGINAL ARTICLE Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand Nakarin Suwannarach & Jaturong Kumla & Boonsom Bussaban & Kevin D. Hyde & Kenji Matsui & Saisamorn Lumyong Received: 1 August 2012 /Accepted: 13 December 2012 /Published online: 9 January 2013 # Springer-Verlag Berlin Heidelberg and the University of Milan 2013 Abstract The genus Muscodor comprises fungal endo- Introduction phytes which produce mixtures of volatile compounds (VOCs) with antimicrobial activities. In the present study, Endophytes colonize healthy inter- and intracellular living tissue four novel species, Muscodor musae, M. oryzae, M. suthe- of host plants, typically without causing any visible symptoms pensis and M. equiseti were isolated from Musa acuminata, of disease (Azevedo et al. 2000; Saikkonen et al. 2004; Hyde Oryza rufipogon, Cinnamomum bejolghota and Equisetum and Soytong 2008). Endophytes also protect their hosts from debile, respectively; these are medicinal plants of northern infectious agents and adverse conditions by secreting bioactive Thailand. The new Muscodor species are distinguished secondary metabolites (Azevedo et al. 2000; Gao et al. 2010). based on morphological and physiological characteristics The highest plant biodiversity biomes are found in tropical and and on molecular analysis of ITS-rDNA. Volatile compound temperate rainforest regions, and plants in these areas also analysis showed that 2-methylpropanoic acid was the main possess a high endophyte diversity (Strobel 2003). Muscodor VOCs produced by M. musae, M. suthepensis and M. equi- species are volatile, producing endophytes known from certain seti. The mixed volatiles from each fungus showed in vitro tropical tree and vine species in Australia, Central and South antimicrobial activity.
    [Show full text]
  • Muscodor Fengyangensis Sp. Nov. from Southeast China: Morphology, Physiology and Production of Volatile Compounds
    fungal biology 114 (2010) 797e808 journal homepage: www.elsevier.com/locate/funbio Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds Chu-Long ZHANGa, Guo-Ping WANGb, Li-Juan MAOc, Monika KOMON-ZELAZOWSKAd, Zhi-Lin YUANa, Fu-Cheng LINa,*, Irina S. DRUZHININAd, Christian P. KUBICEKd,* aState Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China bZhejiang Dayang Chemical Co. LTD, Jiande 311616, China c985-Institute of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310029, China dInstitute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, 1060 Vienna, Austria article info abstract Article history: The fungal genus Muscodor was erected on the basis of Muscodor albus, an endophytic fun- Received 24 April 2010 gus originally isolated from Cinnamomum zeylanicum. It produces a mixture of volatile or- Received in revised form ganic compounds (VOCs) with antimicrobial activity that can be used as mycofumigants. 12 July 2010 The genus currently comprises five species. Here we describe the isolation and character- Accepted 20 July 2010 ization of a new species of Muscodor on the basis of five endophytic fungal strains from Available online 29 July 2010 leaves of Actinidia chinensis, Pseudotaxus chienii and an unidentified broad leaf tree in the Corresponding Editor: Marc Stadler Fengyangshan Nature Reserve, Zhejiang Province, Southeast of China. They exhibit white colonies on potato dextrose agar (PDA) media, rope-like mycelial strands, but did not spor- Keywords: ulate. The optimum growth temperature is 25 C. The results of a phylogenetic analysis Antimicrobial activity based on four loci (ITS1e5.8SeITS2, 28S rRNA, rpb2 and tub1) are consistent with the hy- ITS rRNA pothesis that these five strains belong to a single taxon.
    [Show full text]
  • The Novel Fungal Genus-Muscodor and Its Biological Promise
    Harnessing endophytes for industrial microbiology Gary Strobel Department of Plant Sciences Montana State University Bozeman, Montana, 59717 Phone: 406 994 5148 Email: [email protected] 1 Summary Endophytic microorganisms exist within the living tissues of most plant species. They are most abundant in rainforest plants. Novel endophytes usually have associated with them novel secondary natural products and or processes. Muscodor is a novel endophytic fungal genus that produces bioactive volatile organic compounds (VOC’s). This fungus as well as its VOC’s has enormous potential for uses in agriculture, industry, and medicine. Muscodor albus produces a mixture of VOC’s that act synergistically in being lethal to a wide variety of plant and human pathogenic fungi and bacteria. This mixture of gases consists primarily of various alcohols, acids, esters, ketones, and lipids. Artificial mixtures of the VOC’s mimic the biological effects of the fungal VOC’s when tested against a wide range of fungal and bacterial pathogens. Many practical applications for “mycofumigation” by M. albus have been investigated and the fungus is now in the market place. 2 Introduction Microorganisms have long served mankind by virtue of the myriad of the enzymes and secondary compounds that they make [1]. Furthermore, only a relatively small number of microbes are used directly in various industrial applications i.e. cheese/ wine/ beer making as well as in environmental clean –up operations and for the biological control of pests and pathogens. It seems that we have by no means exhausted the world for its hidden microbes. A much more comprehensive search of the niches on our earth may yet reveal novel microbes having direct usefulness to human societies.
    [Show full text]