Application Notes FERRITE ISOLATORS and CIRCULATORS

Total Page:16

File Type:pdf, Size:1020Kb

Application Notes FERRITE ISOLATORS and CIRCULATORS Application Notes FERRITE ISOLATORS AND CIRCULATORS Ferrite isolators and circulators play a fundamental and valuable role in RF systems. They are passive, ferrite devices that act as traffic conductors for RF energy in a system, routing signals wherever a system designer needs them to go. Their ability to behave non-reciprocally (non-reversible, allowing energy to pass in only one direction through the device) when RF energy is applied to them is very important for a number of applications. RF CIRCULATOR An RF circulator can be thought of as a merry-go-round for RF energy. Energy of an appropriate frequency that enters port 1 of the circulator (gets on the merry go round) will travel clockwise until it reaches port 2, at which point it will exit the circulator (gets off the merry go round). There is very little attenuation of the signal while it is inside the circulator. Likewise, energy entering port 2 of the circulator will travel to port 3, and energy entering port 3 of the circulator will travel to port 1. Top: DiTom’s 18-40 GHz circulator passes a signal with a frequency anywhere from 18-40 GHz from port 1 to port 2. Right: DiTom’s 18-40 GHz circulator passes a signal with a frequency anywhere from 18-40 GHz from port 2 to port 3. Left: DiTom’s 18-40 GHz circulator passes a signal with a frequency anywhere from 18-40 GHz from port 3 to port 1. RF ISOLATOR An RF isolator can be thought of as a diode for RF energy. An isolator is simply a circulator with one of its ports terminated with a matched 50Ω load. The device has only 2 ports, and as a result, has only one path for energy to flow without significant attenuation. Energy can only enter port 1 and travel to port 2. Any energy that enters port 2 will be routed to the matched termination on port 3, and quickly dissipated as heat. This behavior heavily attenuates any signal entering port 2 before it reaches port 1, yet allows almost all of a signal entering port 1 to reach port 2. DiTom’s 18-40 GHz isolator attenuating a signal DiTom’s 18-40 GHz isolator allowing a signal anywhere from 18-40 GHz as it passes from port anywhere from 18-40 GHz to pass from port 1 to 2 to port 1. A majority of the energy is absorbed port 2 with little attenuation by the termination on port 3, effectively isolating port 2 from port 1. ELECTRICAL SPECIFICATIONS OF ISOLATORS AND CIRCULATORS When selecting an isolator and/or circulator, it is important to understand some common electrical specifications that tell you how well it is capable of performing in your application. The three basic specifications for isolators and circulators are insertion loss, VSWR, and isolation. Generally speaking, these specs are a direct trade off with bandwidth: the more bandwidth you want, the more degraded set of specs you will get. Insertion Loss Insertion loss describes how much energy is lost during the process of transferring a signal from one port of an isolator/circulator to another. It is essentially a measure of how much energy it costs a designer to use an isolator/circulator in their system. As stated above, isolators and circulators are passive components, so a signal traveling through them has to do so using its own energy. As in any real system, there will be some attenuation to the signal as it travels through the device. This attenuation is called insertion loss, and it is measured in decibels (dB). The higher the insertion loss, the more energy it costs to use the isolator or circulator. This energy is converted into heat on its way through the device. However, insertion loss specifications are relatively small, so the benefits a system receives from the use of an isolator/circulator are usually worth the energy cost of implementing them. Typical insertion loss specifications are on the order of 0.4 dB for octave bandwidth units, however the specification can be as small as 0.15 dB for narrowband units, and as high as 1.7 dB for certain broadband units. Example: A customer purchases DiTom’s 6.0 – 18.0 GHz isolator, DMI6018, because it is the best unit available on the market today. The customer wants to know how much of their 1 watt signal it will cost to use this isolator in their system. The DMI6018 has a typical insertion loss spec of 0.90 dB (actual value is -0.90 dB, as insertion loss is always a negative ratio; it measures attenuation, after all). Start with general dB to power conversion: dB = 10 × log10( ) -0.90 dB = 10 × log10( ) = = 0.81 Pout = (0.81)Pin = (0.81) × (1 Watt) = 0.81 Watt From this calculation, the customer now knows that it will only cost 190 mW to use the isolator in their system. VSWR VSWR stands for voltage standing wave ratio. It is a ratio of the maximum voltage to the minimum voltage of a standing wave created by an imperfect impedance match where two boundaries meet (typically where a source meets a load). This standing wave is produced by energy reflecting off of the boundary, and traveling back the way it came. In the case of isolators and circulators, VSWR is the measure of how much of the signal that you want to send through the isolator will reflect back towards the transmitter that sent it. A low VSWR spec is always desirable. Lower VSWRs mean that there is less energy reflecting off of port 1 of the isolator/circulator and going where you don’t want it to go. A representation of a bad VSWR - The entire A representation of a good VSWR – Only a small signal is reflected back in the direction of where fraction of the incident signal is reflected back in it came from. the direction of where it came from. Standing waves are unattractive because they represent energy going where you don’t want it to go, and very bad things can come from this happening. To visualize this, consider the following situation: Your goal is to get a tennis ball from your hand to the inside of a house. In this situation, you are the transmitter, the tennis ball represents your RF signal, and the house is the load to which you want to deliver the signal (antenna, amplifier, etc.). You throw the tennis ball as hard as you can at the brick wall of the house. The tennis ball promptly bounces off the wall, and comes flying back at you. This situation represents a perfectly bad VSWR for an isolator/circulator – one in which your entire signal went exactly where you didn’t want it to go. It reflected off of your isolator/circulator, headed back towards your most likely expensive transmitter, and either disrupted it, or destroyed it completely. This type of VSWR occurs at an open or short circuit in a system, where the impedance match is the worst. An RF signal on a transmission line will see this impedance mismatch as very obstructive, so rather than conduct through it, it reflects off of it. In the example, the tennis ball sees the brick wall as very obstructive, so likewise, it reflects off of it. The next day, you try again, and decide you are not going to hurl the ball into a brick wall directly in front of you, but rather try to throw the ball through an open window. You hold your breath, and release the ball. After you open your eyes, you find that the ball is resting comfortably inside the house. This represents a perfect VSWR for an isolator/circulator – one in which your entire signal went exactly where you wanted it to go, and you have maximum power transfer through the isolator/circulator. This type of VSWR occurs at boundaries where both sides are impedance matched to each other perfectly. An RF signal traveling on a 50Ω transmission line, for example, will happily conduct through an isolator that has been tuned to present the signal with a 50Ω impedance. In the example, the air on the outside of the house and the air inside of the house have the same effect on the tennis ball, so the ball can move easily between the two with no reflection. A perfect VSWR will never be attained in real life (but here at DiTom, we get pretty close). VSWR is typically expressed as a ratio (1.5:1, 2.5:1, etc.); the lower the ratio, the better the VSWR. DiTom’s typical VSWR specifications for isolators/circulators are 1.1:1 for certain narrowband units, and around 1.5:1 for broadband units. Example: The same customer that just bought the DMI6018s wants to know how much of his 1W signal will reflect off of the incident port. The DMI6018 has a typical VSWR spec of 1.45:1. Start with general VSWR to reflection coefficient conversion: R = R = = 0.184 Continue with general reflection coefficient to return loss (dB) conversion: Return Loss = -20 × log10(R) Return Loss = -20 × log10(0.184) = 14.7 dB (-14.7 dB in actuality, as it is a loss) Finish with general dB to power conversion: = Preflected = (Pin) = 0.034(Pin) = 34mW From this calculation, the customer now knows that 34 mW of his 1W signal will reflect off of the isolator when it is used in their system. Isolation Quite possibly the most important spec for an isolator is… the isolation spec! Isolation is a measure of how well an isolator can carry out its main purpose of decoupling energy entering port 2 from whatever is attached to port 1.
Recommended publications
  • Few Electron Paramagnetic Resonances Detection On
    FEW ELECTRON PARAMAGNETIC RESONANCES DETECTION TECHNIQUES ON THE RUBY SURFACE By Xiying Li Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Massood Tabib-Azar Co-Adviser: Dr. J. Adin Mann, Jr. Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY August, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents TABLE OF CONTENTS ................................................................................................................................. II LIST OF FIGURES ...................................................................................................................................... IV ABSTRACT............................................................................................................................................... VII CHAPTER 1 INTRODUCTION .................................................................................................................1
    [Show full text]
  • S-Parameters Are Complex and Frequency Dependent
    RFRF EngineeringEngineering BasicBasic Concepts:Concepts: SS--ParametersParameters Fritz Caspers CAS 2010, Aarhus ContentsContents S parameters: Motivation and Introduction Definition of power Waves S-Matrix Properties of the S matrix of an N-port, Examples of: 1 Ports 2 Ports 3 Ports 4 Ports Appendix 1: Basic properties of striplines, microstrip- and slotlines Appendix 2: T-Matrices Appendix 3: Signal Flow Graph CAS, Aarhus, June 2010 RF Basic Concepts, Caspers, McIntosh, Kroyer 2 SS--parametersparameters (1)(1) The abbreviation S has been derived from the word scattering. For high frequencies, it is convenient to describe a given network in terms of waves rather than voltages or currents. This permits an easier definition of reference planes. For practical reasons, the description in terms of in- and outgoing waves has been introduced. Now, a 4-pole network becomes a 2-port and a 2n-pole becomes an n-port. In the case of an odd pole number (e.g. 3-pole), a common reference point may be chosen, attributing one pole equally to two ports. Then a 3-pole is converted into a (3+1) pole corresponding to a 2-port. As a general conversion rule for an odd pole number one more pole is added. CAS, Aarhus, June 2010 RF Basic Concepts, Caspers, McIntosh, Kroyer 3 SS--parametersparameters (2)(2) Fig. 1 2-port network Let us start by considering a simple 2-port network consisting of a single impedance Z connected in series (Fig. 1). The generator and load impedances are ZG and ZL, respectively. If Z = 0 and ZL = ZG (for real ZG) we have a matched load, i.e.
    [Show full text]
  • Integrated Radio Frequency Isolator
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-04-30 Integrated Radio Frequency Isolator Henrikson, Christopher Erik Henrikson, C. E. (2014). Integrated Radio Frequency Isolator (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26572 http://hdl.handle.net/11023/1461 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Integrated Radio Frequency Isolator by Christopher Erik Henrikson A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING CALGARY, ALBERTA APRIL, 2014 c Christopher Erik Henrikson 2014 Abstract Radio frequency isolators based on ferrite junction circulators have been the domi- nant isolator technology for the past fifty years, yet they have not been integrated practically because ferrites are generally incompatible with semiconductor processes and their size is inversely proportional to their operating frequency. Hall isolators are another approach whose operating frequency is independent of their size, are compat- ible with semiconductor processes and are thus appropriate for integration. Through simulation, this thesis demonstrates that these devices can be on the order of microns in size and have a bandwidth from DC to over a terahertz.
    [Show full text]
  • Short Course on Isolators and FM Antennas
    Shively Labs® Short Course on Isolators and FM Antennas Introduction Isolators have been around for more than 50 years, and during that time have been used in applications across a wide electromagnetic spectrum. Until recently, however, they have not been widely used in the FM band, and the uses that did exist did not require the development of units that could handle more than a few hundred watts. Now, as stations begin to go on the air with digital radio in ever increasing numbers, FM isolators are receiving a great deal of attention as a key component in a number of IBOC installations. Early deployment has been limited by the low power ratings of the available units, but power capacity is rising quickly as manufacturers devote time and resources to developing isolators specifically to address the needs of the new FM market. On the other side of the fence, RF engineers are rapidly familiarizing themselves with the principles of isolators and their advantages and limitations. As with any emerging technology, integrating vari- as advances in power rating sometimes came with ous components of the FM IBOC transmission chain conditions that limited the usefulness of the units. has had both successes and setbacks. Isolators have Size, weight, and cooling requirements that might be been involved in both. As with all test sites, some of suitable at some sites made the units impractical at the early deployments could be said to be more edu- others. For example, in at least one application, an cational than successful, but as often as not these isolator capable of handling the return power of the setbacks were not so much the fault of the isolators station was only efficient enough to do so when it themselves as of the inexperience of the engineers was warmed up.
    [Show full text]
  • Electron Paramagnetic Resonance Theory E.C. Duin
    Wilfred R. Hagen Electron Paper: EPR spectroscopy as a probe of metal centres in Paramagnetic biological systems (2006) Dalton Trans. 4415-4434 Resonance Book: Theory Biomolecular EPR Spectroscopy (2009) Fred Hagen completed his PhD on EPR of metalloproteins at the University of Amsterdam in 1982 with S.P.J. Albracht E.C. Duin and E.C. Slater. 1 3 EPR, the Technique…. Spectral Simulations • Molecular EPR spectroscopy is a method to look at the • The book ‘Biomolecular EPR spectroscopy’ comes with a structure and reactivity of molecules. suite of programs for basic manipulation and analysis of EPR data which will be used in this class. • EPR is limited to paramagnetic substances (unpaired electrons). When used in the study of metalloproteins not the • Software: www.bt.tudelft.nl/biomolecularEPRspectroscopy whole molecule is observed but only that small part where the paramagnetism is located. Isotropic Radicals • This is usually the central place of action – the active site of Simple Spectrum Single Integer Signal enzyme catalysis. • Sensitivity: 10 μM and up. Hyperfine Spectrum GeeStrain-5 • Naming: Electron paramagnetic resonance (EPR), electron Visual Rhombo spin resonance (ESR), electron magnetic resonance (EMR) EPR File Converter EPR Editor 2 4 1 BYOS (Bring Your Own Sample) EPR Theory A Free Electron in Vacuo Learn how to use the EPR spectrometer and apply your new knowledge to obtain valuable Free, unpaired electron in space: information on a real EPR sample. electron spin - magnetic moment 5 7 Discovery A Free Electron in a Magnetic Field In 1944, E.K. Zavoisky discovered magnetic resonance. Actually it was EPR on CuCl2.
    [Show full text]
  • Proposed New Circulator with Coplanar Waveguide Structure
    Trans. Magn. Soc. Japan, 4, 56-59 (2004) Proposed New Circulator with Coplanar Waveguide Structure S. Yamamoto, K. Shitamitsu, H. Kurisu, M. Matsuura, K. Oshiro *,H. Mikami**,and S. Fujii** Facultyof Engineering,Yamaguchi Univ., 2-16-1 Tokiwadai,Ube, Yamaguchi 755-8611 *Ch ugoku TechnologyPromotion Center, 4-33 Komachi, Nakaku, Hiroshima 730-0041 **Hi tachi Metals,Ltd. , 5200 Mikajiri,Kumagaya, Saitama 360-0843 A small circulator with a coplanar waveguide structure process. Wen and Bayard have reported that their was confirmed to have nonreciprocal transmission two-port-type CPW circulator operating at 7 GHz needs characteristics by a high-frequency electromagnetic an internal magnetic field of more than 170 kA/m and simulation based on a three-dimensional finite element that the device width is as long as 20 mm3).4). Ogasawara method. The circulator consists of a hexagonal YIG reported that Y-junction circulators with CPW ferrite substrate and a Y-junction with coplanar successfully operated at some frequencies. However, no waveguide transmission lines. Operating at 7 GHz, the detail of the circulators and their transmission circulator has an insertion loss •bS21•b of 0.69 dB, isolation characteristics were given in his papers). Since the |S31| of 32.7 dB, retum loss |S11| of 32.2 dB, a皿d abovementioned pioneering work, no significant progress bandwidth of 77 MHz. The nonreciprocal operation of the in research on CPW circulators has been reported. circulator is attributed to the wavy nonuniform The purpose of this study is to propose a small distribution of the electric field in the YIG ferrite circulator with a CPW structure and operation frequency substrate.
    [Show full text]
  • Role of Circulator, Isolator and Power Divider in the C-Band Microwave Front End System
    Role of Circulator, Isolator and Power Divider in the C-Band Microwave Front End System C. Chandrasekharan, S. Raghavendran & Sumi Sunny VSSC/ISRO, Amal Jyothi College of Engineering E-mail : [email protected] dividers, attenuators and crystal detectors are Abstract - In space communications, the transponder aids in tracking the launch vehicle. Microwave Front End characterized and selected. System is designed for testing the onboard transponder. Those selected devices are inter-connected and Microwave front end unit acts as an interface to connect tested. Next step is the complete integration including the high power onboard transponder to the ground RF RF cables routing and device fixation to chassis. Then checkout system with suitable isolation between them. Microwave front end unit basically consists of microwave integrated level testing is performed and finally it is devices like circulator, isolator, attenuator, power divider deployed in the test bed. and crystal detector with RF cables and adaptors interconnecting them. In this paper, the devices like II. DESIGN AND OPERATION OF MICROWAVE circulator, isolator and power divider are characterized FRONT END SYSTEM based on the study of performance of each device in tandem with the theoretical specification of the devices in Based on the studies of characteristics and the designated frequency range and design procedure of performance analysis, various microwave devices are microwave front end unit is also explained. characterized and the required devices like circulators, Keywords - Circulator, Isolator, Microwave Front End Unit, isolators, power dividers and attenuators suitable for the Transponder. desired application are selected. Those selected devices are inter-connected and tested. Next step is the complete I.
    [Show full text]
  • The Stripline Circulator Theory and Practice
    The Stripline Circulator Theory and Practice By J. HELSZAJN The Stripline Circulator The Stripline Circulator Theory and Practice By J. HELSZAJN Copyright # 2008 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc. Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http:// www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
    [Show full text]
  • A Full-Duplex Radio Using a CMOS Non-Magnetic Circulator Achieving +95 Db Overall SIC
    A Full-Duplex Radio Using a CMOS Non-Magnetic Circulator Achieving +95 dB Overall SIC Aravind Nagulu, Tingjun Chen, Gil Zussman, and Harish Krishnaswamy Department of Electrical Engineering, Columbia University, New York, NY 10027, USA. (Invited Paper) Abstract—Full-duplex (FD) wireless is an emerging wireless communication paradigm where the transmitter and the receiver operate simultaneously at the same frequency. One major challenge in realizing FD wireless is the interference of the TX signal saturating the receiver, commonly referred to self-interference (SI). Traditionally, self-interference cancellation (SIC) is achieved in the antenna, RF/analog, and digital domains. In the antenna domain, SIC can be achieved using a pair of separate TX and RX antennas, or using a single antenna shared by the TX and RX through a magnetic circulator, which is usually bulky, expensive, and not integrable with CMOS. Recent advances, however, have shown the feasibility of realizing high-performance non-reciprocal circulators in CMOS based on spatio-temporal modulation. In this work, we demonstrate a high Fig. 1. High power handing circulator with inductor-free antenna balancing. power handling FD radio using a USRP SDR which employs SIC (i) at the antenna interface using a watt-level power-handling recently, architectural advances have enabled these CMOS CMOS integrated, magnetic-free circulator, (ii) in the RF domain time-modulated circulators to achieve watt-level transmitter using a compact RF canceler, and (iii) in the digital domain. Our power handling and wideband and tunable isolation [5]. In prototyped FD radio achieves +95 dB overall SIC at +15 dBm this work, we present an FD radio using this highly linear TX power level.
    [Show full text]
  • Microwave Isolator
    Smita Desai et al, International Journal of Computer Science and Mobile Computing, Vol.6 Issue.10, October- 2017, pg. 59-66 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IMPACT FACTOR: 6.017 IJCSMC, Vol. 6, Issue. 10, October 2017, pg.59 – 66 Microwave Isolator 1Mrs. Smita Desai, 2Mr. Amit Uppin, 3Miss. Shreya Desai 1Department of Computer Science, Bharatesh College of Computer Applications, Belagavi, Karnataka, India [email protected] 2Electronics and Communications, KLE‟s Dr. M.S. Sheshgiri, College of Engineering and Technology, Belagavi, Karnataka, India [email protected] 3Electronics and Communications, Gogte Institute of Technology, Belagavi, Karnataka, India [email protected] Abstract— This paper looks into different specifications of the isolator and what they mean. After knowing the specifications and the dimensions required we need to find out the type of ferrite to be used. Because our main aim in this research is not to design the isolator but to find out the type of isolator ferrite to be used by performing a literature survey of current ferrites used in isolator and find the one that best suits our needs. Important applications of ferrite materials, negative index, electro-magnetic interference suppression are discussed in this paper. Here we review the recent advancements in the processing isolator ferrites. Keywords— Microwave Isolator, ferrite, Isolator Ferrite, microwave heating, microwave circulator. I. INTRODUCTION Microwave heating is an emerging field of technology in RF that is quick and efficient for materials that are difficult to heat by conventional methods like convection or infrared.
    [Show full text]
  • Quasi-Circulator Using an Asymmetric Coupler for Tx Leakage Cancellation
    electronics Article Quasi-Circulator Using an Asymmetric Coupler for Tx Leakage Cancellation Bo-Yoon Yoo, Jae-Hyun Park and Jong-Ryul Yang * ID Department of Electronic Engineering, Yeungnam University, Gyeongbuk 38541, Korea; [email protected] (B.-Y.Y.); [email protected] (J.-H.P.) * Correspondence: [email protected]; Tel.: +82-53-810-2495 Received: 20 July 2018; Accepted: 31 August 2018; Published: 1 September 2018 Abstract: A quasi-circulator is proposed by using an asymmetric coupler with high isolation between the transmitting (Tx) and receiving (Rx) ports. The proposed quasi-circulator consists of quarter-wave transmission lines, which have unbalanced characteristic impedances and the terminated port, which is purposely unmatched with the reference impedance in the coupler. The port compensates for the asymmetric impedances of the coupler using the proposed design parameter. Because of its asymmetric structure and the usage of the unmatched port, the proposed circulator can be accurately designed to have high Tx–Rx isolation without increasing the signal losses in the Tx and Rx paths at the operating frequency. The proposed quasi-circulators show isolation improvements of 9.07 dB at 2.45 GHz and 7.95 dB at 24.125 GHz compared with conventional circulators using the symmetric couplers. The characteristic improvement of the proposed quasi-circulator was demonstrated by the increase of the detectable range of the 2.45 GHz Doppler radar sensor with the quasi-circulator. Keywords: quasi-circulator; asymmetric coupler; Tx leakage cancellation; planar circulator; hybrid coupler design; passive components 1. Introduction In electromagnetic-wave application systems such as radar sensors and wireless communication systems, the number and size of antennas should be considered in the implementation of the miniaturized module [1–4].
    [Show full text]
  • Download Full Article
    Progress In Electromagnetics Research Letters, Vol. 7, 139–148, 2009 A CANCELLATION NETWORK FOR FULL-DUPLEX FRONT END CIRCUIT Y. K. Chan and V. C. Koo Faculty of Engineering & Technology Multimedia University Jalan Ayer Keroh Lama, Bukit Beruang, Melaka 75450, Malaysia B. K. Chung and H. T. Chuah University Tungku Abdul Rahman 13, Jalan 13/6, Petaling Jaya, Selangor 46200, Malaysia Abstract—A circulator is needed in a C-band airborne synthetic aperture radar system which employs single antenna configuration. The circulator provides full-duplex capability to transmit high- power RF signal and receive the echo signal via the same antenna simultaneously. Commercially available circulators with moderate isolation are inadequate for this application. An innovative Cancellation Network (CN) has been designed to enhance the performance of the conventional circulator. This paper highlights the conceptual design and measurement results of the CN. An improvement of more than 27 dB has been achieved. 1. INTRODUCTION A circulator is a three-port non-reciprocal device that passes microwave energy in a forward direction but provides isolation in reverse direction. Circulator has been widely used in transmit and receive (T/R) modules of communication and radar system as a duplexer [1, 2]. Other applications include time delay switching application [3] and phase shifter [4]. Conventional ferrite circulators are constructed with permanent magnets and ferrite materials on microstrip circuit. The non-reciprocal action is brought by gyromagnetic action [1]. A new approach for realization of microwave circulator makes use of the non- reciprocal properties of microwave field effect transistor [5–7]. This Corresponding author: Y.
    [Show full text]