Reductions in Organic Chemistry (Hudlicky)

Total Page:16

File Type:pdf, Size:1020Kb

Reductions in Organic Chemistry (Hudlicky) REDUCTIONS IN ORGANIC CHEMISTRY MILOS HUDLICKY Professor of Chemistry Virginia Polytechnic Institute and State University USA ELLIS HORWOOD LIMITED Publishers • Chichester Halsted Press: a division of JOHN WILEY & SONS New York • Chichester • Brisbane • Toronto First published in 1984 by ELLIS HORWOOD LIMITED Market Cross House, Cooper Street, Chichester, West Sussex, P019 lEB, England The publisher's colophon is reproduced from James Gillison's drawing of the ancient Market Cross, Chichester. Distributors: Australia, New Zealand, South-east Asia: Jacaranda-Wiley Ltd., Jacaranda Press, JOHN WILEY & SONS INC., G.P.O. Box 859, Brisbane, Queensland 40001 , Australia Canada: JOHN WILEY & SONS CANADA LIMITED 22 Worcester Road, Rexdale, Ontario, Canada. Europe, Africa: JOHN WILEY & SONS LIMITED Baffins Lane, Chichester, West Sussex, England, North and South America and the rest of the world: Halsted Press: a division of JOHN WILEY & SONS 605 Third Avenue, New York, N.Y. 10016, U.S.A. ©1984 M. Hudlicky /Ellis Horwood Umited British Library Cataloguing in Publication Data Hudlicky, Milog Reductions in organic chemistry. - (Ellis Horwood series in chemical science) 1. Reduction, Chemical 2. Chemistry, Organic I. Title 547’.23 QD281.R4 Library of Congress Card No. 84-3768 ISBN 0-85312-345-4 (Ellis Horwood Limited) ISBN 0-470-20018-9 (Halsted Press) Printed in Great Britain by Butler <Sc Tanner, Frome, Somerset. COPYRIGHT NOTICE - All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the permission of Ellis Horwood Limited, Market Cross House, Cooper Street, Chichester, West Sussex, England. To whom it may concern Sic ait, et dicto citius tumida aequora placat collectasque fugat nubes solemque REDUCIT. Publius Vergilius Maro, Aeneis, I, 142-3 All springs REDUCE their currents to mine eyes. William Shakespeare, The Tragedy ofKing Richard the Third, II, 2, 68-70. 2311 TABLE OF CONTENTS PREFACE xiii INTRODUCTION xv CATEGORIES OF REDUCTION 1 Catalytic Hydrogenation 1 Mechanism and Stereochemistry of Catalytic Hydrogenation 4 Catalysts 5 Platinum 5 Palladium 7 Rhodium, Ruthenium and Rhenium 7 Nickel 8 Other Catalysts 9 Activators and Deactivators of Catalysts 10 Effects of the Amount of Catalyst, Solvent, Temperature and Pres- 1 sure Carrying out Catalytic Hydrogenation 1 Catalytic Transfer of Hydrogen 13 Reduction with Hydrides and Complex Hydrides 1 Mechanism, Stoichiometry and Stereochemistry of Reductions with 17 Hydrides Handling of Hydrides and Complex Hydrides 20 Electroreduction and Reductions with Metals 22 Mechanism and Stereochemistry 23 Electrolytic Reduction 24 Reductions with Alkali Metals 25 Reductions with Magnesium 27 Reductions with Aluminum 27 Reductions with Zinc 28 Reductions with Iron 29 Reductions with Tin 29 Reductions with Metal Compounds 30 Reductions with non-Metal Compounds 31 Reductions with Hydrogen Iodide 3 Reductions with Sulfur Compounds 32 31 viii Table of Contents Reductions with Diimide and Hydrazine 33 Reductions with Phosphorus Compounds 34 Reductions with Organic Compounds 35 THE REDUCTION OF SPECIFIC TYPES OF ORGANIC COMPOUNDS Reduction of Alkanes and Cycloalkanes 39 Reduction of Alkenes and Cycloalkenes 39 Reduction of Dienes and Polyenes 42 Reduction of Alkynes and Cycloalkynes 43 Reduction of Carbocyclic Aromatics 46 Reduction of Heterocyclic Aromatics 53 Reduction of Halogen Derivatives of Hydrocarbons and Basic Het- 62 erocycles Reduction of Haloalkanes and Halocycloalkanes 63 Reduction of Haloalkenes, Halocycloakenes and Haloalkynes 66 Reduction of Haloaromatics 67 Reduction of Nitro, Nitroso, Diazo and Azido Derivatives of Hydro- 69 carbons and Basic Heterocycles Reduction of Alcohols and Phenols and their Substitution Derivatives 76 Reduction of Ethers and their Derivatives 8 Reduction of Epoxides, Peroxides and Ozonides 83 Reduction of Sulfur Compounds (Except Sulfur Derivatives of Al- 86 dehydes. Ketones and Acids) Reduction of Amines and their Derivatives 92 Reduction of Aldehydes 96 Reduction of Aliphatic Aldehydes 96 Reduction of Aromatic Aldehydes 99 Reduction of Derivatives of Aldehydes 103 Reduction of Ketones 107 Reduction of Aliphatic Ketones 107 Reduction of Aromatic Ketones 109 Reduction of Cyclic Ketones 1 1 Reduction of Unsaturated Ketones 1 19 Reduction of Derivatives of Ketones 1 22 Reduction of Substitution Derivatives of Ketones 122 Reduction of Hydroxy and Amino Ketones 125 Reduction of Diketones and Quinones 126 Reduction of Ketals and Thioketals 1 30 Reduction of Ketimines, Ketoximes and Hydrazones 1 32 Reductive Alkylation (Reductive Amination) 134 Reduction of Carboxylic Acids 136 Reduction of Aliphatic Carboxylic Acids 137 Reduction of Aromatic Carboxylic Acids 139 Reduction of Carboxylic Acids Containing Substituents or Other 141 Functional Groups Table of Contents IX Reduction of Acyl Chlorides 144 Reduction of Acid Anhydrides 146 Reduction of Esters and Lactones of Carboxylic Acids 147 Reduction of Unsaturated Esters 1 56 Reduction of Substitution Derivatives of Esters 1 59 Reduction of Hydroxy Esters, Amino Esters, Keto Esters, Oximino 160 Esters and Ester Acids Reduction of Ortho Esters, Thio Esters and Dithio Esters 163 Reduction of Amides, Lactams and Imides 164 Reduction of Amides and Lactams Containing Double Bonds and 169 Reducible Functional Groups Reductive Amination with Carboxylic Acids 171 Reduction of Amidines, Thioamides, Imidoyl Chlorides and Hydra- 171 zides Reduction of Nitriles 1 73 Reduction of Nitriles Containing Double Bonds and Other Redu- 175 cible Functions Reduction of Organometallic Compounds 176 CORRELATION TABLES 1 77 PROCEDURES 1. Catalytic Hydrogenation under Atmospheric Pressure 201 2. Catalytic Hydrogenation with Hydrogen Generated from Sodium 202 Borohydride Hydrogenation ex situ Hydrogenation in situ 3. Catalytic Hydrogenation under Elevated Pressure 203 4. Preparationof Palladium Catalyst 205 5. Reduction with Raney Nickel 205 Hydrogenolysis of Halogens 6. Desulfurization with Raney Nickel 205 Preparation of Aldehydes from Thiol Esters Deactivation of Raney Nickel 7. Preparation of Nickel Catalyst 205 8. Homogeneous Hydrogenation 206 Preparation of the Catalyst Tris(triphenylphosphine)rhodium Chloride Reduction of Unsaturated Aldehydes to Saturated Aldehydes 9. Preparation of Lindlar Catalyst 206 10. Reduction by Catalytic Transfer of Hydrogen 206 1 1 . Preparation of Alane (Aluminum Hydride) 206 12. Preparation of Lithium Tri-rerr-butoxyaluminohydride 207 13. Analysis of Hydrides and Complex Hydrides 207 14. Reduction with Lithium Aluminum Hydride 207 Acidic Quenching. Reduction of Aldehydes and Ketones 31 X Table of Contents 15. Reduction with Lithium Aluminum Hydride 207 Alkaline Quenching. Reduction of Nitriles 16. Reduction with Lithium Tris-/er/-butoxyaluminohydride 208 Reduction of Acyl Chlorides to Aldehydes 17. Reduction with Alane (Aluminum Hydride) /n 5//W 208 Reduction of Nitriles to Amines 18. Reduction with Diisobutylalane 208 Reduction of a,P-Unsaturated Esters to Unsaturated Alcohols 19. Reduction with Borane 209 Reduction of Carboxylic Acids to Alcohols 20. Reduction with Borane in situ 209 Reduction of Esters to Alcohols 21. Reduction with Sodium Borohydride 209 Reduction of Ketones to Alcohols 22. Reduction with Sodium Cyanoborohydride 210 Reduction of Enamines to Amines 23. Reduction with Triethylsilane 210 Ionic Reduction of Alkenes Capable of Forming Carbonium Ions 24. Reduction with Stannanes 210 Hydrogenolysis of Alkyl Halides 25. Electrolytic Reduction 210 Partial Reduction of Aromatic Rings 26. Reduction with Sodium (Birch Reduction) 21 Partial Reduction of Aromatic Rings 27. Reduction with Sodium 211 Acyloin Condensation of Esters 28. Reduction with Sodium Naphthalene 212 Cleavage of Sulfonamides to Amines 29. Reduction with Sodium Amalgam 212 Preparation of Sodium Amalgam Reduction of a,P-Unsaturated Acids 30. Reduction with Aluminum Amalgam 212 Reduction of Aliphatic-Aromatic Ketones to Pinacols 3 1 . Reduction with Zinc (Clemmensen Reduction) 2 1 Reduction of Ketones to Hydrocarbons 32. Reduction with Zinc in Alkaline Solution 213 Reduction of Nitro Compounds to Hydrazo Compounds 33. Reduction with Zinc and Sodium Iodide 213 Reductive Cleavage of Sulfonates to Hydrocarbons 34. Reduction with Iron 213 Partial Reduction of Dinitro Compounds 35. Reduction with Tin 214 Preparation of Tin Amalgam Reduction of Quinones to Hydroquinones Table of Contents XI 36. Reduction with Stannous Chloride 214 Deoxygenation of Sulfoxides 37. Reduction with Chromous Chloride 214 Preparation of Chromous Chloride Reduction of lodo Ketones to Ketones 38. Reduction with Titanium Trichloride 214 Reduction of 2,4-Dinitrobenzaldehyde to 2-Amino-4-nitro- benzaldehyde 39. Reduction with Low-Valence Titanium 215 Intermolecular Reductive Coupling of Carbonyl Compounds 40. Reduction with Vanadous Chloride 215 Preparation of Vanadous Chloride Reduction of Azides to Amines 4 1 . Reduction with Hydriodic Acid 215 Reduction of Acyloins to Ketones 42. Reduction with Hydrogen Sulfide 216 Reduction of a-Diketones to Acyloins and Ketones 43. Reduction with Sodium Sulfite 216 Partial Reduction of Geminal Polyhalides 44. Reduction with Sodium Hydrosulfite (Dithionate) 216 Reduction of Nitro Compounds to Amino Compounds 45. Reduction with Hydrazine 216 WolfT-Kizhner Reductions of Ketones to Hydrocarbons 46. Reduction with Hypophosphorous Acid 217 Replacement of Aromatic Primary Amino
Recommended publications
  • "Alcohol Activation" That Would Be Stereochemically Complementary to That Involving Reaction of an Alcohol with P / S Halides (Notes of Nov 20)
    CHEM 203 Topics Discussed on Nov. 23 Desirability of a method for "alcohol activation" that would be stereochemically complementary to that involving reaction of an alcohol with P / S halides (notes of Nov 20): PBr3 CH S Na 3 overall (inversion of H (inversion) H retention configuration) Br SMe (S)-2-bromobutane (R)-configured pdt. H OH (R)-2-butanol ? (S)-configured pdt. overall H inversion SMe Sulfonyl chlorides: para-toluenesulfonyl ("tosyl") chloride, methanesulfonyl ("mesyl") chloride O O O R S Cl H3C S Cl S Cl O O O A generic sulfonyl methanesulfonyl chloride Toluene para-toluenesulfonyl chloride chloride: R = any ( "mesyl chloride" ) (= methyl benzene) ( "tosyl chloride" ) alkyl group Pyridine: a weakly basic, nucleophilic analog of benzene in which an N atom replaces a CH unit: pyridine N Reaction of primary and secondary alcohols with sulfonyl chlorides in the presence of pyridine: formation of sulfonate esters (= alkyl sulfonates): R1 O R1 O OH + Cl S R N O S R + R2 O R2 N O H Cl a generic primary or an "alkyl sulfonate" secondary alcohol ("tosylate", "mesylate," etc.) note: tertiary alcohols are insufficiently nucleophilic to react with sulfonyl chlorides Presumed mechanism for the formation of sulfonate esters from primary and secondary (but not tertiary) alcohols and sulfonyl chlorides: • slow rate of reaction of an alcohol with sulfonyl chlorides in the presence of generic bases Lecture of Nov. 23 p. 2 • pyridine as a nucleophilic catalyst that greatly accelerates the reaction of an alcohol with a sulfonyl chloride by: (i)
    [Show full text]
  • Triazene (H2NNNH) Or Triimide (HNHNNH) Markofçrstel,[A, D] Yetsedaw A
    DOI:10.1002/cphc.201600414 Articles On the Formation of N3H3 Isomers in Irradiated Ammonia Bearing Ices:Triazene (H2NNNH) or Triimide (HNHNNH) MarkoFçrstel,[a, d] Yetsedaw A. Tsegaw,[b] Pavlo Maksyutenko,[a, d] Alexander M. Mebel,[c] Wolfram Sander,[b] and Ralf I. Kaiser*[a, d] The remarkable versatility of triazenesinsynthesis, polymer theoretical studies with our novel detection scheme of photo- chemistry and pharmacology has led to numerousexperimen- ionization-driven reflectron time-of-flight mass spectroscopy tal and theoretical studies.Surprisingly,only very little is we can obtain information on the isomersoftriazene formed known aboutthe most fundamental triazene:the parentmole- in the films. Using isotopically labeled starting material, we can cule with the chemical formula N3H3.Here we observe molecu- additionally gain insightinthe formation pathways of the iso- lar,isolated N3H3 in the gas phase after it sublimes from ener- mers of N3H3 under investigation and identify the isomers getically processed ammonia and nitrogen films. Combining formedastriazene (H2NNNH) andpossibly triimide(HNHNNH). 1. Introduction During the last decades, triazenes—a class of organic mole- life time of at least 1mswas also inferred as an intermediate cules carrying the =N N=N moiety—have received substan- in the radiolysis of an aqueous solution of hydrazine based on À À tial attention both from the theoretical and organic chemistry asingle absorption feature at 230 nm.[6] The cyclic isomer of [1] communities. Derived from cis-and trans-triazene (HN=NNH2 ; triazene, cyclotriazane, was first reported crystallographically in Scheme1), the substituted counterparts have significant appli- zeolite A, where it was stabilized by asilver cation as [1a,c] [1d] + [7] + cations in synthetic chemistry, polymer science, and phar- Ag(N3H3) .
    [Show full text]
  • A Mesoporous Aluminosilicate Nanoparticle-Supported Nickel-Boron Composite for the Catalytic Reduction of Nitroarenes
    Lawrence Berkeley National Laboratory Recent Work Title A Mesoporous Aluminosilicate Nanoparticle-Supported Nickel-Boron Composite for the Catalytic Reduction of Nitroarenes Permalink https://escholarship.org/uc/item/02m7d916 Journal ACS Applied Nano Materials, 2(3) ISSN 2574-0970 Authors Hauser, JL Amberchan, G Tso, M et al. Publication Date 2019-03-22 DOI 10.1021/acsanm.8b02351 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article Cite This: ACS Appl. Nano Mater. XXXX, XXX, XXX−XXX www.acsanm.org A Mesoporous Aluminosilicate Nanoparticle-Supported Nickel− Boron Composite for the Catalytic Reduction of Nitroarenes † † † † ‡ Jesse L. Hauser, Gabriella Amberchan, Monique Tso, Ryan Manley, Karen Bustillo, § † † † Jason Cooper, Josh H. Golden, Bakthan Singaram,*, and Scott R. J. Oliver*, † Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States ‡ § National Center for Electron Microscopy, Molecular Foundry, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States *S Supporting Information ABSTRACT: An amorphous nickel and boron composite (NBC) was synthesized from nickel chloride hexahydrate · (NiCl2 6H2O) and sodium borohydride (NaBH4) in absolute ethanol, both in bulk and supported on mesoporous alumi- nosilicate nanoparticles (MASN). Comparatively, NBC-MASN demonstrated better catalytic activity for the selective reduction of the nitro group on a variety of polysubstituted nitroarenes, · using hydrazine hydrate (N2H4 H2O) as the reducing agent at 25 °C. Reuse and regeneration of NBC-MASN for the reduction of p-nitrotoluene to p-toluidine were studied with NaBH4 acting as a regeneration agent. Good catalytic activity was sustained through nine reuse cycles when equimolar NaBH4 was present in situ with · − N2H4 H2O (99% 67% isolated aniline yield).
    [Show full text]
  • Radical Approaches to Alangium and Mitragyna Alkaloids
    Radical Approaches to Alangium and Mitragyna Alkaloids A Thesis Submitted for a PhD University of York Department of Chemistry 2010 Matthew James Palframan Abstract The work presented in this thesis has focused on the development of novel and concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards (±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical cyclisation to form the tri-cyclic core. O O O N N N O O O H H H H H H O N NH N Protoemetinol OH HO a Psychotrine Deoxytubulosine b c Chapter 1 gives a general overview of radical chemistry and it focuses on the application of radical intermolecular and intramolecular reactions in synthesis. Consideration is given to the mediator of radical reactions from the classic organotin reagents, to more recently developed alternative hydrides. An overview of previous synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. Chapter 2 follows on from previous work within our group, involving the use of phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach was unsuccessful and it highlighted some limitations of the methodology. Chapter 3 explores the radical and ionic chemistry of a range of silanes.
    [Show full text]
  • Hydrophilic Thin Coating and Method of Manufacturing the Same
    Europaisches Patentamt European Patent Office © Publication number: 0 599 150 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 93118306.5 int. CIA B05D 1/18, C03C 17/30, C08J 7/04 @ Date of filing: 11.11.93 ® Priority: 12.11.92 JP 302124/92 © Applicant: MATSUSHITA ELECTRIC INDUSTRIAL Co., Ltd. @ Date of publication of application: 1006-banchi, Oaza-Kadoma 01.06.94 Bulletin 94/22 Kadoma-shi, Osaka(JP) © Designated Contracting States: @ Inventor: Ohtake, Tadashi DE FR GB Kawakitanaka-machi 30-15 Neyagawa-shi, Osaka 572(JP) Inventor: Mino, Norihisa Senrioka Higashi 4-6-8-806 Settsu-shi, Osaka 566(JP) Inventor: Ogawa, Kazufumi Aoyama 2-3-50 Nara-shi, Nara 630(JP) © Representative: VOSSIUS & PARTNER Siebertstrasse 4 D-81675 Munchen (DE) © Hydrophilic thin coating and method of manufacturing the same. © The invention relates to a hydrophilic thin film and a method of manufacturing the same in which a hydrophilic thin film 4 is formed by incorporating or fixing molecules comprising hydrophilic groups to a chemically adsorbed film on the surface of a substrate 1 . 7\ oj— Cl O I OH 2 ^4 $ -0— Si — 0 Si — 0 Si- -o- -Si-0- I I I I 0 0 0 0 — > 7> , , , 1 , , r-i-. i ///////////// X FIG . Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 599 150 A1 The invention relates to a hydrophilic thin film and a method of manufacturing the same. More specifically, the invention relates to a hydrophilic thin film and its method of manufacture, in which molecules comprising hydrophilic groups are incorporated or chemically bonded to the surface of a chemically adsorbed film on a substrate surface.
    [Show full text]
  • I. MATRIX ISOLATION of 1,1-DIAZENES II. DISTANCE, TEMPERATURE, and DYNAMIC SOLVENT EFFECTS on ELECTRON TRANSFER REACTIONS Thesis
    I. MATRIX ISOLATION OF 1,1-DIAZENES II. DISTANCE, TEMPERATURE, AND DYNAMIC SOLVENT EFFECTS ON ELECTRON TRANSFER REACTIONS Thesis by James Edward Hanson In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1990 (Submitted September 8, 1989) 11 © 1990 James Edward Hanson All rights Reserved ill Acknowledgements I would like to thank my advisor, Peter Dervan , for his enthusiasm and support during my studies at Caltech. I would also like to thank Professor John Hopfield for his availability when I needed assistance with the theoretical complexities of the electron transfer work. I am deeply indebted to Lutfur "Zeta" Khundkar and Joe Perry for their expert assistance and collaboration in making measurements and understanding the implications of the results. Al Sylwester was extremely helpful in my first year as I began to work on 1,1-diazenes, and Alvin Joran and Burt Leland made my transition to the electron transfer project relatively simple. I should also thank those in the Dervan group who helped me with synthetic problems, especially John Griffin and Warren Wade. I appreciated discussions with some of the electron transfer experts at Caltech: Professor Rudy Marcus, Dave Beratan, Jose Onuchic, Dave Malerba, and Tad Fox. There were many times when the men in the chemistry shops provided invaluable assistance--you guys are the best! There are many who made my stay at Caltech enjoyable--I'll remember skiing with John and Linda Griffin and Heinz Moser, basketball (and marathons!) with Dave Kaisaki, tennis with Erich Uffelmann, and late night conversations with Kevin Luebke.
    [Show full text]
  • Carbonyl Compounds
    CARBONYL COMPOUNDS PART-4, PPT-4, SEM-3 Dr. Kalyan Kumar Mandal Associate Professor St. Paul’s C. M. College Kolkata CONTENTS: CARBONYL COMPOUNDS PART-4 • Formation of Acetal/Ketal • Formation of Thioacetal Reaction of Carbonyl Compounds with Alcohols • Carbonyl compounds react with alcohols. The product of this reaction is known as a hemiacetal, because it is halfway to an acetal. This reaction is analogous to hydrate formation from aldehydes and ketones. The mechanism follows in the footsteps of hydrate formation: ROH is used instead of HOH (water). This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata Formation of Cyclic Hemiacetal • Hemiacetal formation is reversible, and they are stabilized by the same special structural features as those of hydrates. However, hemiacetals can also gain stability by being cyclic. • Cyclic hemiacetal is formed when the carbonyl group and the attacking hydroxyl group are part of the same molecule. The reaction is an intramolecular (within the same molecule) addition, as opposed to the intermolecular (between two molecules) ones. This is an example of ring-chain tautomerism. This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata Formation of Cyclic Hemiacetal • Although the cyclic hemiacetal is more stable, it is still in equilibrium with some of the open-chain hydroxyaldehyde form. Its stability, and how easily it forms, depend on the size of the ring. • Five- and six-membered rings involve less strain (their bonds are free to adopt 109° or 120° angles) in comparison to the three- membered rings, and therefore five or six-membered hemiacetals are very common.
    [Show full text]
  • Ger'g .Tyson Jr
    July 14, 1964 ' G. N. TYSON, JR 3,140,582 ROCKET PROPULSION METHOD USING BORON AND NITROGEN COMPOUNDS Filed April 14, 1959 Ger'g .Tyson Jr. INVENTOR. I", u .12) ATTORNEYS 3,l4,582 Patented July 14,, 1964 2 The nitrogen containing compound and the boron con 3,140,582 taining compound are reacted in such proportions that all ROCKET PROPULSION METHOD USING BORON of the nitrogen and all of the boron react to produce AND NOGEN COMPOUNDS boron nitride, the carbon is released as elemental carbon George N. Tyson, Jr., Claremont, Calif., assignor to Olin Mathieson Chemical Corporation, a corporation of and large volumes of hydrogen gas are produced. Virginia Nitrogen containing compounds which can be employed Filed Apr. 14, 1959, Ser. No. 806,396 as reactants include the saturated hydronitrogens such 20 Claims. (Cl. 60-354) as ammonia, hydrazine, triazane, tetrazane; the unsaturated hydronitrogens such as diimide, triazene, tetrazene, iso This invention relates to a method for producing large 10 tetrazene, ammonium azide, hydrazine azide, and hydra volumes of hot gases in a short period of time, which zoic acid; alkyl hydrazines such as methyl hydrazine, un large volumes of hot gases are useful for many purposes symmetrical dimethyl hydrazine, ethyl hydrazine, unsym including imparting thrust to jet propelled devices such metrical diethyl hydrazine; alkylamines including mixed al as rockets. kylamines such as methylamine, dimethylamine, trimeth Jet propelled devices are essentially of two types: those 15 ylamine, ethylamine, diethylamine, triethylarnine, methyl which depend upon an external source for a portion of ethyl amine, n-propylamine, isopropylamine, di-n-propyl the propellant, and those in which the propellant is en amine, tri-n-propylamine, methyl propyl amine, ethyl prop tirely contained within the device.
    [Show full text]
  • Catalysis-2018 Program
    Scientific UNITED Group Welcome to the City of Lights JO N U O R B ! 2nd International Conference on Catalysis and Chemical Engineering February 19-21, 2018 Paris Marriott Charles de Gaulle Airport Hotel Exhibitors Supporting Sponsor Publishing Partner Supporter We are excited to use Whova as our event platform. Attendees please download Whova event app. The event invitation code is: usgmv Floor Plan PARIS CHARLES DE GAULLE Gallery 1 Main Meeting Room WiFi Details Network : Marriott_conf Lunch Password : marriottfev Gallery 2 Loft 3 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Loft 2 Studio Studio Studio Studio Studio Studio Loft 1 1 2 3 Foyer 4 5 6 170 Rue des Terres Bourdin 69140 Rillieux-La-Pape FRANCE +33 (0)4 37 40 33 55 [email protected] www.equilabo.com EQUILABO provider of tools for catalytic studies Parr reactors and pressure vessels include both standard designs and custom-built equipment in laboratory and pilot plant sizes. Uses for this equipment are found in a broad range of chemical, petrochemical, pharmaceutical and biotech research, development and control laboratories. Parr offers a wide choice of design options for catalyst studies as batch reactor, stirred reactor, fluidized bed reactor, catalyst baskets, liquid gas filling and monitoring systems and many more. Minimum working volume for pressure reactor is now 5 milliliters. HEL Group’s offer innovative, robust and flexible solutions to chemists working on various hydrogenation and catalysis applications. Stirred and fixed-bed reactors for catalytic & thermal conversions are supplied to a range of industries. Often at elevated temperature & pressure, HEL are specialised in research scale, multi-reactor and high pressure reactors processing.
    [Show full text]
  • Hydroxylamine-O -Sulfonic Acid — a Versatile Synthetic Reagent
    Hydroxylamine-O -sulfonic acid — a versatile synthetic reagent Raymond G. Wallacef School of Chemistry Brunei University Uxbridge, Middlesex UBS 3PH Great Britain imidazoli nones and related derivatives are time to these various modes of reaction. discussed in the review. Many of these The uses of HOSA as a reagent are organiz­ preparations can be carried out in high ed below according to the different syn­ yield, thetic transformations that it can bring about. Hydroxylamine-Osulfonic acid, NHj-OSOjH (abbreviated to HOSA in Probably by far the most well known this article) has become in recent years and explored reactions of HOSA are commercially available. Although much animation reactions, illustrating elec­ fruitful chemistry has been carried out us­ trophilic attack by HOSA, with amination ing HOSA, to this author's knowledge, on nitrogen being the most important, there has been no systematic review in although a significant number of English* of its use as a synthetic reagent. It animations on both carbon and sulfur have is a chemically interesting compound been reported, Amination on phosphorus because of the ability of the nitrogen center also occurs. to act in the role of both nucleophile and AMINATION electrophile, dependent on circumstances, Synopsis (a) At a nitrogen atom and thus it has proved to be a reagent of Hydroxylamine-0-sulfonic acid (0 Preparation of mono- and di- great synthetic versatility. (HOSA) has only recently become widely substituted hydrazines and trisubstituied commercially available despite the fact that H,N-Nu hydrazinium salts it has proved to be a valuable synthetic reagent in preparative organic chemistry.
    [Show full text]
  • The Mechanism and Kinetics of Thiophene Adsorption On
    THE MECHANISM AND KINETICS OF THIOPHENE ADSORPTION ON NICKEL AT AMBIENT TEMPERATURES AND PRESSURES A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College Khaliq Ahmed Department of Chemical Engineering and Chemical Technology Imperial College of Science and Technology London SW7 United Kingdom January 1987 ABSTRACT An experimental and modelling study of the kinetics of thiophene adsorption on nickel at ambient temperatures and pressures has been made. The objective of the study was to acquire a better understanding of the mechanism involved than is currently available. The reactant (1000 ppm thiophene in hydrogen) was contacted with a nickel on gamma alumina catalyst. Experiments were carried out in a microbalance flow reactor and the uptake of thiophene by the catalyst was recorded as a function of time. Prior to adsorption of thiophene, the catalyst was characterised in terms of its total BET surface area, pore-size distribution, active Ni-area and average crystallite size. All measurements were performed in situ except for that of the crystallite size which was determined by x-ray line broadening. The experimental study revealed that at room temperature thiophene adsorbs on nickel either directly as thiophene molecules, or as a hydrogenated species namely, thiophane ; no gaseous products eluted indicating that thiophene was not undergoing decomposition under these conditions. Overall uptake of thiophene by nickel in the catalyst showed that there were at least two possible modes of adsorption. It is postulated that these are perpendicular and coplanar. The crystallite size of nickel in the catalyst was varied by changing the loading of the catalyst, or by 2 sintering in an atmosphere of hydrogen at elevated temperatures.
    [Show full text]
  • TABLE 18-1 Some Common Classes of Carbonyl Compounds
    TABLE 18-1 Some Common Classes of Carbonyl Compounds Class General Formula Class General Formula O O ' ' ketones R9C9RЈ aldehydes R9C9H O O ' ' carboxylic acids R9C9OH acid chlorides R9C9Cl O O ' ' 9 9 9 Ј 9 9 esters R C O R amides R C NH2 AAALBKS0 Figure Number: 18 00.01 T01 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E length energy ketone CObond 1.23 Å 178 kcal/mol R (745 kJ/mol) 120° C O R 120° alkene C C bond 1.34 Å 146 kcal/mol (611 kJ/mol) AAALBKU0 Figure Number: 18 00.03 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E R R Ϫ C O ϩC O R R major minor AAALBKV0 Figure Number: 18 00.04 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E O O 9 9 9 9 9 9 9 CH3CH2CH2CH3 CH3 O CH2CH3 CH3CH2 C H CH3 C CH3 CH3CH2CH2 OH butane methoxyethane propanal acetone 1-propanol bp 0°C bp 8°C bp 49°C bp 56°C bp 97°C AAALBLI0 Figure Number: 18 00.17 UN 1-5 ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E about 1685 cmϪ1 O OϪ C C C C ϩ C C O 1685 cmϪ1 O 1690 cmϪ1 O 1745 cmϪ1 O 1815 cmϪ1 C CH3 H acetophenone 2-butenal cyclopentanone cyclopropanone AAALBLM0 Figure Number: 18 00.22 UN ©2003 by Prentice Hall, Inc. WADE A Pearson Company ORGANIC CHEMISTRY, 5E a carbon a carbon a carbon O O O Ј R CH2 C H R C CH3 R C CH2R dd2.4 9–d10 d2.1 d2.4 an aldehyde a methyl ketone other ketones AAALBLN0 Figure Number: 18 00.23 UN 1-3 ©2003 by Prentice Hall, Inc.
    [Show full text]