Recent Progress in Biodiversity Research on the Xylariales and Their Secondary Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Recent Progress in Biodiversity Research on the Xylariales and Their Secondary Metabolism The Journal of Antibiotics (2021) 74:1–23 https://doi.org/10.1038/s41429-020-00376-0 SPECIAL FEATURE: REVIEW ARTICLE Recent progress in biodiversity research on the Xylariales and their secondary metabolism 1,2 1,2 Kevin Becker ● Marc Stadler Received: 22 July 2020 / Revised: 16 September 2020 / Accepted: 19 September 2020 / Published online: 23 October 2020 © The Author(s) 2020. This article is published with open access Abstract The families Xylariaceae and Hypoxylaceae (Xylariales, Ascomycota) represent one of the most prolific lineages of secondary metabolite producers. Like many other fungal taxa, they exhibit their highest diversity in the tropics. The stromata as well as the mycelial cultures of these fungi (the latter of which are frequently being isolated as endophytes of seed plants) have given rise to the discovery of many unprecedented secondary metabolites. Some of those served as lead compounds for development of pharmaceuticals and agrochemicals. Recently, the endophytic Xylariales have also come in the focus of biological control, since some of their species show strong antagonistic effects against fungal and other pathogens. New compounds, including volatiles as well as nonvolatiles, are steadily being discovered from these fi 1234567890();,: 1234567890();,: ascomycetes, and polythetic taxonomy now allows for elucidation of the life cycle of the endophytes for the rst time. Moreover, recently high-quality genome sequences of some strains have become available, which facilitates phylogenomic studies as well as the elucidation of the biosynthetic gene clusters (BGC) as a starting point for synthetic biotechnology approaches. In this review, we summarize recent findings, focusing on the publications of the past 3 years. Introduction lineages of fungi are detected [2, 3]. It often has been postulated that these unknown fungal organisms may con- Recent studies relying on bioinformatics, molecular ecol- stitute a great resource for new enzymes, drugs, agro- ogy, and phylogenetics have revealed a very high species chemicals, and other useful natural molecules, but by far not diversity in the fungal kingdom, and according to some all groups of fungi have a diverse secondary metabolism. estimates, there are several million undescribed species [1]. This has only been proven for certain taxonomic entities Recent studies using high-throughput and third generation like the order Xylariales, from which a large number of sequencing techniques are now able to depict the diversity unique carbon skeletons have already been discovered very accurately and often hitherto unknown phylogenetic during the course of classical natural product screening programmes. The current paper follows up on the review by Helaly et al. [4], where the state-of-the-art on secondary meta- This paper is dedicated to the memory of our friend and colleague, bolite discovery and various correlations to biodiversity Prof. Dr. Soleiman E. Helaly, who was the lead author of the preceding research had been described for this fungal order, taking review on the same topic and passed away much too early in June the most important papers that were published until 2017 of 2020. into account. Only 3 years later, a lot of new information * Marc Stadler has accumulated and it is already time for an update. The [email protected] present paper is roughly divided in three parts, the first two of which are dealing with interesting new compounds 1 Department Microbial Drugs, Helmholtz Centre for Infection from the two large families within Xylariales, Xylariaceae, Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany and Hypoxylaceae (for illustrations of representative species see Fig. 1), and the third part covers recent taxo- 2 German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 nomic, chemoecological, and phylogenomic studies of Braunschweig, Germany these fungi. 2 K. Becker, M. Stadler Fig. 1 Stromata of some tropical and subtropical species of Xylariales. a Xylaria melanura. b X. telfairii. c X. grammica. d Hypoxylon haematostroma. e Pyrenopolyporus hunteri. f H. griseobrunneum. Images were kindly provided by Esteban B. Sir Novel secondary metabolites from the Hypocopra and Kretzschmaria, are nearly untapped con- Xylariaceae sensu stricto (Fig. 2) cerning their secondary metabolites. This may be the case because they have rarely been collected or because they are After recent taxonomic revisions, in which other families not easy to cultivate. like the Hypoxylaceae have been excluded, and only Most of the compounds described today are still dis- counting the genera that have been studied by molecular covered by the classical method of axenic cultivation, either phylogenetic methods or examination of the asexual stages, in submerged culture or on solid media, and successive the Xylariaceae sensu strictu presently comprise 33 genera extraction. However, other approaches like biotransforma- and over 1000 (and up to 1230) species, of which more than tion, co-cultivation, epigenetic modification, and hetero- 50% belong to the genus Xylaria [5, 6]. The number of logous expression are encountered occasionally and will be accepted Xylaria taxa vary from 570 to 670 in these recent discussed herein as well. overviews, depending on whether synonyms and variations Subsequently, the genera for which novel secondary are counted. The genus Xylaria has never been subjected to metabolites have been described in the past 3 years will be a world monograph using modern, polythetic methodology. dealt with, and secondary metabolites by their affiliation to From the outcome of such work in other genera of the different compound classes. Some papers published prior to Xylariales, it is possible that Xylaria actually comprises 2018 will be included herein for the sake of integrity in several thousands of species of which the majority remains concurrence with the latest review [4], which covers most of to be recognized and formally described [7]. the literature on secondary metabolites from Xylariales up For this reason, it is not surprising that most of the new to the end of 2017. We preferentially treat compounds that metabolites reported from the family were derived from were not already reported previously [4, 9, 10]. Xylaria species, as highlighted in a comprehensive review The genus Amphirosellinia was not studied for second- some years ago [4], for which we provide an update from ary metabolites until recently, when the first natural product, the past years. It is important to note that most of the coriloxin (1), was discovered from cultures of Amphir- metabolites of Xylaria reported over the past decade have osellinia nigrospora [11]. Coriloxin represents a known actually been isolated from endophytic strains. cyclohexenone derivative [12] and was found to have weak Besides Xylaria, only for some genera of the Xylariaceae antimicrobial activities. However, the crude extract of the novel secondary metabolites have been described in the past fungus showed stronger bioactivities than the purified 3 years. Those included Nemania, Rosellinia, and Dema- compound against phytopathogenic bacteria like Ralstonia tophora, the latter of which has recently been resurrected solanacearum and plant-pathogenic fungi like Magna- and emended [8]. Most other genera, even larger ones like porthe oryzae, suggesting either the presence of additional Recent progress in biodiversity research on the Xylariales and their secondary metabolism 3 Fig. 2 Secondary metabolites recently described from the genera Amphirosellinia, Ascotricha, Dematophora, Nemania, and Stromatoneurospora bioactive compounds in the extract and/or synergistic (previously known as R. bunodes) named dematophoranes effects of 1 with other components. Those results render the A(3) and B. The compounds showed weak antibacterial producing organism A. nigrospora an interesting target for activity against Bacillus subtilis and Staphylococcus aureus further research on its biocontrol capabilities against crop and weak cytotoxic activities against mouse fibroblasts (cell diseases. line L929) and cervix carcinoma cells (KB 3.1). Other Ascotricha was already described to produce orsellinic purified but known isopimarenes like myrocin B and the acid-glucosides in 2017, where short-time cultivation of a glucoside hymatoxin K were already reported from other sea mud-derived Ascotricha sp. in submerged media led to species of Xylariales and Hypocreales. In addition, the isolation of two glucosides comprised of orsellinic acid and presence of additional compounds with MS data that could D-threitol, e.g.(2R,3R)-1,2,3,4-butanetetraol-1,4-diorselli- not be matched to the entries in the available natural product nate (2)[13]. For 2, even a synthesis was described shortly databases was observed, making Dematophora spp. a after [14]. No biological activities were reported for those worthwhile genus to examine more thoroughly. compounds from Ascotricha; however, they represent the Nemania is one of the largest genera in the Xylariaceae first natural products from a genus that is otherwise still and some of its species are relatively well-studied. Recently, untapped. an endopyhtic isolate named Nemania bipapillata isolated Species of Dematophora were up to recently included in from a red alga was described to produce botryane-type the genus Rosellinia, but were segregated due to differing sesquiterpenoids [15]. This class of compounds had so far asexual morphs and a well-defined clade
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Functional Morphology and Evolu Tion of Xiphosurids
    Func tional morphol ogy and evolu tion of xiphosurids JAN BERGSTROM Bergstrom, J. 1 975 07 15: Functional morphology and evolution of xiphosurids. Fossils and Strata, No. 4, pp. 291-305, Pl. 1. Oslo. ISSN 0300-9491. ISBN 82-00-04963-9. Aspects of the morphology, evolution and systematics of the Xiphosurida are treated. The ancestrai forms lacked specialization for ploughing, and their chilaria were evidently developed as prosomal walking legs. The cor­ responding tergite (of the pregenital segment) was probably separate from the main prosomal shield in the early xiphosurids as well as in the eurypter­ ids. From this stem two main groups seem to have evolved. One consists of the synziphosurids, large-eyed eurypterid-like hunters with stri king opistho­ somal tagmosis. The other consists of the burrowing and ploughing xipho­ surids, in which the opisthosomal tergites were subject to progressive fusion ending with a single opisthothoracic tergal shield in the Late Palaeo­ zoic. The last prosomal appendages evolved into the chilaria, if this did not happen earlier, and the corresponding free tergite disappeared. Probably in Carboniferous time the limulines came into existence through a sudden displacement of the prosomal/opisthosomal boundary. Jan Bergstram, Department of His torical Geology and Palaeontology, Un iversity of Lund, Solvegatan 13, S-223 62 Lund, 1st August 1973. The Xiphosura may be considered to constitute a subdass or dass of chelicerate arthropods. The delimitation has been diseussed in the past, but no general agreement seems to exist. Generally, the xiphosurids are induded with the aglaspidids and eurypterids in the Merostorna­ ta. However, as generally understood, this taxon probably represents an evolutionary grade rather than a phylogenetic unit.
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • Phylogeny of Rosellinia Capetribulensis Sp. Nov. and Its Allies (Xylariaceae)
    Mycologia, 97(5), 2005, pp. 1102–1110. # 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 Phylogeny of Rosellinia capetribulensis sp. nov. and its allies (Xylariaceae) J. Bahl1 research of the fungi occurring on palms has shown R. Jeewon this particular substrate to be a source of fungal K.D. Hyde diversity (Fro¨hlich and Hyde 2000, Taylor and Hyde Centre for Research in Fungal Diversity, Department of 2003). In continuing studies, we discovered saprobic Ecology & Biodiversity, The University of Hong Kong, fungi on fronds of various palm species (i.e., Pokfulam Road, Hong Kong S.A.R., P.R. China Archontopheonix, Calamus, Livistona) in Northern Queensland and revealed a number of unique fungi. We describe a new species in the genus Rosellinia Abstract: A new Rosellinia species, R. capetribulensis from Calamus sp. isolated from Calamus sp. in Australia is described. R. Most work on Rosellinia has focused on species capetribulensis is characterized by perithecia im- from different geographical regions. Petrini (1992, mersed within a carbonaceous stroma surrounded 2003) compared Rosellinia species from temperate by subiculum-like hyphae, asci with large, barrel- zones and New Zealand. Rogers et al (1987) noted the shaped amyloid apical apparatus and large dark rarity of Rosellinia species in tropical rain forests of brown spores. Morphologically, R. capetribulensis North Sulawesi, Indonesia. In studies of fungi from appears to be similar to R. bunodes, R. markhamiae palm hosts, Smith and Hyde (2001) indexed twelve and R. megalospora. To gain further insights into the Rosellinia species from tropical palm hosts. Rosellinia phylogeny of this new taxon we analyzed the ITS-5.8S species are not frequently isolated when compared to rDNA using maximum parsimony and likelihood other xylariacieous fungi recorded from palm leaf methods.
    [Show full text]
  • Sayı Tam Dosyası
    ']FHhQLYHUVLWHVL2UPDQFÕOÕN'HUJLVL&LOW166D\Õ2 )DNOWH$GÕQD6DKLEL : 3URI'U+DOGXQ0h'(55ø62ö/8 %Dú(GLW|U : 'Ro'U(QJLQ(52ö/8 Editör Kurulu Alan Editörleri Prof. Dr. Oktay YILDIZ 3URI'U'HU\D(ù(1 Prof. Dr. Kermit CROMAC Jr. (Oregon State University) Prof. Dr. Rimvydas VASAITIS (Swedish University of Agricultural Sciences) 3URI'U-LĜt5(0(â &]HFK8QLYHUVLW\RI/LIH6FLHQFHV3UDJXH Prof. Dr. Marc J. LINIT (University of Missouri) 3URI'U=HNL'(0ø5 Prof. Dr. (PUDKdød(. Prof. 'U'U'HU\D6(9ø0.25.87 Prof. 'U$\ELNH$\IHU.$5$'$ö Doç'U0.ÕYDQo$. Doç'U7DUÕN*('ø. Doç. Dr. Akif KETEN Doç. Dr. Ali Kemal ÖZBAYRAM 'UgJUh3ÕQDU.g</h 'UgJUh'U+DVDQg='(0ø5 Dr. Ögr. Ü. Dr. Hüseyin AMBARLI Dr. gJUh'UøGULV'85862< 'UgJUh'U%LODOd(7ø1 Teknik Editörler $Uú*|U6HUWDo.$<$ $Uú*|U0XKDPPHWdø/ $Uú*|U'UdD÷ODU$.d$< $Uú*|U'U7DUÕNdø7*(= Dr. Ögr. Ü. Ömer ÖZYÜREK $Uú*|U1XUD\g=7h5. $Uú*|U<ÕOGÕ]%$+d(&ø $Uú*|UAbdullah Hüseyin DÖNMEZ Dil Editörleri gJU*|U'UøVPDLO.2d Ögr. Gör. Dr. Zennure UÇAR zĂnjŦƔŵĂĚƌĞƐŝ ŽƌƌĞƐƉŽŶĚŝŶŐĚĚƌĞƐƐ Düzce Üniversitesi Duzce University Orman Fakültesi Faculty of Forestry ϴϭϲϮϬ<ŽŶƵƌĂůƉzĞƌůĞƔŬĞƐŝͬƺnjĐĞ-dmZ<7z ϴϭϲϮϬ<ŽŶƵƌĂůƉĂŵƉƵƐͬƺnjĐĞ-dhZ<z 'HUJL\ÕOGDLNLVD\ÕRODUDN\D\ÕQODQÕU 7KLVMRXUQDOLVSXEOLVKHGVHPLDQQXDOO\ http://www.duzce.edu.tr/of/ DGUHVLQGHQGHUJL\HLOLúNLQELOJLOHUHYHPDNDOH|]HWOHULQHXODúÕODELOLU (Instructions to Authors" and "Abstracts" can be found at this address). ødø1'(.ø/(5 +X]XUHYL%DKoHOHULQLQ<Dú'RVWX7DVDUÕP$oÕVÕQGDQøQFHOHQPHVLAntalya-7UNL\HgUQH÷L«««««1 Tahsin YILMAZ, Bensu YÜCE .HQWVHO5HNUHDV\RQHO$ODQODUGDNL%LWNL9DUOÕ÷Õ5L]HgUQH÷L«««««««««««««««««16 Ömer Lütfü ÇORBACI, *|NKDQ$%$<7UNHU2ö8=7h5.0HUYHhd2. <Õ÷ÕOFD ']FH %DON|\ %DO2UPDQÕ)ORUDVÕ««««««««««««««««««««««««45 (OLI$\úH<,/',5,01HYDO*h1(ùg=.$11XUJO.$5/,2ö/8.,/,d Assessment of Basic Green Infrastructure Components as Part of Landscape Structure for Siirt……...70 Huriye Simten SÜTÜNÇ, Ömer Lütfü ÇORBACI Cephalaria duzceënsis N.
    [Show full text]
  • Volatile Constituents of Endophytic Fungi Isolated from Aquilaria Sinensis with Descriptions of Two New Species of Nemania
    life Article Volatile Constituents of Endophytic Fungi Isolated from Aquilaria sinensis with Descriptions of Two New Species of Nemania Saowaluck Tibpromma 1,2,3,†, Lu Zhang 4,†, Samantha C. Karunarathna 1,2,3, Tian-Ye Du 1,2,3, Chayanard Phukhamsakda 5,6 , Munikishore Rachakunta 7 , Nakarin Suwannarach 8,9 , Jianchu Xu 1,2,3,*, Peter E. Mortimer 1,2,3,* and Yue-Hu Wang 4,* 1 CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] (S.T.); [email protected] (S.C.K.); [email protected] (T.-Y.D.) 2 World Agroforestry Centre, East and Central Asia, Kunming 650201, China 3 Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China 4 Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] 5 Institute of Plant Protection, College of Agriculture, Jilin Agricultural University, Changchun 130118, China; [email protected] 6 Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China 7 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] Citation: Tibpromma, S.; Zhang, L.; 8 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Karunarathna, S.C.; Du, T.-Y.; [email protected] Phukhamsakda, C.; Rachakunta, M.; 9 Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Suwannarach, N.; Xu, J.; Mortimer, Chiang Mai 50200, Thailand P.E.; Wang, Y.-H.
    [Show full text]
  • Phylogenetic Assignment of the Fungicolous Hypoxylon Invadens (Ascomycota, Xylariales) and Investigation of Its Secondary Metabolites
    microorganisms Article Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites Kevin Becker 1,2 , Christopher Lambert 1,2,3 , Jörg Wieschhaus 1 and Marc Stadler 1,2,* 1 Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; [email protected] (K.B.); [email protected] (C.L.); [email protected] (J.W.) 2 German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany 3 Department for Molecular Cell Biology, Helmholtz Centre for Infection Research GmbH (HZI) Inhoffenstraße 7, 38124 Braunschweig, Germany * Correspondence: [email protected]; Tel.: +49-531-6181-4240; Fax: +49-531-6181-9499 Received: 23 July 2020; Accepted: 8 September 2020; Published: 11 September 2020 Abstract: The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H. fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H. invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H. invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H. invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS).
    [Show full text]
  • Taxonomic Utility of Old Names in Current Fungal Classification and Nomenclature: Conflicts, Confusion & Clarifications
    Mycosphere 7 (11): 1622–1648 (2016) www.mycosphere.org ISSN 2077 7019 Article – special issue Doi 10.5943/mycosphere/7/11/2 Copyright © Guizhou Academy of Agricultural Sciences Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications Dayarathne MC1,2, Boonmee S1,2, Braun U7, Crous PW8, Daranagama DA1, Dissanayake AJ1,6, Ekanayaka H1,2, Jayawardena R1,6, Jones EBG10, Maharachchikumbura SSN5, Perera RH1, Phillips AJL9, Stadler M11, Thambugala KM1,3, Wanasinghe DN1,2, Zhao Q1,2, Hyde KD1,2, Jeewon R12* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan China3Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China 4Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China5Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123,Oman 6Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, No 9 of ShuGuangHuaYuanZhangLu, Haidian District Beijing 100097, China 7Martin Luther University, Institute of Biology, Department of Geobotany, Herbarium, Neuwerk 21, 06099 Halle, Germany 8Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands. 9University of Lisbon, Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal. 10Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand 11Helmholtz-Zentrum für Infektionsforschung GmbH, Dept.
    [Show full text]
  • Resurrection and Emendation of the Hypoxylaceae, Recognised from a Multigene Phylogeny of the Xylariales
    Mycol Progress DOI 10.1007/s11557-017-1311-3 ORIGINAL ARTICLE Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales Lucile Wendt1,2 & Esteban Benjamin Sir3 & Eric Kuhnert1,2 & Simone Heitkämper1,2 & Christopher Lambert1,2 & Adriana I. Hladki3 & Andrea I. Romero4,5 & J. Jennifer Luangsa-ard6 & Prasert Srikitikulchai6 & Derek Peršoh7 & Marc Stadler1,2 Received: 21 February 2017 /Revised: 12 April 2017 /Accepted: 19 April 2017 # The Author(s) 2017. This article is an open access publication Abstract A multigene phylogeny was constructed, including polymerase II (RPB2), and beta-tubulin (TUB2). Specimens a significant number of representative species of the main were selected based on more than a decade of intensive mor- lineages in the Xylariaceae and four DNA loci the internal phological and chemotaxonomic work, and cautious taxon transcribed spacer region (ITS), the large subunit (LSU) of sampling was performed to cover the major lineages of the the nuclear rDNA, the second largest subunit of the RNA Xylariaceae; however, with emphasis on hypoxyloid species. The comprehensive phylogenetic analysis revealed a clear-cut This article is part of the “Special Issue on ascomycete systematics in segregation of the Xylariaceae into several major clades, honor of Richard P. Korf who died in August 2016”. which was well in accordance with previously established morphological and chemotaxonomic concepts. One of these The present paper is dedicated to Prof. Jack D. Rogers, on the occasion of his fortcoming 80th birthday. clades contained Annulohypoxylon, Hypoxylon, Daldinia,and other related genera that have stromatal pigments and a Section Editor: Teresa Iturriaga and Marc Stadler nodulisporium-like anamorph.
    [Show full text]
  • Skin Wound Healing Promoting Effect of Polysaccharides Extracts from Tremella Fuciformis and Auricularia Auricula on the Ex-Vivo Porcine Skin Wound Healing Model
    2012 4th International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.43 (2012) © (2012) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2012. V43. 20 Skin Wound Healing Promoting Effect of Polysaccharides Extracts from Tremella fuciformis and Auricularia auricula on the ex-vivo Porcine Skin Wound Healing Model + Ratchanee Khamlue 1, Nikhom Naksupan 2, Anan Ounaroon 1 and Nuttawut Saelim 2 1 Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand 2 Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand Abstract. In this study we focused on the wound healing promoting effect of polysaccharides purified from Tremella fuciformis and Auricularia auricula by using the ex-vivo porcine skin wound healing model (PSWHM) as a tool for wound healing evaluation due to human ethics and animal right concerns, and more practical and high throughput experiment. Using previously reported protocol with modifications, purified polysaccharides from A. auricula and T. fuciformis were obtained at 0.84 and 2.0% yields (w/w), 86.60 and 91.22% purity, respectively, with small amounts of nucleic acid and protein contamination. The PSWHMs (3mm circular wound) were divided into five groups, each group (n=22) was treated with one of the following concentrations of polysaccharides extracts (1, 10 and 100µg/wound of T. fuciformis or A. auricula) or control solutions (10µl 10mM PBS), or 10µl 25ng/ml EGF (internal control). Then the treated PSWHMs were cultured at 37ºC with 5% CO2 for 48 hours before histological and microscopic evaluation. Epidermal or keratinocyte migration distances from the edges of each wound were measured, normalized with the PBS control group and expressed as mean%.
    [Show full text]
  • The Phylogenetic Position of Rhopalostroma As Inferred from a Polythetic Approach
    Persoonia 25, 2010: 11–21 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158510X524231 The phylogenetic position of Rhopalostroma as inferred from a polythetic approach M. Stadler1, J. Fournier2, S. Gardt3, D. Peršoh3 Key words Abstract The xylariaceous genus Rhopalostroma comprises a small conglomerate of stromatic, angiosperm- associated pyrenomycetes, which have so far exclusively been reported from the palaeotropics, above all from Ascomycota tropical Africa and South Asia. Morphological and chemotaxonomic studies had suggested their close relationship chemosystematics to the genera Daldinia and Hypoxylon. However, those results were mainly based on herbarium specimens, and extrolites no molecular phylogenetic data were available on Rhopalostroma. During a foray in Côte d’Ivoire, fresh material of fungi R. angolense was collected, cultured and studied by microscopic methods and by secondary metabolite profiling Rhopalostroma using high performance liquid chromatography coupled with diode array and mass spectrometric detection. In ad- Xylariales dition, ITS nrDNA sequences of the cultures were generated and compared to those of representative Xylariaceae taxa, to evaluate the phylogenetic affinities of this fungus. The results showed that R. angolense is closely related to the daldinoid Xylariaceae, and in particular to the predominantly neotropical genera Phylacia and Thamnomyces. Article info Received: 22 March 2010; Accepted: 29 June 2010; Published: 27 July 2010. INTRODUCTION molecular phylogenetic data (Bitzer et al. 2008, Stadler et al. 2010b). Ruwenzoria, a recently described tropical xylariaceous The genus Rhopalostroma was erected by Hawksworth (1977) genus (Stadler et al. 2010a), also features early deliquescent to accommodate a series of palaeotropical pyrenomycetes that asci that are devoid of an amyloid apical apparatus.
    [Show full text]
  • An Annotated Check-List of Ascomycota Reported from Soil and Other Terricolous Substrates in Egypt A
    Journal of Basic & Applied Mycology 2 (2011): 1-27 1 © 2010 by The Society of Basic & Applied Mycology (EGYPT) An annotated check-list of Ascomycota reported from soil and other terricolous substrates in Egypt A. F. Moustafa* & A. M. Abdel – Azeem Department of Botany, Faculty of Science, University of Suez *Corresponding author: e-mail: Canal, Ismailia 41522, Egypt [email protected] Received 26/6/2010, Accepted 6/4 /2011 ____________________________________________________________________________________________________ Abstract: By screening of available sources of information, it was possible to figure out a range of 310 taxa that could be representing Egyptian Ascomycota up to the present time. In this treatment, concern was given to ascomycetous fungi of almost all terricolous substrates while phytopathogenic and aquatic forms are not included. According to the scheme proposed by Kirk et al. (2008), reported taxa in Egypt belonged to 88 genera in 31 families, and 11 orders. In view of this scheme, very few numbers of taxa remained without certain taxonomic position (incertae sedis). It is also worthy to be mentioned that among species included in the list, twenty-eight are introduced to the ascosporic mycobiota as novel taxa based on type materials collected from Egyptian habitats. The list includes also 19 species which are considered new records to the general mycobiota of Egypt. When species richness and substrate preference, as important ecological parameters, are considered, it has been noticed that Egyptian Ascomycota shows some interesting features noteworthy to be mentioned. At the substrate level, clay soils, came first by hosting a range of 108 taxa followed by desert soils (60 taxa).
    [Show full text]