Unidirectional Loop Metamaterials (ULM) As Magnetless Artificial

Total Page:16

File Type:pdf, Size:1020Kb

Unidirectional Loop Metamaterials (ULM) As Magnetless Artificial 1 Unidirectional Loop Metamaterials (ULM) as Magnetless Artificial Ferrimagnetic Materials: Principles and Applications Toshiro Kodera, Senior Member, IEEE, and Christophe Caloz, Fellow, IEEE Abstract—This paper presents an overview of Unidirectional II. OPERATION PRINCIPLE Loop Metamaterial (ULM) structures and applications. Mimick- A Unidirectional Loop Metamaterial (ULM) may be seen ing electron spin precession in ferrites using loops with unidi- 1 rectional loads (typically transistors), the ULM exhibits all the as a physicomimetic artificial implementation of a ferrite in fundamental properties of ferrite materials, and represents the the microwave regime. Its operation principle is thus based only existing magnetless ferrimagnetic medium. We present here on microscopic unidirectionality, from which the macroscopic an extended explanation of ULM physics and unified description description is inferred upon averaging. of its component and system applications. Index Terms—Unidirectional Loop Metamaterials (ULM), nonreciprocity, ferrimagnetic materials and ferrites, gyrotropy, A. Microscopic Description Faraday rotation, metamaterials and metasurfaces, transistors, isolators, circulators, leaky-wave antennas. Microwave magnetism in a ferrite is based on the precession of the magnetic dipole moments arising from unpaired electron I. INTRODUCTION spins about the axis of an externally applied static magnetic Over the past decades, nonreciprocal components (isola- bias field, B0, as illustrated in Fig. 1(a), where B0k^z. This is tors, circulators, nonreciprocal phase shifters, etc.) have been a quantum-mechanical phenomenon, that is described by the have been almost exclusively implemented in ferrite tech- Landau-Lifshitz-Gilbert equation [3], [10], [33] nology [1]–[8]. This has been the case in both microwaves dm α dm = −γm × B + m × ; (1) and optics, despite distinct underlying physics, namely the dt 0 M dt purely magnetic effect (electron spin precession) in the former s case [3], [9], [10] and the magneto-optic effect (electron where m denotes the magnetic dipole moment, γ the gyromag- cyclotron orbiting) [11]–[13] in the latter case. However, netic ratio, Ms the saturation magnetization, and α the Gilbert ferrite components suffer from the well-known issues high- damping term. Equation (1) states that the time-variation rate 2 RF cost, high-weight and incompatibility with integrated circuit of m due to a transverse RF magnetic field signal, Ht ^ ^ technology, and magnetless nonreciprocity has therefore long (kt; t ? ^z), is equal to the sum of the torque exerted by B0 been consider a holy grail in this area [14], [15]. on m (directed along +φ^, φ^: azimuth angle), and a damping ^ ^ There have been several attempts to develop magnetless term (directed along −θ, θ: elevation angle) that reduces nonreciprocal components, specifically 1) active circuits [16]– the precession angle, , to zero along a circular-spherical [21], and space-time [15] 2) modulated structures [22]–[27] trajectory (conserved jmj) when the RF signal is suppressed and 3) switched structures [28] (both based on 1950ies para- (relaxation). metric (e.g. [29], [30]) or commutated (e.g. [31]) microwave Classically, magnetic dipole moments can be associated systems). All have their specific features, as indicated in Tab. I. with current loop sources, according to Ampere` law. Decom- posing a ferrite magnetic moment, m, into its longitudinal TABLE I COMPARISON (TYPICAL AND RELATIVE TERMS) BETWEEN DIFFERENT component, mz, and transverse component, mρ, as shown in m MAGNETLESS NONRECIPROCITY TECHNOLOGIES PLUS FERRITE. z Fig. 1(a), one may thus invoke the effective current loops Ieff material P bias cost noise mρ consum. and ieff as source models for the corresponding moments. ferrite yes zero magnet high N/A mρ Among these currents, only ieff matters in terms of mag- act. circ. no low DC low low mz RF arXiv:1804.08719v1 [physics.app-ph] 16 Apr 2018 switched no med. RF high high netism, since Ieff , as the source associated with Hz , does mρ modulated no med. RF med. med. not induce any precession (Footnote 2). ieff is thus the current ULM YES low DC low med one has to mimic to devise an “artificial ferrite.” This current, We introduced in 2011 [32] in a Unidirectional Loop as seen Fig. 1, has the form of a loop tangentially rotating on Metamaterial (ULM) mimicking ferrites at microwaves and an imaginary cylinder of axis z. representing the only artificial ferrite material, or metamaterial, 1 existing to date. This paper presents an overview of the ULM The adjective “physicomimetic” is meant here, from etymology, as “mim- icking physics.” and its applications reported to date. 2The longitudinal (z) component does not contribute to precession, and hence to magnetism. Indeed, since B0k^z, the z-component of m produced by RF RF RF RF RF T. Kodera is with the Department of Electrical Engineering, Meisei Univer- Hz would lead to mz ×(B0 +µ0H ^z) = [mz (B0 +µ0H )](^z×^z) = RF ^ sity, Tokyo Japan (e-mail: [email protected]). C. Caloz is with the 0, the only torque being produced by the transverse component (Ht , t 2 xy- ´ RF RF^ RF ^ Department of Electrical and Engineering, Ecole Polytechnique de Montreal,´ plane), mt × (B0 + µ0H t) = (mt B0)(t × ^z) 6= 0. In the rest of the Montreal,´ QC, H2T 1J3 Canada. text, we shall drop the superscript “RF,” without risk of ambiguity since mt, is exclusively produced by the RF signal. 2 B. Macroscopic Description Since it mimics the relevant magnetic operation of a ferrite at the microscopic level, the unit-cell particle in Fig. 1(b) must lead to the same response as bulk ferrite at the macroscopic level when repeated according to a subwavelength 3D lattice structure so as to form a metamaterial as shown in Fig. 2(a). The ULM in Fig. 2(a), just as a ferrite3, forms a 3D array of magnetic dipole moments, mi, whose average over a subwavelength volume V , ! Fig. 1. “Physicomimetic” construction of the Unidirectional Loop Metama- 1 X 1 X M = m = m ρ^ = M ρ^ (2) terial (ULM) “meta-molecule” or particle. (a) Magnetic dipole precession, V i V ρ,i ρ arising from electron spinning in a ferrite material about the axis (here z) of an i=1 i=1 externally applied static magnetic bias field, B0, with effective unidirectional mz mρ corresponds to the density of magnetic dipole moments, or current loops Ieff and ieff , and transverse radial rotating magnetic dipole mρ moment mρ associated with ieff . (b) ULM particle [32], typically (but not magnetization, as the fundamental macroscopic quantity de- exclusively [34]) consisting of a pair of broadside-coupled transistor-loaded scribing the metamaterial4. rings supporting antisymmetric current and unidirectional current wave (shown here with exaggeratedly small wavelength for the sake of visibility), with resulting radial rotating magnetic dipole moment emulating that in (a). mρ Given its complexity, the current ieff may a priori seem impossible to emulate. However, what fundamentally matters for magnetism is not this current itself, but the moment mρ, from which magnetization will arise at the macroscopic level (Sec. II-B). This moment may be fortunately also produced by a pair of antisymmetric φ-oriented currents, rotating on the (a) (b) same cylinder, which can be produced by a pair of conducting Fig. 2. ULM structures obtained by periodically repeating the unit cell with rings operating in their odd mode [35], as shown in Fig. 1(b). the particle in Fig. 1. (a) Metamaterial (3D), described by the Polder volume permeability (3a). (b) Metasurface (2D metamaterial), described by a surface If this ring-pair structure is loaded by a transistor [32], as permeability [36]. depicted in the figure, or includes another unidirectionality mechanism such as the injection of an azimuthal modula- From this point, one may follow the same procedure as in tion [34], mρ will unidirectionally rotate about z when excited ferrites [8], [37] to obtain the Polder ULM permeability tensor by an RF signal, and hence mimic the magnetic behavior of the 2 3 electron in Fig. 1(b). The structure in Fig. 1 constitutes thus µ jκ 0 the unit-cell particle of the ULM at the microscopic level. µ = 4−jκ µ 0 5 ; (3a) 0 0 µ0; One may argue there there is a fundamental difference between the physical system in Fig. 1(a) and its presumed !0!m !!m with µ = µ0 1 + 2 2 and κ = µ0 2 2 ; (3b) artificial emulation in Fig. 1(b): the ferrite material also !0 − ! !0 − ! supports the longitudinal moment mz whereas the ULM does where !0 and !m are the ULM resonance frequency (or not include anything alike. However, as we have just seen Larmor frequency) and effective saturation magnetization fre- above, particularly in Footnote 2, mz does not contribute to quency, respectively5, that will be derived in the next section. the magnetic response. It is therefore inessential and does thus As in ferrites, the effect of loss can be accounted for by not need to be emulated. So, the particle in Fig. 1(b), with its the substitution !0 !0 + jα!, where α a damping factor moment mρ is all that is needed for artificial magnetism! in (1) [8]. Does this mean that the ULM particle includes no counter- So, a ULM may really be seen as a an artificial ferrite part to the static alignment of the dipoles due to B0 (and material producing magnet-less artificial magnetism. However, producing mz) in the ferrite medium? In fact, there is a its nonreciprocity is achieved from breaking time-reversal counterpart, although mz = 0 in the ULM. The fundamental (TR) symmetry by a TR-odd current bias, originating in the outcome of the static alignment of the dipoles along z in transistor (DC) biasing, instead of a TR-odd external magnetic the ferrite is the alignment of the relevant magnetic dipoles field [14].
Recommended publications
  • The Wetting Performance of Lead Free Alloys Have Been Found to Be Not
    COMMON PROCESSES FOR PASSIVE OPTICAL COMPONENT MANUFACTURING Laurence A. Harvilchuck Project Consultant & Peter Borgesen, Ph.D. Project Manager Flip Chip & Optoelectronics Packaging SMT Laboratory Universal Instruments Corporation Binghamton, NY 13902-0825 Email: [email protected] Tel: 607-779-7343 ABSTRACT Permeation of fiber optic communication systems at the end-user level (i.e. ‘fiber- in-the-home’) is predicated on a reliable supply of individual components, both active and passive. These components will most likely have price and volume targets that can only be satisfied by full automation of the packaging processes. Polarization dependent optical isolators are examples of a typical passive optical component that is widely deployed at all levels of the network. We will use these isolators as an example for our discussion. Intelligent contemplation of the options available for isolator manufacturing requires comprehension of some basic optical principles and component functionality. It can then be seen that isolator performance is directly influenced by process variations and part tolerances. We present a discussion of issues relating to cost, ease of manufacturing, and automation, highlighting component design, materials selection, and intellectual property concerns. INTRODUCTION The nascent optoelectronic component industry will require a combination of design for manufacturing and further development of materials, processes, systems and equipment to mature into the integrated, automated state that has made microelectronic products so incredibly affordable. Economies of this systems-level transition are heavily dependent upon the cost and availability of all necessary components. With the sponsorship of an international consortium of companies from across the industry, we are researching the issues involved in nurturing this transition.
    [Show full text]
  • Picosecond Time Resolved Spectroscopy Used As a Tool To
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2004 Picosecond time resolved spectroscopy used as a tool to probe excited state photophysics of biologically and environmentally relevant systems Pramit Kumar Chowdhury Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Chowdhury, Pramit Kumar, "Picosecond time resolved spectroscopy used as a tool to probe excited state photophysics of biologically and environmentally relevant systems " (2004). Retrospective Theses and Dissertations. 766. https://lib.dr.iastate.edu/rtd/766 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Picosecond time resolved spectroscopy used as a tool to probe excited state photophysics of biologically and environmentally relevant systems by Pramit Kumar Chowdhury A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Physical Chemistry Program of Study Committee: Jacob W. Petrich, Major Professor Mark S. Gordon Mark S. Hargrove George A. Kraus Mei Hong Iowa State University Ames, Iowa 2004 Copyright © Pramit Kumar Chowdhury, 2004. All rights reserved. UMI Number: 3136299 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.
    [Show full text]
  • S-Parameters Are Complex and Frequency Dependent
    RFRF EngineeringEngineering BasicBasic Concepts:Concepts: SS--ParametersParameters Fritz Caspers CAS 2010, Aarhus ContentsContents S parameters: Motivation and Introduction Definition of power Waves S-Matrix Properties of the S matrix of an N-port, Examples of: 1 Ports 2 Ports 3 Ports 4 Ports Appendix 1: Basic properties of striplines, microstrip- and slotlines Appendix 2: T-Matrices Appendix 3: Signal Flow Graph CAS, Aarhus, June 2010 RF Basic Concepts, Caspers, McIntosh, Kroyer 2 SS--parametersparameters (1)(1) The abbreviation S has been derived from the word scattering. For high frequencies, it is convenient to describe a given network in terms of waves rather than voltages or currents. This permits an easier definition of reference planes. For practical reasons, the description in terms of in- and outgoing waves has been introduced. Now, a 4-pole network becomes a 2-port and a 2n-pole becomes an n-port. In the case of an odd pole number (e.g. 3-pole), a common reference point may be chosen, attributing one pole equally to two ports. Then a 3-pole is converted into a (3+1) pole corresponding to a 2-port. As a general conversion rule for an odd pole number one more pole is added. CAS, Aarhus, June 2010 RF Basic Concepts, Caspers, McIntosh, Kroyer 3 SS--parametersparameters (2)(2) Fig. 1 2-port network Let us start by considering a simple 2-port network consisting of a single impedance Z connected in series (Fig. 1). The generator and load impedances are ZG and ZL, respectively. If Z = 0 and ZL = ZG (for real ZG) we have a matched load, i.e.
    [Show full text]
  • Integrated Radio Frequency Isolator
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-04-30 Integrated Radio Frequency Isolator Henrikson, Christopher Erik Henrikson, C. E. (2014). Integrated Radio Frequency Isolator (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26572 http://hdl.handle.net/11023/1461 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Integrated Radio Frequency Isolator by Christopher Erik Henrikson A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING CALGARY, ALBERTA APRIL, 2014 c Christopher Erik Henrikson 2014 Abstract Radio frequency isolators based on ferrite junction circulators have been the domi- nant isolator technology for the past fifty years, yet they have not been integrated practically because ferrites are generally incompatible with semiconductor processes and their size is inversely proportional to their operating frequency. Hall isolators are another approach whose operating frequency is independent of their size, are compat- ible with semiconductor processes and are thus appropriate for integration. Through simulation, this thesis demonstrates that these devices can be on the order of microns in size and have a bandwidth from DC to over a terahertz.
    [Show full text]
  • Summer Undergraduate Research Expo August 8, 2013 Mcnamara
    Summer Undergraduate Research Expo August 8, 2013 McNamara Alumni Center Memorial Hall 4:00-6:00pm Undergraduate Poster Presentations Listed Alphabetically by Presenting Author 1 Brandon Adams Synthesis, Characterization, and Mechanical Testing of Poly(lactide-b-ethylene-co-ethylethylene) multiblock copolymer Advisor: Frank Bates Department or Program Sponsoring Summer Research: Center for Sustainable Polymers Home Institution: Virginia Commonwealth University Abstract: In order to enhance the properties of polylactide, a biodegradable and renewable polymer, it was polymerized with hydrogenated butadiene to synthesize multiblock copolymer. The synthetic reaction consisted of two steps, the first step, a ring opening polymerization producing a Triblock polymer, then a coupling reaction that bonded different Triblock chains together in order to form multiblock polymers. After both the multiblock and Triblock were obtained blends made up of various amounts of both polymers were made. Size exclusion chromatography was test on the multiblock and Triblock as well as all of the blends, the results showed that the multiblock and polymers with the most multiblock eluted first due to their large size. Tensile testing determined that increasing average block number contributed to ductility while decreasing the average number of blocks yielded brittleness. Differiential scanning calirometry showed an increase in both crystallization and melting temperature in polymers with higher multiblock amounts. 2 Nicolas Alvarado Structural Analysis of Fibronectin Ligand Proteins Advisor: Benjamin Hackel Department or Program Sponsoring Summer Research: MRSEC Home Institution: University of Puerto Rico-Mayaguez Abstract: This project aims to determine the three-dimensional structure of small molecules, specifically fibronectin domain-mutants using x-rays crystallography. The laboratory has previously engineered fibronectin domain-mutants that bind with high affinity and specificity to molecular targets for clinical and biotechnology utility.
    [Show full text]
  • Faraday Rotation Measurement Using a Lock-In Amplifier Sidney Malak, Itsuko S
    Faraday rotation measurement using a lock-in amplifier Sidney Malak, Itsuko S. Suzuki, and Masatsugu Sei Suzuki Department of Physics, State University of New York at Binghamton (Date: May 14, 2011) Abstract: This experiment is designed to measure the Verdet constant v through Faraday effect rotation of a polarized laser beam as it passes through different mediums, flint Glass and water, parallel to the magnetic field B. As the B varies, the plane of polarization rotates and the transmitted beam intensity is observed. The angle through which it rotates is proportional to B and the proportionality constant is the Verdet constant times the optical path length. The optical rotation of the polarized light can be understood circular birefringence, the existence of different indices of refraction for the left-circularly and right-circularly polarized light components. The linearly polarized light is equivalent to a combination of the right- and left circularly polarized components. Each component is affected differently by the applied magnetic field and traverse the system with a different velocity, since the refractive index is different for the two components. The end result consists of left- and right-circular components that are out of phase and whose superposition, upon emerging from the Faraday rotation, is linearly polarized light with its plane of polarization rotated relative to its original orientation. ________________________________________________________________________ Michael Faraday, FRS (22 September 1791 – 25 August 1867) was an English chemist and physicist (or natural philosopher, in the terminology of the time) who contributed to the fields of electromagnetism and electrochemistry. Faraday studied the magnetic field around a conductor carrying a DC electric current.
    [Show full text]
  • Role of Circulator, Isolator and Power Divider in the C-Band Microwave Front End System
    Role of Circulator, Isolator and Power Divider in the C-Band Microwave Front End System C. Chandrasekharan, S. Raghavendran & Sumi Sunny VSSC/ISRO, Amal Jyothi College of Engineering E-mail : [email protected] dividers, attenuators and crystal detectors are Abstract - In space communications, the transponder aids in tracking the launch vehicle. Microwave Front End characterized and selected. System is designed for testing the onboard transponder. Those selected devices are inter-connected and Microwave front end unit acts as an interface to connect tested. Next step is the complete integration including the high power onboard transponder to the ground RF RF cables routing and device fixation to chassis. Then checkout system with suitable isolation between them. Microwave front end unit basically consists of microwave integrated level testing is performed and finally it is devices like circulator, isolator, attenuator, power divider deployed in the test bed. and crystal detector with RF cables and adaptors interconnecting them. In this paper, the devices like II. DESIGN AND OPERATION OF MICROWAVE circulator, isolator and power divider are characterized FRONT END SYSTEM based on the study of performance of each device in tandem with the theoretical specification of the devices in Based on the studies of characteristics and the designated frequency range and design procedure of performance analysis, various microwave devices are microwave front end unit is also explained. characterized and the required devices like circulators, Keywords - Circulator, Isolator, Microwave Front End Unit, isolators, power dividers and attenuators suitable for the Transponder. desired application are selected. Those selected devices are inter-connected and tested. Next step is the complete I.
    [Show full text]
  • Applications of Metamaterials in Optical Waveguide Isolator ﺍﻟﻤﻠﺨﺹ
    R. El-Khozondar et al., J. Al-Aqsa Unv., 12, 2008 Applications of Metamaterials in Optical Waveguide Isolator Dr. Rifa J. El-Khozondar * Dr. Hala J. El-Khozondar ∗∗ Prof. Mohammed M. Shabat ∗∗∗ ﺍﻟﻤﻠﺨﺹ ﻋﺎﺯﻻﺕ ﺍﻟﺩﻟﻴل ﺍﻟﻤﻭﺠﻲ ﺍﻟﺒﺼﺭﻴ ﺔ ﻫﻲ ﻭﺤﺩﺍﺕ ﺒﺼﺭﻴﺔ ﺠﻭﻫﺭﻴﺔ ﻤﺘﻜﺎﻤﻠﺔ ﻓﻲ ﺃﻨﻅﻤﺔ ﺍﺘﺼﺎل ﺍﻷﻟﻴﺎﻑ ﺍﻟﻀﻭﺌﻴﺔ ﺍﻟﻤﺘﻘﺩﻤﺔ . ﺘﻌﺭﺽ ﻫﺫﻩ ﺍﻟﺩﺭﺍﺴﺔ ﻋﺎﺯل ﺒﺼﺭﻱ ﻤﺘﻜﺎﻤل ﻟﻪ ﺘﺭﻜﻴﺏ ﺒﺴﻴﻁ ﻴﺘﻜﻭﻥ ﻤﻥ ﺜﻼﺙ ﻁﺒﻘﺎﺕ : ﻫﻲ ﺸﺭﻴﺤﺔ ﺭﻗﻴﻘﺔ ﻤﻥ ﺍﻟﻌﻘﻴﻕ ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻲ ﻤﺤﺼﻭﺭ ﺓ ﺒﻴﻥ ﺍﻟﻐﻁﺎﺀ ﺍﻟﻌـﺎﺯل ﺍ ﻟ ﺨ ﻁ ـ ﻲ ﻭﺭﻜﻴﺯﺓ ﺍﻟﻤﻴﺘﺎﻤﺘﺭﻴل (MTM). ﺇ ﻥ ﻤﻌﺎﻤل ﺍﻻﻨﻜﺴﺎﺭ ﺍﻟﻔﻌﺎ ل ﻟﻜﻠﺘﺎ ﺍﻟﺤﻘﻭل ﺍﻷﻤﺎﻤﻴﺔ ﻭﺍﻟﺨﻠﻔﻴﺔ ﻗﺩ ﺤﺴﺏ ﺒﺸﻜل ﺘﺤﻠﻴﻠﻲ ﺒﺎﺸﺘﻘﺎﻕ ﻤﻌﺎﺩﻟﺔ ﺘﺸﺘﺕ ﺍﻟﻤﺠﺎﻻﺕ ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻴﺔ ﺍﻟﻤﺴﺘﻌﺭﻀﺔ (TM). ﺃﻤﺎ ﺍﻻﺨـﺘﻼﻑ (β∆)ﺒﻴﻥ ﺍﻟﻤﺭﺤﻠﺔ ﺍﻟﺜﺎﺒﺘﺔ ﻟﻼﻨﺘﺸﺎﺭ ﺃﻤﺎﻤﺎ ﻭﺨﻠﻔﺎ ﻓﻘﺩ ﺤﺴﺏ ﺒﺸﻜل ﻋﺩﺩﻱ ﻟﻠﻘـﻴ ﻡ ﺍﻟﻤﺨﺘﻠﻔـﺔ ﻟﻤﻌﺎﻤـل ﺍﻟﺴﻤﺎﺤﻴﺔ (εs) ﻭﺍﻟﻨﻔﺎﺫﻴﺔ (µs) ﻟﻤﺎﺩﺓ ﺍﻟﺭﻜﻴﺯﺓ ﺍﻟﻤﺼﻨﻭﻋﺔ ﻤﻥ ﺍﻟﻤﻴﺘﺎﻤﺘﺭﻴل. ﻭﻗﺩ ﺘﻡ ﺭﺴـﻡ β∆ ﺒﺩﻻﻟـﺔ ﺴﻤﻙ ﺍﻟﺸﺭﻴﺤﺔ ﻟﻘﻴﻡ ﻤﺨﺘﻠﻔﺔ ﻟﻜل ﻤﻥ µs و εs. ﻭﻗﺩ ﺃﻭﻀﺤﺕ ﺍﻟﻨﺘﺎﺌﺞ ﺃﻥ ﻗﻴﻤﺔ β∆ ﺘﺘﻐﻴﺭ ﺒﺘﻐﻴﻴﺭ ﺜﻭﺍﺒﺕ ﺍﻟﻤﻴﺘﺎﻤﺘﺭﻴل ﻭﺘﻘل ﻤﻊ ﺯﻴﺎﺩﺓ ﺴﻤﻙ ﺍ ﻟﺸﺭﻴﺤﺔ. ﻜﻤﺎ ﺃﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻘﺼﻭﻯ βmax∆ ﺘﻘل ﻤﻊ ﻨﻘﺹ ﺍﻟﻔـﺭﻕ ﺒﻴﻥ ﻤﻌﺎﻤل ﺍﻟﺭﻜﻴﺯﺓ ﻭﺸﺭﻴﺤﺔ ﺍﻟﻌﻘﻴﻕ ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻲ ﻭﺘﺼل ﺍﻟﻲ ﺃﻗل ﻗﻴﻤﺔ ﻟﻬﺎ ﻋﻨﺩﻤﺎ ﺘﻜـﻭﻥ ﻗﻴﻤـﺔ εs ﺘﺴﺎﻭﻱ -0.5 ﻨﺘﺎﺌﺞ ﻫﺫﻩ ﺍﻟ ﺩﺭﺍﺴﺔ ﺘ ﺴﺎﻋﺩ ﺍﻟﻤﺼﻤﻤﻭﻥ ﻓﻲ ﺍﺨﺘﻴﺎﺭ ﺍﻟﺘﺼﻤﻴﻡ ﺍﻟﻤﺜﺎﻟﻲ ﻟﻠﻌﺎﺯل ﻋﻨﺩﻤﺎ ﺘﺅﻭل β∆ ﺇﻟﻰ ﺍﻟﺼﻔﺭ. ABSTRACT Optical waveguide isolators are vital integrated optic modules in advanced optical fiber communication systems. This study demonstrates an integrated optical isolator which has simple structure consisting of three layers. A thin magnetic garnet film is sandwiched between linear dielectric cover and metamaterial (MTM) substrate. The effective refractive indexes for both forward and backward fields were analytically calculated by deriving the dispersion equation of the transverse magnetic fields (TM).
    [Show full text]
  • FULLTEXT05.Pdf
    Spectral and dynamical measurements using the magneto-optical Kerr effect Erik Ostman¨ 1;2 Supervisors: Prof. Bj¨orgvinHj¨orvarsson1, Prof. Vladislav Korenivski2, Asst. Prof. Vassilios Kapaklis1 & Dr. Evangelos Papaioannou1 1Department of Materials Physics, Uppsala University, Uppsala, Sweden 2Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden May 24, 2011 The Magneto-Optical Kerr Effect (MOKE) is a powerful tool for studying the magnetic properties of various materials such as thin film multilayers or magnetic nanostructures. This paper presents the construction of two systems for different MOKE measurements. The MOKE spectrometer is capable of measuring the magneto-optical Kerr rotation as function of photon energy between 1.55 eV to 3.1 eV (400 nm to 800 nm). Permalloy, Ni, Co and Ni antidot samples have been measured to calibrate the system. A large magneto-optical enhancement is observed for the antidot film in the expected energy range. The time-resolved MOKE (tr-MOKE) measurements are performed by exciting the samples with magnetic field pulses. The change in magnetization as a function of time is measured using continuous-wave light. When ready the system will be able to measure the magnetization in the time domain at a sub-nano second scale. 1 Contents 1 Author's foreword 3 2 Introduction 3 2.1 The magneto-optical Kerr effect . 4 2.2 Time-resolved and spectral MOKE measurements . 7 3 Experimental 9 3.1 Spectral measurements . 9 3.1.1 System buildup . 9 3.1.2 The lock-in amplifier . 9 3.1.3 Test measurements . 10 3.1.4 Kerr spectrometer .
    [Show full text]
  • IPI-Magneto-Optic Faraday Rotator Garnet Crystals-Lette-RGB
    Magneto-Optic Faraday Rotator Garnet Crystals Bismuth-doped rare-earth iron garnet (BIG) thick films are the principal Faraday rotator materials for non-reciprocal passive optical devices in telecommunications applications. These materials are highly transparent at the principal near-infrared telecommunications wavelengths and exhibit high specific Faraday rotation. Combined with the correct polarizing or birefringent elements, Faraday rotators can be made into polarization dependent and independent isolators as well as incorporated into a host of other non-reciprocal devices including isolators, circulators and switches. Increasingly magneto-optic materials are also of interest for sensor applications. BIG Thick Film single crystals are grown by Liquid Phase Epitaxy and are optimized to yield low optical absorption in the Near IR telecommunications wavelengths. All II-VI thick film Faraday rotators have been third-party certified to be in compliance with the European Union’s Restriction of Hazardous Substances (RoHS) directive. BIG Thick Film Garnet Products FLM Low Saturation Magnetization, Moderate Temperature Dependence FLT Low Temperature Dependence FLL Low Loss across 1290-1610 nm MGL Magnetless Faraday rotator WEBSITE CONTACT US ii-vi.com [email protected] Rev. 01 FLM Garnet - Low Moment Faraday Rotator *SV2SR6IGMTVSGEP4EWWMZI3TXMGEP'SQTSRIRXW FLM (Isolators, Circulators, Switches, Interleavers) Bismuth-doped rare-earth iron garnet thick films are the principal Faraday rotator materials for non-reciprocal devices in telecommunications applications. They have high specific rotations and are highly transparent in the near infrared telecom band. Combined with the correct polarizing or birefringent elements, these Faraday rotators can be made into polarization dependent and independent isolators as well as incorporated into many other non-reciprocal devices.
    [Show full text]
  • Microwave Isolator
    Smita Desai et al, International Journal of Computer Science and Mobile Computing, Vol.6 Issue.10, October- 2017, pg. 59-66 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IMPACT FACTOR: 6.017 IJCSMC, Vol. 6, Issue. 10, October 2017, pg.59 – 66 Microwave Isolator 1Mrs. Smita Desai, 2Mr. Amit Uppin, 3Miss. Shreya Desai 1Department of Computer Science, Bharatesh College of Computer Applications, Belagavi, Karnataka, India [email protected] 2Electronics and Communications, KLE‟s Dr. M.S. Sheshgiri, College of Engineering and Technology, Belagavi, Karnataka, India [email protected] 3Electronics and Communications, Gogte Institute of Technology, Belagavi, Karnataka, India [email protected] Abstract— This paper looks into different specifications of the isolator and what they mean. After knowing the specifications and the dimensions required we need to find out the type of ferrite to be used. Because our main aim in this research is not to design the isolator but to find out the type of isolator ferrite to be used by performing a literature survey of current ferrites used in isolator and find the one that best suits our needs. Important applications of ferrite materials, negative index, electro-magnetic interference suppression are discussed in this paper. Here we review the recent advancements in the processing isolator ferrites. Keywords— Microwave Isolator, ferrite, Isolator Ferrite, microwave heating, microwave circulator. I. INTRODUCTION Microwave heating is an emerging field of technology in RF that is quick and efficient for materials that are difficult to heat by conventional methods like convection or infrared.
    [Show full text]
  • Huang19thesisrevised Reduced.Pdf
    UNIVERSITY OF CALIFORNIA Santa Barbara Integrated Optical Isolators and Circulators for Heterogeneous Silicon Photonics A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering by Duanni Huang Committee in charge: Professor John E. Bowers, Chair Professor Larry A. Coldren Professor Nadir Dagli Professor Jon A. Schuller March 2019 The dissertation of Duanni Huang is approved. ____________________________________________________________ Larry A. Coldren ____________________________________________________________ Nadir Dagli ____________________________________________________________ Jon A. Schuller ____________________________________________________________ John E. Bowers, Committee Chair March 2019 Integrated Optical Isolators and Circulators for Heterogeneous Silicon Photonics Copyright © 2019 by Duanni Huang iii ACKNOWLEDGMENTS The work would not be possible without the assistance and good will of many others. Research at this level is simply not possible without the teamwork of many individuals. First of all, I’d like to give my sincere thanks to Professor John E. Bowers, whose guidance played an instrumental role in this work. He provided the right balance of attention to detail without losing track of the overall picture. The environment in his group is one that really promotes a balance of academic curiosity with realistic expectations. Over my five and a half years in his group at UCSB, John was also kind enough to provide me with all the resources I needed to succeed. I feel like I will only truly appreciate how lucky I was to be in his group after I graduate. I also thank Professor Larry Coldren for teaching me everything I know about lasers, as well as Professor Jon Schuller and Professor Nadir Dagli for teaching me quantum mechanics and electromagnetism respectively.
    [Show full text]