Biographical Sketch: Alan Willner

Total Page:16

File Type:pdf, Size:1020Kb

Biographical Sketch: Alan Willner Biographical Sketch: Alan Willner Alan Willner received a Ph.D. (1988) in Electrical Engineering from Columbia University and a B.A. (1982) in Physics and an Honorary Doctorate (Honoris Causa, 2012) from Yeshiva University. Prof. Willner was a Postdoctoral Member of Technical Staff at AT&T Bell Labs and a Member of Technical Staff at Bellcore. He is currently the Steven & Kathryn Sample Chaired Professor of Eng. in the Ming Hsieh Dept. of Electrical Eng. of the Viterbi School of Eng. at the Univ. of Southern California. Prof. Willner has been a Visiting Professor at Columbia Univ., Univ. College London, and Weizmann Institute of Science. He has been a Member of the U.S. Army Science Board, a Member of the Defense Sciences Research Council (16-member body that provided reports to DARPA Director & Office Directors), and a member on many advisory boards. He was also Founder & CTO of Phaethon Communications, a company whose technology was acquired by Teraxion, that created the ClearSpectrum® dispersion compensator product line which is presently deployed in many commercial 40-Gbit/s systems worldwide. Prof. Willner has received the following honors: Member of the U.S. National Academy of Engineering, International Fellow of the U.K. Royal Academy of Engineering, Presidential Faculty Fellows Award from the White House, Ellis Island Medal of Honor, IEEE Eric Sumner Technical Field Award, Packard Foundation Fellowship in Science & Engineering, John Guggenheim Foundation Fellowship, U.S. Dept. of Defense Vannevar Bush Faculty Fellowship, Fellow of National Academy of Inventors, Institution of Eng. & Tech. (IET) J.J. Thomson Medal, Thomas Egleston Medal for Distinguished Engineering Achievement (highest eng. award from Columbia Eng. Alumni Association), Optical Society (OSA) Paul Forman Engineering Excellence Award, IEEE Photonics Society Engineering Achievement Award, National Science Foundation National Young Investigator Award, Fulbright Foundation Senior Scholar Lecture & Research Fellowship, Honorary Professor of Huazhong Univ. of Science & Technology, IEEE Photonics Society Distinguished Lecturer Award, SPIE President’s Award, IEEE Photonics Society Distinguished Service Award, USC Associates Award for University-Wide Creativity in Research (highest USC research award), USC Associates Award for University-Wide EXcellence in Teaching (highest USC teaching award), OSA Robert Hopkins Leadership Award, USC Phi Kappa Phi Faculty Recognition Award (for significant scholarly work), USC Senior Engineering Research Award, USC Best Engineering Teacher Award, 2001 Eddy Paper Award from Pennwell Publications for Best Contributed Technical Article (across all 30 magazines in Pennwell's Advanced Technology Division), IEEE Globecom Best Paper Award, and Edwin Howard Armstrong Foundation Memorial Award for highest- ranked EE Masters student at Columbia University. He is a Fellow of AAAS, IEEE, IET, OSA and SPIE, and he was a Fellow of the Semiconductor Research Corporation. Prof. Willner was an invited foreign dignitary representing the sciences for the 2009 Nobel Prize Ceremonies in Stockholm. Prof. Willner’s activities include: Co-Chair of U.S. National Academies’ Study on Optics & Photonics, President of the OSA, President of the IEEE Photonics Society (formerly LEOS), Co-Chair of OSA Science & Engineering Council, Vice-President for Technical Affairs of IEEE Photonics Society, Editor- in-Chief of OSA Optics Letters, Editor-in-Chief of the IEEE/OSA Journal of Lightwave Technology (JLT), Editor-in-Chief of the IEEE Journal of Selected Topics in Quantum Electronics, Associate Editor of the IEEE Journal of Selected Areas in Communications Series on Optical Networks, Photonics Division Chair of OSA, Chair of IEEE TAB Ethics and Member Conduct Committee, Chair of the National Photonics Initiative, General Co-Chair of the Conference on Lasers and Electro-Optics, Program Co-Chair of OSA Annual Meeting, General Chair of IEEE Photonics Society Annual Meeting, Program Chair of Telecommunications Engineering at SPIE’s Photonics West, Chair of the Unclassified Technical Program for IEEE MILCOM, and Member of US Advisory Committee for Int’l Commission for Optics (activity of the National Academies/IEEE/OSA/SPIE). Prof. Willner has ~1450 publications (h-index=>73, >29,000 citations, Google Scholar), including 1 book, 10 edited books, ~38 U.S. patents, ~45 keynotes/plenaries, ~23 book chapters, >400 refereed journal papers, and >300 invited papers/presentations. His research is in optical technologies (e.g., communications, signal processing, networks, and subsystems). Alan Willner, CV, p. 1 FULL CV: ALAN E. WILLNER ADDRESS: EEB 538, Dept. of Electrical Engineering, Viterbi School of Engineering, USC, LA, CA 90089-2565, 213-740-4664, F: 213-740-8729, [email protected] EDUCATION: Columbia University - Ph.D. - Electrical Engineering - Aug. 1988 (defended). Thesis Advisor - Prof. Richard Osgood, Jr., Thesis Title: Laser-Controlled Photochemical Etching of Semiconductors for Electro-optical Devices Columbia University - M.S. - Electrical Engineering (1984) Overall Columbia grade index - 4.11 (A = 4.0) Yeshiva University - B.A.- Physics (1982). Grade index - 3.96 (A = 4.0) WORK EXPERIENCE: Fall '10 - present Steven and Kathryn Sample Chaired Professor in Engineering, Ming Hsieh Dept. of Electrical Eng., Viterbi School of Eng., University of Southern California, Communications Sciences Institute . Optical Communication Systems and Networks Mar. '15 - present Visiting Professor (Adj. Senior Res. Scientist), Elec. Eng Dept., Columbia Univ. Sept. '17 - present Visting Scholar, Yeshiva College and Stern College for Women, Yeshiva Univ. Fall '98 – Spring '10 Professor, Ming Hsieh Dept. of Electrical Eng., USC Sept. '09 –June '14 Member, Defense Sciences Research Council, Consultant to Booz Allen . Council performs studies that are presented to DARPA Director & Office Directors Fall '07 - Summer '12 Co-Director, Communications Sciences Institute, EEDept. Exec. Comm., USC Fall '07 -Summer '17 Visiting Professor, Dept. of Electronic & Electrical Eng, Univ. College London Nov. '99 - Nov. '02 Founder & CTO, Phaethon Communications (technology acquired by Teraxion) . Created the ClearSpectrum®dispersion compensator product line . ClearSpectrum®presently deployed in many commercial 40-Gbit/s systems Aug. '94 - Sept. '98 Associate Professor, Dept. of EE - Systems, USC April '96 - June '04 Associate Director, Student Affairs, NSF-Sponsored Engineering Research Center in Integrated Media Systems, USC Spring '98 Visiting Fulbright Prof., Physics Dept., Weizmann Institute of Science, Israel Apr. '94 – Present Associate Director, Center for Photonic Technology (CPT), USC Jan. '92 - Present Director, Optical Communications Laboratory, USC Jan. '92 - July '94 Assistant Professor, Dept. of EE - Systems, USC Nov. '90 - Jan. '92 Member of Technical Staff, Bell Comm. Research, Photonics Research Dept. Fiber Optic Wavelength-Division-Multiplexed Communication Systems Oct. '88 - Oct. '90 Postdoctoral Member of the Technical Staff, Crawford Hill Lab AT&T Bell Laboratories, Photonics Networks and Components Research Department, Postdoctoral Supervisor: Dr. Ivan Kaminow . Fiber Optic Wavelength-Division-Multiplexed Communication Systems Sept. '84 - Aug. '88 Graduate Research Assistant, Columbia University, Microelectronics Science Lab & NSF Center for Telecommunications Research . Laser-Fabricated Integrated Optical Components Fall '87 Instructor, Columbia Univ., “Fundamentals of Circuits and Systems” June '87 Visiting Scientist, Naval Research Laboratory - Modulation Spectroscopy Summers '83, '84 Summer Technical Staff, David Sarnoff Research Center, RCA Labs Fall '83 Teaching Assistant, Columbia Univ., Solid State Devices Alan Willner, CV, p. 2 HONORS: Member, U.S. National Academy of Engineering ('16) International Fellow of the U.K. Royal Academy of Engineering ('10) Of the 4 Int'l Fellows elected from the US in '10, the other 3 were Drs. Howard Bruschi (former Westinghouse CTO), Robert Langer (MIT Institute Professor) and Charles Vest (former MIT President and NAE President). Ellis Island Medal of Honor ('20) Awarded annually to a group of distinguished American citizens who exemplify a life dedicated to their community and the world at large. IEEE Eric E. Sumner Award ('14) One “Technical Field Award” in Communications from the entire IEEE. Vannevar Bush Faculty Fellowship (U.S. DoD) ('16) Formerly Defense Security Science & Engineering Faculty Fellowship (NSSEFF) J. J. Thomson Medal for Achievement in Electronics, Institution of Engineering & Technology (IET) ('16) Steven and Kathryn Sample Endowed Chair in Engineering ('10) Inaugural holder of endowed chair named after the former USC president. Fellow of the National Academy of Inventors ('15) ‘09 Nobel Prize Ceremonies, “invited foreign dignitary representing sciences” Thomas Egleston Medal for Distinguished Engineering Achievement ('17) Highest honor given to a Columbia engineering graduate for a lifetime of achievement in the engineering profession by the Columbia University Enignering Alumni Association. Notable winners include Edwin H. Armstrong, Harvey S. Mudd, Hyman G. Rickover. Albert Nelson Marquis Lifetime Achievement Award from Marquis Who’s Who Publications Board ('17) Viterbi School of Engineering Senior Research Award ('19) Honorary Professor, Huazhong Univ. of Science & Technology (HUST) ('16) HUST is one of the top 10 universities in China. Honorary Doctorate, Honoris Causa, Yeshiva University, Commencement ('12)
Recommended publications
  • Semiconductor Heterostructures and Their Application
    Zhores Alferov The History of Semiconductor Heterostructures Reserch: from Early Double Heterostructure Concept to Modern Quantum Dot Structures St Petersburg Academic University — Nanotechnology Research and Education Centre RAS • Introduction • Transistor discovery • Discovery of laser-maser principle and birth of optoelectronics • Heterostructure early proposals • Double heterostructure concept: classical, quantum well and superlattice heterostructure. “God-made” and “Man-made” crystals • Heterostructure electronics • Quantum dot heterostructures and development of quantum dot lasers • Future trends in heterostructure technology • Summary 2 The Nobel Prize in Physics 1956 "for their researches on semiconductors and their discovery of the transistor effect" William Bradford John Walter Houser Shockley Bardeen Brattain 1910–1989 1908–1991 1902–1987 3 4 5 6 W. Shockley and A. Ioffe. Prague. 1960. 7 The Nobel Prize in Physics 1964 "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle" Charles Hard Nicolay Aleksandr Townes Basov Prokhorov b. 1915 1922–2001 1916–2002 8 9 Proposals of semiconductor injection lasers • N. Basov, O. Krochin and Yu. Popov (Lebedev Institute, USSR Academy of Sciences, Moscow) JETP, 40, 1879 (1961) • M.G.A. Bernard and G. Duraffourg (Centre National d’Etudes des Telecommunications, Issy-les-Moulineaux, Seine) Physica Status Solidi, 1, 699 (1961) 10 Lasers and LEDs on p–n junctions • January 1962: observations
    [Show full text]
  • Print Version
    Strategic Partners and Leaders of World Innovation Peter the Great St. Petersburg Polytechnic University and Tsinghua University Presentation of the Rector of Peter the Great St. Petersburg Polytechnic University, Academician of the RAS A.I. Rudskoi within the frame of the Tsinghua Global Vision Lectures at Tsinghua University (China); April 15, 2019 Dear Chairman of the University Council Professor Chen Xu, distinguished First Secretary of the Embassy of the Russian Federation, representative of the Ministry of Education and Science of the Russian Federation in the People's Republic of China Igor Pozdnyakov, distinguished academicians of the Chinese Academy of Sciences and professors of Tsinghua University, dear students and graduates, dear colleagues! It is a great honor for me to be here today in this Hall of Tsinghua University, a strategic partner of Peter the Great St. Petersburg Polytechnic University, as a speaker of the Tsinghua Global Vision Lectures, earlier attended by rectors of global world universities, leading experts and prominent political figures. Tsinghua University is the leader of China's global education. You hold with confidence the first place in the national ranking and are among the top-rank universities in the world. Peter the Great St. Petersburg Polytechnic University is one of the top 10 Russian universities and the largest technical one, the leader in engineering education in the Russian Federation. Our universities, as leaders of global education, are facing the essential challenge of ensuring the sustainable development of society, creating and introducing innovations. This year, Peter the Great St. Petersburg Polytechnic University ranked 85th and got in the top-100 world universities in the Times Higher Education (THE) University Impact Rankings.
    [Show full text]
  • The Wetting Performance of Lead Free Alloys Have Been Found to Be Not
    COMMON PROCESSES FOR PASSIVE OPTICAL COMPONENT MANUFACTURING Laurence A. Harvilchuck Project Consultant & Peter Borgesen, Ph.D. Project Manager Flip Chip & Optoelectronics Packaging SMT Laboratory Universal Instruments Corporation Binghamton, NY 13902-0825 Email: [email protected] Tel: 607-779-7343 ABSTRACT Permeation of fiber optic communication systems at the end-user level (i.e. ‘fiber- in-the-home’) is predicated on a reliable supply of individual components, both active and passive. These components will most likely have price and volume targets that can only be satisfied by full automation of the packaging processes. Polarization dependent optical isolators are examples of a typical passive optical component that is widely deployed at all levels of the network. We will use these isolators as an example for our discussion. Intelligent contemplation of the options available for isolator manufacturing requires comprehension of some basic optical principles and component functionality. It can then be seen that isolator performance is directly influenced by process variations and part tolerances. We present a discussion of issues relating to cost, ease of manufacturing, and automation, highlighting component design, materials selection, and intellectual property concerns. INTRODUCTION The nascent optoelectronic component industry will require a combination of design for manufacturing and further development of materials, processes, systems and equipment to mature into the integrated, automated state that has made microelectronic products so incredibly affordable. Economies of this systems-level transition are heavily dependent upon the cost and availability of all necessary components. With the sponsorship of an international consortium of companies from across the industry, we are researching the issues involved in nurturing this transition.
    [Show full text]
  • Picosecond Time Resolved Spectroscopy Used As a Tool To
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2004 Picosecond time resolved spectroscopy used as a tool to probe excited state photophysics of biologically and environmentally relevant systems Pramit Kumar Chowdhury Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Chowdhury, Pramit Kumar, "Picosecond time resolved spectroscopy used as a tool to probe excited state photophysics of biologically and environmentally relevant systems " (2004). Retrospective Theses and Dissertations. 766. https://lib.dr.iastate.edu/rtd/766 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Picosecond time resolved spectroscopy used as a tool to probe excited state photophysics of biologically and environmentally relevant systems by Pramit Kumar Chowdhury A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Physical Chemistry Program of Study Committee: Jacob W. Petrich, Major Professor Mark S. Gordon Mark S. Hargrove George A. Kraus Mei Hong Iowa State University Ames, Iowa 2004 Copyright © Pramit Kumar Chowdhury, 2004. All rights reserved. UMI Number: 3136299 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.
    [Show full text]
  • Summer Undergraduate Research Expo August 8, 2013 Mcnamara
    Summer Undergraduate Research Expo August 8, 2013 McNamara Alumni Center Memorial Hall 4:00-6:00pm Undergraduate Poster Presentations Listed Alphabetically by Presenting Author 1 Brandon Adams Synthesis, Characterization, and Mechanical Testing of Poly(lactide-b-ethylene-co-ethylethylene) multiblock copolymer Advisor: Frank Bates Department or Program Sponsoring Summer Research: Center for Sustainable Polymers Home Institution: Virginia Commonwealth University Abstract: In order to enhance the properties of polylactide, a biodegradable and renewable polymer, it was polymerized with hydrogenated butadiene to synthesize multiblock copolymer. The synthetic reaction consisted of two steps, the first step, a ring opening polymerization producing a Triblock polymer, then a coupling reaction that bonded different Triblock chains together in order to form multiblock polymers. After both the multiblock and Triblock were obtained blends made up of various amounts of both polymers were made. Size exclusion chromatography was test on the multiblock and Triblock as well as all of the blends, the results showed that the multiblock and polymers with the most multiblock eluted first due to their large size. Tensile testing determined that increasing average block number contributed to ductility while decreasing the average number of blocks yielded brittleness. Differiential scanning calirometry showed an increase in both crystallization and melting temperature in polymers with higher multiblock amounts. 2 Nicolas Alvarado Structural Analysis of Fibronectin Ligand Proteins Advisor: Benjamin Hackel Department or Program Sponsoring Summer Research: MRSEC Home Institution: University of Puerto Rico-Mayaguez Abstract: This project aims to determine the three-dimensional structure of small molecules, specifically fibronectin domain-mutants using x-rays crystallography. The laboratory has previously engineered fibronectin domain-mutants that bind with high affinity and specificity to molecular targets for clinical and biotechnology utility.
    [Show full text]
  • Underpinning of Soviet Industrial Paradigms
    Science and Social Policy: Underpinning of Soviet Industrial Paradigms by Chokan Laumulin Supervised by Professor Peter Nolan Centre of Development Studies Department of Politics and International Studies Darwin College This dissertation is submitted for the degree of Doctor of Philosophy May 2019 Preface This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text It does not exceed the prescribed word limit for the relevant Degree Committee. 2 Chokan Laumulin, Darwin College, Centre of Development Studies A PhD thesis Science and Social Policy: Underpinning of Soviet Industrial Development Paradigms Supervised by Professor Peter Nolan. Abstract. Soviet policy-makers, in order to aid and abet industrialisation, seem to have chosen science as an agent for development. Soviet science, mainly through the Academy of Sciences of the USSR, was driving the Soviet industrial development and a key element of the preparation of human capital through social programmes and politechnisation of the society.
    [Show full text]
  • Russian Physics 4/19/2016 History of Science in Russia
    Physics and Physicists in Russia Vladimir Shiltsev, Fermilab APS April Meeting - 2016 April 19, 2016 Content: • The Beginning : 1724 -1917 • Great Soviet Science • After Perestroika : – Disaster – Diaspora • Current Situation : – Facts and numbers – Institutes, Journals, Int’l Cooperation – Reforms • Outlook 2 Vladimir Shiltsev | Russian Physics 4/19/2016 3 History of Science History of Science in Russia 1700Physics | RussianShiltsev Vladimir 1750 1800 1850 1900 19504/19/2016 2000 Saint-Petersburg Academy fully state-sponsored (poll-taxes from 4 cities) Peter I 1724 First cohort from abroad - Bernoulli, Euler, Delisle, … Lomonosov was the 1st Russian academician (1745) • Imperial Academy of Sciences 1747 • Russian Academy of Sciences 1917 • USSR Academy of Sciences 1925 4 • VladimirRussian Shiltsev | Russian Academy Physics of Sciences 1991 4/19/2016 Mikhail Lomonosov (1711-1765) “Father of Russian Science” • Molecular theory of heat & colors • Proved the law of conservation of matter in chemical reactions • Discovered Venus’s atmosphere • Built first helicopter • Concept of atmospheric electricity • Geodynamics and metal origins • Proved organic origin of soil & oil • Founded first University (Moscow) • Formed Russian literary language • Outstanding historian • The best poet and courtier 5 Vladimir Shiltsev | Russian Physics more - Physics4/19/2016 Today, Feb.2011 Dmitry Mendeleev (1834-1907) • Periodic law (1869) • Finalized equation for ideal gas (1874) beyond Clapeyron’s 6Vladimir Shiltsev | Russian Physics (1834) 4/19/2016 20th Century:
    [Show full text]
  • Faraday Rotation Measurement Using a Lock-In Amplifier Sidney Malak, Itsuko S
    Faraday rotation measurement using a lock-in amplifier Sidney Malak, Itsuko S. Suzuki, and Masatsugu Sei Suzuki Department of Physics, State University of New York at Binghamton (Date: May 14, 2011) Abstract: This experiment is designed to measure the Verdet constant v through Faraday effect rotation of a polarized laser beam as it passes through different mediums, flint Glass and water, parallel to the magnetic field B. As the B varies, the plane of polarization rotates and the transmitted beam intensity is observed. The angle through which it rotates is proportional to B and the proportionality constant is the Verdet constant times the optical path length. The optical rotation of the polarized light can be understood circular birefringence, the existence of different indices of refraction for the left-circularly and right-circularly polarized light components. The linearly polarized light is equivalent to a combination of the right- and left circularly polarized components. Each component is affected differently by the applied magnetic field and traverse the system with a different velocity, since the refractive index is different for the two components. The end result consists of left- and right-circular components that are out of phase and whose superposition, upon emerging from the Faraday rotation, is linearly polarized light with its plane of polarization rotated relative to its original orientation. ________________________________________________________________________ Michael Faraday, FRS (22 September 1791 – 25 August 1867) was an English chemist and physicist (or natural philosopher, in the terminology of the time) who contributed to the fields of electromagnetism and electrochemistry. Faraday studied the magnetic field around a conductor carrying a DC electric current.
    [Show full text]
  • Applications of Metamaterials in Optical Waveguide Isolator ﺍﻟﻤﻠﺨﺹ
    R. El-Khozondar et al., J. Al-Aqsa Unv., 12, 2008 Applications of Metamaterials in Optical Waveguide Isolator Dr. Rifa J. El-Khozondar * Dr. Hala J. El-Khozondar ∗∗ Prof. Mohammed M. Shabat ∗∗∗ ﺍﻟﻤﻠﺨﺹ ﻋﺎﺯﻻﺕ ﺍﻟﺩﻟﻴل ﺍﻟﻤﻭﺠﻲ ﺍﻟﺒﺼﺭﻴ ﺔ ﻫﻲ ﻭﺤﺩﺍﺕ ﺒﺼﺭﻴﺔ ﺠﻭﻫﺭﻴﺔ ﻤﺘﻜﺎﻤﻠﺔ ﻓﻲ ﺃﻨﻅﻤﺔ ﺍﺘﺼﺎل ﺍﻷﻟﻴﺎﻑ ﺍﻟﻀﻭﺌﻴﺔ ﺍﻟﻤﺘﻘﺩﻤﺔ . ﺘﻌﺭﺽ ﻫﺫﻩ ﺍﻟﺩﺭﺍﺴﺔ ﻋﺎﺯل ﺒﺼﺭﻱ ﻤﺘﻜﺎﻤل ﻟﻪ ﺘﺭﻜﻴﺏ ﺒﺴﻴﻁ ﻴﺘﻜﻭﻥ ﻤﻥ ﺜﻼﺙ ﻁﺒﻘﺎﺕ : ﻫﻲ ﺸﺭﻴﺤﺔ ﺭﻗﻴﻘﺔ ﻤﻥ ﺍﻟﻌﻘﻴﻕ ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻲ ﻤﺤﺼﻭﺭ ﺓ ﺒﻴﻥ ﺍﻟﻐﻁﺎﺀ ﺍﻟﻌـﺎﺯل ﺍ ﻟ ﺨ ﻁ ـ ﻲ ﻭﺭﻜﻴﺯﺓ ﺍﻟﻤﻴﺘﺎﻤﺘﺭﻴل (MTM). ﺇ ﻥ ﻤﻌﺎﻤل ﺍﻻﻨﻜﺴﺎﺭ ﺍﻟﻔﻌﺎ ل ﻟﻜﻠﺘﺎ ﺍﻟﺤﻘﻭل ﺍﻷﻤﺎﻤﻴﺔ ﻭﺍﻟﺨﻠﻔﻴﺔ ﻗﺩ ﺤﺴﺏ ﺒﺸﻜل ﺘﺤﻠﻴﻠﻲ ﺒﺎﺸﺘﻘﺎﻕ ﻤﻌﺎﺩﻟﺔ ﺘﺸﺘﺕ ﺍﻟﻤﺠﺎﻻﺕ ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻴﺔ ﺍﻟﻤﺴﺘﻌﺭﻀﺔ (TM). ﺃﻤﺎ ﺍﻻﺨـﺘﻼﻑ (β∆)ﺒﻴﻥ ﺍﻟﻤﺭﺤﻠﺔ ﺍﻟﺜﺎﺒﺘﺔ ﻟﻼﻨﺘﺸﺎﺭ ﺃﻤﺎﻤﺎ ﻭﺨﻠﻔﺎ ﻓﻘﺩ ﺤﺴﺏ ﺒﺸﻜل ﻋﺩﺩﻱ ﻟﻠﻘـﻴ ﻡ ﺍﻟﻤﺨﺘﻠﻔـﺔ ﻟﻤﻌﺎﻤـل ﺍﻟﺴﻤﺎﺤﻴﺔ (εs) ﻭﺍﻟﻨﻔﺎﺫﻴﺔ (µs) ﻟﻤﺎﺩﺓ ﺍﻟﺭﻜﻴﺯﺓ ﺍﻟﻤﺼﻨﻭﻋﺔ ﻤﻥ ﺍﻟﻤﻴﺘﺎﻤﺘﺭﻴل. ﻭﻗﺩ ﺘﻡ ﺭﺴـﻡ β∆ ﺒﺩﻻﻟـﺔ ﺴﻤﻙ ﺍﻟﺸﺭﻴﺤﺔ ﻟﻘﻴﻡ ﻤﺨﺘﻠﻔﺔ ﻟﻜل ﻤﻥ µs و εs. ﻭﻗﺩ ﺃﻭﻀﺤﺕ ﺍﻟﻨﺘﺎﺌﺞ ﺃﻥ ﻗﻴﻤﺔ β∆ ﺘﺘﻐﻴﺭ ﺒﺘﻐﻴﻴﺭ ﺜﻭﺍﺒﺕ ﺍﻟﻤﻴﺘﺎﻤﺘﺭﻴل ﻭﺘﻘل ﻤﻊ ﺯﻴﺎﺩﺓ ﺴﻤﻙ ﺍ ﻟﺸﺭﻴﺤﺔ. ﻜﻤﺎ ﺃﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻘﺼﻭﻯ βmax∆ ﺘﻘل ﻤﻊ ﻨﻘﺹ ﺍﻟﻔـﺭﻕ ﺒﻴﻥ ﻤﻌﺎﻤل ﺍﻟﺭﻜﻴﺯﺓ ﻭﺸﺭﻴﺤﺔ ﺍﻟﻌﻘﻴﻕ ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻲ ﻭﺘﺼل ﺍﻟﻲ ﺃﻗل ﻗﻴﻤﺔ ﻟﻬﺎ ﻋﻨﺩﻤﺎ ﺘﻜـﻭﻥ ﻗﻴﻤـﺔ εs ﺘﺴﺎﻭﻱ -0.5 ﻨﺘﺎﺌﺞ ﻫﺫﻩ ﺍﻟ ﺩﺭﺍﺴﺔ ﺘ ﺴﺎﻋﺩ ﺍﻟﻤﺼﻤﻤﻭﻥ ﻓﻲ ﺍﺨﺘﻴﺎﺭ ﺍﻟﺘﺼﻤﻴﻡ ﺍﻟﻤﺜﺎﻟﻲ ﻟﻠﻌﺎﺯل ﻋﻨﺩﻤﺎ ﺘﺅﻭل β∆ ﺇﻟﻰ ﺍﻟﺼﻔﺭ. ABSTRACT Optical waveguide isolators are vital integrated optic modules in advanced optical fiber communication systems. This study demonstrates an integrated optical isolator which has simple structure consisting of three layers. A thin magnetic garnet film is sandwiched between linear dielectric cover and metamaterial (MTM) substrate. The effective refractive indexes for both forward and backward fields were analytically calculated by deriving the dispersion equation of the transverse magnetic fields (TM).
    [Show full text]
  • FULLTEXT05.Pdf
    Spectral and dynamical measurements using the magneto-optical Kerr effect Erik Ostman¨ 1;2 Supervisors: Prof. Bj¨orgvinHj¨orvarsson1, Prof. Vladislav Korenivski2, Asst. Prof. Vassilios Kapaklis1 & Dr. Evangelos Papaioannou1 1Department of Materials Physics, Uppsala University, Uppsala, Sweden 2Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden May 24, 2011 The Magneto-Optical Kerr Effect (MOKE) is a powerful tool for studying the magnetic properties of various materials such as thin film multilayers or magnetic nanostructures. This paper presents the construction of two systems for different MOKE measurements. The MOKE spectrometer is capable of measuring the magneto-optical Kerr rotation as function of photon energy between 1.55 eV to 3.1 eV (400 nm to 800 nm). Permalloy, Ni, Co and Ni antidot samples have been measured to calibrate the system. A large magneto-optical enhancement is observed for the antidot film in the expected energy range. The time-resolved MOKE (tr-MOKE) measurements are performed by exciting the samples with magnetic field pulses. The change in magnetization as a function of time is measured using continuous-wave light. When ready the system will be able to measure the magnetization in the time domain at a sub-nano second scale. 1 Contents 1 Author's foreword 3 2 Introduction 3 2.1 The magneto-optical Kerr effect . 4 2.2 Time-resolved and spectral MOKE measurements . 7 3 Experimental 9 3.1 Spectral measurements . 9 3.1.1 System buildup . 9 3.1.2 The lock-in amplifier . 9 3.1.3 Test measurements . 10 3.1.4 Kerr spectrometer .
    [Show full text]
  • City of Light: the Story of Fiber Optics
    City of Light: The Story of Fiber Optics JEFF HECHT OXFORD UNIVERSITY PRESS City of Light THE SLOAN TECHNOLOGY SERIES Dark Sun: The Making of the Hydrogen Bomb Richard Rhodes Dream Reaper: The Story of an Old-Fashioned Inventor in the High-Stakes World of Modern Agriculture Craig Canine Turbulent Skies: The History of Commercial Aviation Thomas A. Heppenheimer Tube: The Invention of Television David E. Fisher and Marshall Jon Fisher The Invention that Changed the World: How a Small Group of Radar Pioneers Won the Second World War and Launched a Technological Revolution Robert Buderi Computer: A History of the Information Machine Martin Campbell-Kelly and William Aspray Naked to the Bone: Medical Imaging in the Twentieth Century Bettyann Kevles A Commotion in the Blood: A Century of Using the Immune System to Battle Cancer and Other Diseases Stephen S. Hall Beyond Engineering: How Society Shapes Technology Robert Pool The One Best Way: Frederick Winslow Taylor and the Enigma of Efficiency Robert Kanigel Crystal Fire: The Birth of the Information Age Michael Riordan and Lillian Hoddesen Insisting on the Impossible: The Life of Edwin Land, Inventor of Instant Photography Victor McElheny City of Light: The Story of Fiber Optics Jeff Hecht Visions of Technology: A Century of Provocative Readings edited by Richard Rhodes Last Big Cookie Gary Dorsey (forthcoming) City of Light The Story of Fiber Optics JEFF HECHT 1 3 Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Sa˜o Paulo Shanghai Taipei Tokyo Toronto Copyright ᭧ 1999 by Jeff Hecht Published by Oxford University Press, Inc.
    [Show full text]
  • IPI-Magneto-Optic Faraday Rotator Garnet Crystals-Lette-RGB
    Magneto-Optic Faraday Rotator Garnet Crystals Bismuth-doped rare-earth iron garnet (BIG) thick films are the principal Faraday rotator materials for non-reciprocal passive optical devices in telecommunications applications. These materials are highly transparent at the principal near-infrared telecommunications wavelengths and exhibit high specific Faraday rotation. Combined with the correct polarizing or birefringent elements, Faraday rotators can be made into polarization dependent and independent isolators as well as incorporated into a host of other non-reciprocal devices including isolators, circulators and switches. Increasingly magneto-optic materials are also of interest for sensor applications. BIG Thick Film single crystals are grown by Liquid Phase Epitaxy and are optimized to yield low optical absorption in the Near IR telecommunications wavelengths. All II-VI thick film Faraday rotators have been third-party certified to be in compliance with the European Union’s Restriction of Hazardous Substances (RoHS) directive. BIG Thick Film Garnet Products FLM Low Saturation Magnetization, Moderate Temperature Dependence FLT Low Temperature Dependence FLL Low Loss across 1290-1610 nm MGL Magnetless Faraday rotator WEBSITE CONTACT US ii-vi.com [email protected] Rev. 01 FLM Garnet - Low Moment Faraday Rotator *SV2SR6IGMTVSGEP4EWWMZI3TXMGEP'SQTSRIRXW FLM (Isolators, Circulators, Switches, Interleavers) Bismuth-doped rare-earth iron garnet thick films are the principal Faraday rotator materials for non-reciprocal devices in telecommunications applications. They have high specific rotations and are highly transparent in the near infrared telecom band. Combined with the correct polarizing or birefringent elements, these Faraday rotators can be made into polarization dependent and independent isolators as well as incorporated into many other non-reciprocal devices.
    [Show full text]