TABLE 18-1 Some Common Classes of Carbonyl Compounds

Total Page:16

File Type:pdf, Size:1020Kb

TABLE 18-1 Some Common Classes of Carbonyl Compounds TABLE 18-1 Some Common Classes of Carbonyl Compounds Class General Formula Class General Formula O O ' ' ketones R9C9RЈ aldehydes R9C9H O O ' ' carboxylic acids R9C9OH acid chlorides R9C9Cl O O ' ' 9 9 9 Ј 9 9 esters R C O R amides R C NH2 AAALBKS0 Figure Number: 18 00.01 T01 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E length energy ketone CObond 1.23 Å 178 kcal/mol R (745 kJ/mol) 120° C O R 120° alkene C C bond 1.34 Å 146 kcal/mol (611 kJ/mol) AAALBKU0 Figure Number: 18 00.03 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E R R Ϫ C O ϩC O R R major minor AAALBKV0 Figure Number: 18 00.04 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E O O 9 9 9 9 9 9 9 CH3CH2CH2CH3 CH3 O CH2CH3 CH3CH2 C H CH3 C CH3 CH3CH2CH2 OH butane methoxyethane propanal acetone 1-propanol bp 0°C bp 8°C bp 49°C bp 56°C bp 97°C AAALBLI0 Figure Number: 18 00.17 UN 1-5 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E about 1685 cmϪ1 O OϪ C C C C ϩ C C O 1685 cmϪ1 O 1690 cmϪ1 O 1745 cmϪ1 O 1815 cmϪ1 C CH3 H acetophenone 2-butenal cyclopentanone cyclopropanone AAALBLM0 Figure Number: 18 00.22 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E a carbon a carbon a carbon O O O Ј R CH2 C H R C CH3 R C CH2R dd2.4 9–d10 d2.1 d2.4 an aldehyde a methyl ketone other ketones AAALBLN0 Figure Number: 18 00.23 UN 1-3 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E 0Hz 50Hz 0Hz 50Hz O C a bg H CH2 CH2 CH3 7 Hz splitting distance 7 Hz splitting distance 9.8d 9.7d 2.5d 2.4d 10 9 8 7 6 5 4 3 2 1 0 d (ppm) AAALBLO0 Figure Number: 18 01 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E 44 31 14 24 O 208 23 44 24 31 23 14 30 C H3C CH2CH2CH2CH2CH3 30 208 200 180 160 140 120 100 80 60 40 20 0 AAALBLP0 Figure Number: 18 02 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E + O . + + . CH3 C CH2CH3 CH3 C O CH2CH3 43 radical cation acylium ion ethyl radical m/z 72 m/z 43 (base peak) loss of 29 + O . + + . CH3 C CH2CH3 CH3CH2 C O CH3 57 radical cation acylium ion methyl radical m/z 72 m/z 57 loss of 15 100 43 80 O 60 CH3 C CH2CH3 40 ϩ abundance M 72 20 57 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 m/z AAALBLT0 Figure Number: 18 03 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E 100 44 72 80 M Ϫ 28 O 60 ϩ 29 M C abg 40 abundance H CH CH CH 57 2 2 3 20 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 m/z O .+ + + . H C CH2CH2CH3 H C O CH2CH2CH3 29 m/z 72 m/z 29 loss of 43 + . H H O 57 .+ .O +O. + CH + . H C CH2 CH2 CH3 C 2 C CH2 CH3 H C H C loss of 15 H H β, γ cleavage stabilized cation m/z 57 McLafferty rearrangement m/z 72 m/z 44 (base peak) + loss of 28 AAALBLU0 Figure Number: 18 04 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E g hydrogen OH+ + . O H . H C H H OH.+ H C C H C H H H C = + C C C HH C C C C H H H H H H HH H H H ethylene enol m/z 72 loss of 28 m/z 44 McLafferty rearrangement of butyraldehyde R .+ O H + H R O H + . O C . a b g A B R R' C C C CR = B R' CC + CC C C A B R A A B B R C R' B enol loss of alkene A A McLafferty rearrangement of a general ketone or aldehyde AAALBLW0 Figure Number: 18 05 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E + − + − p* p* C O CO − + forbidden − + allowed n C O + + p nonbonding C O orbital − − "allowed" transition "forbidden" transition e ≅ 5000 – 200,000 e ≅ 10 – 200 AAALBLZ0 Figure Number: 18 06 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E H O Na Cr O OH 2 2 7 H2SO4 borneol camphor (88%) Primary alcohols : aldehydes OH O O & 9 [oxidizing agent] 9 9 [overoxidation] 9 9 R CH2 −2 H R C H [O] R C OH primary alcohol aldehyde carboxylic acid AAALBMI0 Figure Number: 18 07.08 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E + CH OH 9 − CHO 2 N H CrO3Cl (PCC) cyclohexylmethanol cyclohexanecarbaldehyde (90%) AAALBMJ0 Figure Number: 18 07.09 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E R RЈ R RЈ (1) O3 CC C O ϩ O C (2) (CH3)2S H RЉ H RЉ AAALBMK0 Figure Number: 18 07.10 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E CH3 CH3 (1) O3 O (2) Me S 2 O H 1-methylcyclohexene 6-oxoheptanal (65%) AAALBML0 Figure Number: 18 07.11 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E G O O O AlCl3 R C Cl ϩ G C R ϩ C R R is alkyl or aryl; G is hydrogen, a halogen, or an activating group. G O O C Cl AlCl3 O2N O2N p-nitrobenzoyl chloride p-nitrobenzophenone (90%) AAALBMM0 Figure Number: 18 07.12 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E R H O H 2+ + Hg , H2SO4 H RCC H CC RCC H H2O HO H H alkyne enol (not isolated) methyl ketone Example H O C HO H C C H SO , Hg2+ + 2 4 CC H CH H 3 H2O ethynylcyclohexane enol cyclohexyl methyl ketone (90%) AAALBMO0 Figure Number: 18 07.14 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E RH O − (1) Sia2BH OH RCC H CC RCH2 C H (2) H2O2, NaOH H OH alkyne enol (not isolated) aldehyde Example H O C C CH2 C H (1) Sia2BH (2) H2O2, NaOH ethynylcyclohexane cyclohexylethanal (65%) AAALBMP0 Figure Number: 18 07.15 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E ϩ ϩ C4H9 —Li C4H10 S S n-butyllithium S Ϫ S butane H H H ϭ 1,3-dithiane, pKa 32 dithiane anion AAALBMY0 Figure Number: 18 07.25 P18.6 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E ϩ H , HgCl2 ϩ R X O H O S S S S 2 Ϫ alkylating agent H R (primary alkyl halide) H R H aldehyde dithiane anion thioacetal AAALBMZ0 Figure Number: 18 07.26 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E ϩ (1) BuLi (1) BuLi H , HgCl2 O 9 S S (2) PhCH2 Br S S (2) CH3CH2CH2Br S S H2O PhCH2 CH2CH2CH3 PhCH2 H PhCH2 CH2CH2CH3 1,3-dithiane thioacetal thioketal ketone AAALBNB0 Figure Number: 18 07.28 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E O O OϪLiϩ OH O ϩ Ϫ LiOH RЈ9Li H3O H2O R9C9OH R9C9O Li R9C9OϪLiϩ R9C9OH R9C9RЈ RЈ RЈ carboxylic acid lithium carboxylate dianion hydrate ketone AAALBNC0 Figure Number: 18 07.29 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E O Li O C OH 2 OLi OH C ϩ Ϫ H3O H2O C OLi C OH (phenyllithium) cyclohexane cyclohexyl phenyl ketone carboxylic acid dianion hydrate AAALBND0 Figure Number: 18 07.30 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E R′ Mg X R′ MgX R′ H R′ ϩ H Oϩ H 3 ϩ ϩ RCN C N C N C O NH4 R R R nucleophilic attack Mg salt of imine imine ketone AAALBNG0 Figure Number: 18 07.34 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E MgBr Example N O CN MgBr H Oϩ ϩ ether 3 benzonitrile phenylmagnesium bromide benzophenone imine benzophenone (magnesium salt) (80%) AAALBNH0 Figure Number: 18 07.35 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E O O Li AlH(O-t-Bu)3 R9C9Cl R9C9H lithium aluminum tri(t-butoxy)hydride acid chloride aldehyde AAALBNK0 Figure Number: 18 07.38 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E Example CH3 O CH3 O CH3 O SOCl Li+ −AlH(O-t-Bu) 9 9 2 9 9 3 9 9 CH3CHCH2 C OH CH3CHCH2 C Cl CH3CHCH2 C H isovaleric acid isovaleroyl chloride isovaleraldehyde (65%) AAALBNL0 Figure Number: 18 07.39 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E O O ' ' + Ј9 9 Ј9 9 + 9 + R2 CuLiR C Cl R C R R Cu LiCl a lithium dialkylcuprate (Gilman reagent) AAALBNN0 Figure Number: 18 07.41 UN ©2003 by Prentice Hall, Inc.
Recommended publications
  • Carbonyl Compounds
    CARBONYL COMPOUNDS PART-4, PPT-4, SEM-3 Dr. Kalyan Kumar Mandal Associate Professor St. Paul’s C. M. College Kolkata CONTENTS: CARBONYL COMPOUNDS PART-4 • Formation of Acetal/Ketal • Formation of Thioacetal Reaction of Carbonyl Compounds with Alcohols • Carbonyl compounds react with alcohols. The product of this reaction is known as a hemiacetal, because it is halfway to an acetal. This reaction is analogous to hydrate formation from aldehydes and ketones. The mechanism follows in the footsteps of hydrate formation: ROH is used instead of HOH (water). This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata Formation of Cyclic Hemiacetal • Hemiacetal formation is reversible, and they are stabilized by the same special structural features as those of hydrates. However, hemiacetals can also gain stability by being cyclic. • Cyclic hemiacetal is formed when the carbonyl group and the attacking hydroxyl group are part of the same molecule. The reaction is an intramolecular (within the same molecule) addition, as opposed to the intermolecular (between two molecules) ones. This is an example of ring-chain tautomerism. This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata Formation of Cyclic Hemiacetal • Although the cyclic hemiacetal is more stable, it is still in equilibrium with some of the open-chain hydroxyaldehyde form. Its stability, and how easily it forms, depend on the size of the ring. • Five- and six-membered rings involve less strain (their bonds are free to adopt 109° or 120° angles) in comparison to the three- membered rings, and therefore five or six-membered hemiacetals are very common.
    [Show full text]
  • Enantioselective Organocatalytic Aldehyde–Aldehyde Cross-Aldol Couplings
    Tetrahedron 60 (2004) 7705–7714 Enantioselective organocatalytic aldehyde–aldehyde cross-aldol couplings. The broad utility of a-thioacetal aldehydes R. Ian Storer and David W. C. MacMillan* Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd; Pasadena, CA 91125, USA Received 6 April 2004; accepted 9 April 2004 Available online 15 July 2004 This manuscript is dedicated to Professor D. Seebach for his pioneering work in the area of asymmetric synthesis Abstract—An asymmetric proline catalyzed aldol reaction with a-thioacetal aldehydes has been developed. Thioacetal bearing aldehydes readily participate as electrophilic cross-aldol partners with a broad range of aldehyde and ketone donors. High levels of reaction efficiency as well as diastereo- and enantiocontrol are observed in the production of anti-aldol adducts. q 2004 Elsevier Ltd. All rights reserved. 1. Introduction enantioselective cross coupling allows access to highly oxidized, stereodefined synthons of broad versatility. More- The aldol reaction is widely considered to be one of the most over, the observed reactivity profile of ‘viable-electrophile, important technologies for carbon–carbon bond formation non-nucleophile’ has established a-thioacetal aldehydes as in chemical synthesis.1 Over the last thirty years, seminal research from the laboratories of Evans,2 Heathcock,3 Masamune4 and Mukaiyama5 have established this vener- able reaction as the principal chemical method for the stereoselective construction of complex polyol architecture. Recently, studies by Barbas,6 Evans,7 List,8 Shair,9 Shibasaki,10 and Trost11 have outlined the first examples of enantioselective direct aldol reactions, an important class of metal or proline catalyzed transformation that does not require the pregeneration of enolates or enolate equivalents.
    [Show full text]
  • [Beta]-Keto Sulfoxides Leo Arthur Ochrymowycz Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Chemistry of [beta]-keto sulfoxides Leo Arthur Ochrymowycz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Ochrymowycz, Leo Arthur, "Chemistry of [beta]-keto sulfoxides " (1969). Retrospective Theses and Dissertations. 3766. https://lib.dr.iastate.edu/rtd/3766 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received 70-7726 OCHRYMOWYCZ, Leo Arthur, 1943- CHEMISTRY OF p -KETO SULFOXIDES. Iowa State University, Ph.D., 1969 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan CHEMISTRY OF jg-KETO SULFOXIDES by Leo Arthur Ochrymowycz A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject ; Organic Chemistry Approved : Signature was redacted for privacy. f Major Work Signature was redacted for privacy. d of Maj Department Signature was redacted for privacy. Graduate College Iowa State University Of Science and Technology Ames, Iowa 1969 il TABLE OP CONTENTS Page
    [Show full text]
  • Sulfur-Facilitated Organic Synthesis
    Sulfur-Facilitated Organic Synthesis Andrew McClory Monday March 16, 2009 8:00 pm, 147 Noyes S S S S S S 'Attempts to make thioacetone by the cracking of trithioacetone gave rise to an offensive smell which spread rapidly over a great area of the town causing fainting, vomiting and a panic evacuation'...'the laboratory work was abandoned.' -Researcher, Freiburg, 1889 S S S 'Attempts to make thioacetone by the cracking of trithioacetone gave rise to an offensive smell which spread rapidly over a great area of the town causing fainting, vomiting and a panic evacuation'...'the laboratory work was abandoned.' -Researcher, Freiburg, 1889 'Recently we found ourselves with an odour problem beyond our worst expectations. During early experiments, a stopper jumped from a bottle of residues, and, although replaced at once, resulted in an immediate complaint of nausea and sickness from colleagues working in a building two hundred yards away. Two of our chemists who had done no more than investigate the cracking of minute amounts of trithioacetone found themselves the object of hostile stares in a restaurant and suffered the humiliation of having a waitress spray the area around them with a deodorant. The odours defied the expected effects of dilution since workers in the laboratory did not find the odours intolerable...and genuinely denied responsibility since they were working in closed systems. To convince them otherwise, they were dispersed with other observers around the laboratory, at distances up to a quarter of a mile, and one drop of either acetone gem-dithiol or the mother liquors from crude thioacetone crystallizations were placed on a watch glass in a fume cupboard.
    [Show full text]
  • CHAPTER-In Catalytic Chemical Transformations: Introduction: a Catalyst Is Substance That Accelerates a Rate of Chemical Reaction but Is Not Consumed in the Reaction
    CHAPTER-in Catalytic Chemical Transformations: Introduction: A catalyst is substance that accelerates a rate of chemical reaction but is not consumed in the reaction. Catalysts can be recycled, which play a key role in biochemical processes and most of industrial and chemical processes. The catalysts may be of diflFerent types, acids, bases, organometallics, enzymes, polymer supported, molecular sieves, zeolites, clays, phase transfer catalysts, metals and metal oxides, transition metal complexes etc. They have the ability to catalyse variety of chemical reactions such as (1) Decomposition (2) Hydration (3) Dehydration (4) Reduction (5) Oxidation (6) Hydrogenation (7) Dehydrogenation (8) Halogenation (F, Cl, Br, I) (9) Sulfurization (10) Desulflirization (11) Alkylation (12) Condensation (13) Polymerization (14) Isomerization etc. A catalyst may control a chemical reaction (1) by increasing the reactivity between molecules brought into play in the reaction and (2) by facilitating the interaction between the reacting molecules by loosening certain linkages or bonds within them. For example in oxidation reaction catalyst activate oxygen and help the reactant to absorb oxygen. In catalytic hydration or dehydration, catalyst helps either addition of water or in removal of water during reaction process. In catalytic hydrogenation catalyst helps the addition of hydrogen to substance by ionising hydrogen gas. In dehydrogenation reaction catalyst helps in the removal of hydrogen gas which is liberated during process. In catalytic halogenation or dehalogenation catalyst helps addition or removal of halogens by radical or ionic mechanism. In alkylation or acylation reactions catalyst assists in formation of cation as well as stabilizing it in the process. In condensation process catalyst helps either removal of water or other eliminated products.
    [Show full text]
  • Ketones and Aldehydes
    Ketones and Aldehydes The carbonyl group is of central importance in organic chemistry because of its ubiquity. Without studying the carbonyl group in depth we have already encountered numerous examples of this functional group (ketones, aldehydes, carboxylic acids, acid chlorides, etc). The simplest carbonyl compounds are aldehydes and ketones. A ketone has two alkyl (or aryl) groups bonded to the carbonyl carbon. O O R C H R C R aldehyde ketone An aldehyde has one alkyl (or aryl) group and one hydrogen bonded to the carbonyl carbon. Structure of the carbonyl group The carbonyl carbon is sp2 hybridized, and has a partially filled unhybridized p orbital perpendicular to the framework. Ch18 Ketones and Aldehydes (landscape) Page 1 The oxygen is also sp2 hybridized, with the 2 lone pairs occupying sp2 orbitals. This leaves one electron in a p orbital. These p orbitals form the carbon oxygen bond. The C=O double bond is like a C=C double bond except the carbonyl double bond is shorter and stronger. The carbonyl group has a large dipole moment due to the polarity of the double bond. Oxygen is more electronegative than carbon, and so the bond is polarized toward the oxygen. The attraction of the weakly held electrons toward oxygen can be represented by the two following resonance structures. The first resonance structure is the major contributor, but the other contributes in a small amount, which helps explain the dipole moment. It is this polarization that creates the reactivity of the carbonyl groups (carbon is electrophilic/LA, and the oxygen is nucleophilic/LB).
    [Show full text]
  • Organosulfur Compounds and Reactions
    Organosulfur compounds and reactions Key reactions of Organosulfur Compounds (Students references) Organosulfur compounds and reactions 2 2 6 2 4 Sulfur has the electronic configuration 1s 2s 2p 3s 3p . Sulfur exists in acyclic and cyclic Sn species or allotropic form owing to have a marked tendency to react with itself (catenation). The sulfur-sulfur bond in elemental sulfur is probably a resonance hybrid for which S8 ring exists in the energetically favoured crown shape. All the chain and ring forms of sulfur are thermodynamically less stable than cyclooctasulfur (S8) at 25°C. Saturated hydrocarbons can be dehydrogenated by heating with sulfur. For example, cyclohexane is converted to benzene. Sulfur, like most elements in the second and higher rows of the periodic table, is reluctant to form normal π-double bonds; thus, thiocarbonyl (C=S) compounds are comparatively rare and are usually unstable with a tendency to polymerise. This is a result of the relatively low effectiveness of pπ-dπ bonding involving lateral overlap of the 3p-orbitals and arising from the larger size of the sulfur atom as compared with carbon. The sulfur atom (atomic radius 1.02Å; 1 Å = 0.1 nm) is larger than oxygen (atomic radius 0.73 Å). Sulfur is consequently more polarisable than oxygen; the sulfur lone pairs of electrons are better nucleophiles but weaker bases in reactions with acids. The outer electronic shell in sulfur contains not only s-electrons and p- electrons but also vacant 3d-orbitals which can be utilised in bonding. The 3p orbitals of sulfur are too large to overlap effectively with 2p orbitals on oxygen or carbon.
    [Show full text]
  • Rimpilainen.Pdf (2.335Mt)
    TATU RIMPILÄINEN AEROBIC OXIDATION OF LITHIATED 1,3-DITHIANES AND DITHIOACETALS Master of Science thesis Examiners: Adj. Prof. Nuno R. Candeias M.Sc. João R. Vale Examiners and topic approved by the Faculty Council of the Faculty of Natural Sciences on 27th September 2017 i ABSTRACT TATU RIMPILÄINEN: Aerobic Oxidation of Lithiated 1,3-Dithianes and Dithioacetals Tampere University of Technology Master of Science thesis, 60 pages, 37 Appendix pages December 2017 Master’s Degree Programme in Environmental and Energy Engineering Major: Chemistry Examiners: Adjunct Professor Nuno R. Candeias and M.Sc. João R. Vale Keywords: aerobic oxidation; 1,3-dithiane; dithioacetal; organic chemistry Lithiated compounds are well known to be reactive towards oxygen. The initial studies conducted at Tampere University of Technology had shown that upon exposure of 2-aryl- 2-lithio-1,3-dithianes to air, three equivalents of 1,3-dithianes undergo an autooxidative condensation forming previously unreported products in good yields. Since only cyclic 2- aryl-1,3-dithianes were previously studied, the objective of this thesis was to study whether the scope of the oxidation reaction could be extended to acyclic lithiated benzaldehyde dithioacetals and 2-alkyl-1,3-dithianes. The study was performed by preparing the dithioac- etals and 1,3-dithianes and then oxidizing the lithiated substrates. The results of the oxida- tion reactions were evaluated by determining the structures of isolated products by using NMR and mass spectrometry and then comparing the relative yields of the products. The aerobic oxidations of lithiated benzaldehyde dithioacetals derived from primary, sec- ondary and benzene thiols yielded α-sulfide ketones and orthothioesters.
    [Show full text]
  • The Role of 1,3-Dithianes in Natural Product Synthesis
    Tetrahedron 59 (2003) 6147–6212 Tetrahedron report number 647 The role of 1,3-dithianes in natural product synthesis Miguel Yus, Carmen Na´jera and Francisco Foubelo* Departamento de Quı´mica Orga´nica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain Received 16 June 2003 This review is dedicated to Professors E. J. Corey and D. Seebach for their seminal contributions to 2-lithio-1,3-dithianes Contents 1. Introduction 6148 2. C–C Bond-forming reactions 6148 2.1. Reactions with alkyl halides, sulfonates and triflates 6149 2.2. Reactions with epoxides 6160 2.3. Reactions with carbonyl compounds 6170 2.4. Reactions with acylating reagents 6174 2.5. Reactions with electron poor-olefins 6179 2.6. Reactions with metal–arene complexes 6184 2.7. Combined methods 6185 2.7.1. Reactions with alkyl halides or sulfonates and epoxides 6186 2.7.2. Reactions with alkyl halides and carbonyl compounds 6190 2.7.3. Reactions with alkyl halides and acylating reagents 6190 2.7.4. Reactions with epoxides and carbonyl compounds 6191 2.7.5. Reactions with epoxides and acylating reagents 6193 2.7.6. Reactions with alkyl triflates, epoxides, carbonyl compounds and acylating reagents 6194 3. Other reactions 6195 3.1. Reactions involving ketene dithioacetals 6195 3.2. 1,3-Dithiane as a protecting group 6199 3.3. 2-(1,3-Dithianyl) cation as an electrophile 6204 4. Conclusions 6205 Keywords: carbanions; organolithium compounds; dithioacetal moiety. Abbreviations: A-15E, Amberlyst 15E; 9-BBN, 9-borabicyclo[3.3.1]nonane; Bn, benzyl; Boc,
    [Show full text]
  • A Versatile Synthetic Approach Towards the Synthesis of New Polycyclic Aromatic Hydrocarbons Using Scholl, Grignard and Umpolung Chemistries
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2010 A versatile synthetic approach towards the synthesis of new polycyclic aromatic hydrocarbons using Scholl, Grignard and Umpolung chemistries Joseph M. Dunn University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Dunn, Joseph M., "A versatile synthetic approach towards the synthesis of new polycyclic aromatic hydrocarbons using Scholl, Grignard and Umpolung chemistries" (2010). Master's Theses and Capstones. 561. https://scholars.unh.edu/thesis/561 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. A Versatile Synthetic Approach Towards the Synthesis of New Polycyclic Aromatic Hydrocarbons Using Scholl, Grignard and Umpolung Chemistries BY Joseph M. Dunn B.S., University of New Hampshire 2006 THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the degree of Master of Science In Chemistry September 2010 UMI Number: 1486971 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 1486971 Copyright 2010 by ProQuest LLC.
    [Show full text]
  • Reductions in Organic Chemistry (Hudlicky)
    REDUCTIONS IN ORGANIC CHEMISTRY MILOS HUDLICKY Professor of Chemistry Virginia Polytechnic Institute and State University USA ELLIS HORWOOD LIMITED Publishers • Chichester Halsted Press: a division of JOHN WILEY & SONS New York • Chichester • Brisbane • Toronto First published in 1984 by ELLIS HORWOOD LIMITED Market Cross House, Cooper Street, Chichester, West Sussex, P019 lEB, England The publisher's colophon is reproduced from James Gillison's drawing of the ancient Market Cross, Chichester. Distributors: Australia, New Zealand, South-east Asia: Jacaranda-Wiley Ltd., Jacaranda Press, JOHN WILEY & SONS INC., G.P.O. Box 859, Brisbane, Queensland 40001 , Australia Canada: JOHN WILEY & SONS CANADA LIMITED 22 Worcester Road, Rexdale, Ontario, Canada. Europe, Africa: JOHN WILEY & SONS LIMITED Baffins Lane, Chichester, West Sussex, England, North and South America and the rest of the world: Halsted Press: a division of JOHN WILEY & SONS 605 Third Avenue, New York, N.Y. 10016, U.S.A. ©1984 M. Hudlicky /Ellis Horwood Umited British Library Cataloguing in Publication Data Hudlicky, Milog Reductions in organic chemistry. - (Ellis Horwood series in chemical science) 1. Reduction, Chemical 2. Chemistry, Organic I. Title 547’.23 QD281.R4 Library of Congress Card No. 84-3768 ISBN 0-85312-345-4 (Ellis Horwood Limited) ISBN 0-470-20018-9 (Halsted Press) Printed in Great Britain by Butler <Sc Tanner, Frome, Somerset. COPYRIGHT NOTICE - All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the permission of Ellis Horwood Limited, Market Cross House, Cooper Street, Chichester, West Sussex, England.
    [Show full text]
  • Mild Deprotection of Dithioacetals by Tmscl/Nai Association in CH3CN Yunxin Yao, Guangkuan Zhao, Abdallah Hamzé, Mouad Alami, Olivier Provot
    Mild Deprotection of Dithioacetals by TMSCl/NaI Association in CH3CN Yunxin Yao, Guangkuan Zhao, Abdallah Hamzé, Mouad Alami, Olivier Provot To cite this version: Yunxin Yao, Guangkuan Zhao, Abdallah Hamzé, Mouad Alami, Olivier Provot. Mild Deprotection of Dithioacetals by TMSCl/NaI Association in CH3CN. European Journal of Organic Chemistry, Wiley-VCH Verlag, In press, 10.1002/ejoc.202000979. hal-02910296 HAL Id: hal-02910296 https://hal.archives-ouvertes.fr/hal-02910296 Submitted on 1 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mild Deprotection of Dithioacetals by TMSCl/NaI Association in CH3CN Yunxin Yao,a Guangkuan Zhao,a Abdallah Hamze,a Mouad Alami,a and Olivier Provota* a Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France. Phone: +33 (0)146835847. Email: [email protected] Received: Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201######.((Please delete if not appropriate)) Abstract. A mild process using a combination of TMSCl and NaI in under these conditions to give the expected ketones in high yields. The acetonitrile is used to regenerate carbonyl compounds from a variety of methodology proposed herein is a good alternative to the existing dithiane and dithiolane derivatives.
    [Show full text]