Sirius Astronomer Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neutron Stars
Chandra X-Ray Observatory X-Ray Astronomy Field Guide Neutron Stars Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% Chandra Image of Vela Pulsar open space! (NASA/PSU/G.Pavlov et al. What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see—or feel—the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons! Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons. -
II Publications, Presentations
II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class. -
Optical Observations of Pulsars: the ESO Contribution R.P
Figure 3: The normalised spectral energy distribution of 3 galaxies. From left to right we show a regular Ly-break galaxy (Fig. 2c), the “spiral” galaxy (Fig. 2d), and the very red galaxy from Figure 2e. The red continuum feature of the last two galaxies can be due to the Balmer/4000 Angstrom break or due to dust. Only one of these would be selected by the regular Ly-break selection technique, as the others are too faint in the optical (rest-frame UV). Acknowledgement References van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D., Illingworth, G. D., 2000, sub- Dickinson, M., et al, 1999, preprint, as- It is a pleasure to thank the staff at mitted to ApJ. troph/9908083. Steidel, C. C., Giavalisco, M., Pettini, M., ESO who contributed to the construc- Gioia, I., and Luppino, G. A., 1994, ApJS, tion and operation of the VLT and Dickinson, M., Adelberger, K. L., 1996, 94, 583. ApJL, 462, L17. ISAAC. This project has only been van Dokkum, P. G., Franx, M., Fabricant, D., Williams, R. E., et al, 2000, in prepara- possible because of their enormous ef- Kelson, D., Illingworth, G. D., 1999, ApJL, tion. forts. 520, L95. Optical Observations of Pulsars: the ESO Contribution R.P. MIGNANI1, P.A. CARAVEO 2 and G.F. BIGNAMI3 1ST-ECF, [email protected]; 2IFC-CNR, [email protected]; 3ASI [email protected] Introduction matic gamma-rays source Geminga, and ESO telescopes gave to the not yet recognised as an X/gamma-ray European astronomers the chance to Our knowledge of the optical emis- pulsar, was proposed. -
V·M·I University Microfilms International a Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, M148106-1346 USA 313/761-4700 800/521-0600
The dynamics of satellite galaxies. Item Type text; Dissertation-Reproduction (electronic) Authors Zaritsky, Dennis Fabian. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 09:44:33 Link to Item http://hdl.handle.net/10150/185639 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. -
The SAI Catalog of Supernovae and Radial Distributions of Supernovae
Astronomy Letters, Vol. 30, No. 11, 2004, pp. 729–736. Translated from Pis’ma v Astronomicheski˘ı Zhurnal, Vol. 30, No. 11, 2004, pp. 803–811. Original Russian Text Copyright c 2004 by Tsvetkov, Pavlyuk, Bartunov. TheSAICatalogofSupernovaeandRadialDistributions of Supernovae of Various Types in Galaxies D. Yu. Tsvetkov*, N.N.Pavlyuk**,andO.S.Bartunov*** Sternberg Astronomical Institute, Universitetski ˘ı pr. 13, Moscow, 119992 Russia Received May 18, 2004 Abstract—We describe the Sternberg Astronomical Institute (SAI)catalog of supernovae. We show that the radial distributions of type-Ia, type-Ibc, and type-II supernovae differ in the central parts of spiral galaxies and are similar in their outer regions, while the radial distribution of type-Ia supernovae in elliptical galaxies differs from that in spiral and lenticular galaxies. We give a list of the supernovae that are farthest from the galactic centers, estimate their relative explosion rate, and discuss their possible origins. c 2004MAIK “Nauka/Interperiodica”. Key words: astronomical catalogs, supernovae, observations, radial distributions of supernovae. INTRODUCTION be found on the Internet. The most complete data are contained in the list of SNe maintained by the Cen- In recent years, interest in studying supernovae (SNe)has increased signi ficantly. Among other rea- tral Bureau of Astronomical Telegrams (http://cfa- sons, this is because SNe Ia are used as “standard www.harvard.edu/cfa/ps/lists/Supernovae.html)and candles” for constructing distance scales and for cos- the electronic version of the Asiago catalog mological studies, and because SNe Ibc may be re- (http://web.pd.astro.it/supern). lated to gamma ray bursts. -
SEPTEMBER 2019 President’S Corner SEPTEMBER 2019 Face of Jupiter Or Saturn Because They Have Welcome to the September No Tangible Surface
ReflectionsReflections Newsletter of the Popular Astronomy Club SEPTEMBER 2019 President’s Corner SEPTEMBER 2019 face of Jupiter or Saturn because they have Welcome to the September no tangible surface. Jupiter, Saturn, Uranus 2019 edition of “Reflections”, and Neptune are gas giants—they don’t have the universe’s best astronomy a hard surface upon which one can stand. But newsletter. I am always imagine we could! Ok. So assuming we amazed by the level of activi- could stand on the equator of all the planets in ties and enthusiasm for the our solar system (and the Moon), I made hobby our club members con- some quick calculations to estimate the speed tinue to demonstrate. You can read about these activities in you would have just passively standing there. this edition. This summer, we Below is a table of my calculations: have had a number of very Alan Sheidler successful public observing sessions, all of which are documented in this Diameter Rotation Equatorial newsletter. One of the aspects of public observ- Planet (mi) Period (hr) Speed (mph) ing sessions is the possibility to engage visitors, Mercury 3032 1407.6 6.8 not only to glimpse objects in the eyepiece of the 7523 -5832.5 telescope, but also to discuss some of the physi- Venus -4.1 cal attributes of those selfsame objects. During Earth 7928 23.9 1042 one of these sessions, I was involved in a discus- Moon 2160 655.7 10.3 sion about the planet Jupiter about how quickly 4221 24.6 the Red Spot rotates into and out of view as seen Mars 539 in the telescope. -
Dark Matter Cosmology and Astrophysics
Dark Matter Cosmology and Astrophysics Vladimir S. Netchitailo Biolase Inc., 4 Cromwell, Irvine CA 92618, USA Email: [email protected] Abstract Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems – how do they obtain it; Fermi Bubbles – two large structures in gamma-rays and X-rays above and below Galactic center; Mysterious Star KIC 8462852 with irregular dimmings; Coronal Heating problem in solar physics – temperature of Sun's corona exceeding that of photosphere by millions of degrees; Cores of Sun and Earth rotating faster than their surfaces; Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat; Lightning Initiation problem – electric fields observed inside thunderstorms are not sufficient to initiate sparks; Terrestrial Gamma-Ray Flashes – bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements. -
Liverpool Telescope 2: a New Robotic Facility for Rapid Transient Follow-Up
Noname manuscript No. (will be inserted by the editor) Liverpool Telescope 2: a new robotic facility for rapid transient follow-up C.M. Copperwheat · I.A. Steele · R.M. Barnsley · S.D. Bates · D. Bersier · M.F. Bode · D. Carter · N.R. Clay · C.A. Collins · M.J. Darnley · C.J. Davis · C.M. Gutierrez · D.J. Harman · P.A. James · J.H. Knapen · S. Kobayashi · J.M. Marchant · P.A. Mazzali · C.J. Mottram · C.G. Mundell · A. Newsam · A. Oscoz · E. Palle · A. Piascik · R. Rebolo · R.J. Smith Received: date / Accepted: date Abstract The Liverpool Telescope is one of the world’s premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with synoptic all-sky surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other major facilities such as SVOM, SKA and CTA; and the era of ‘multi-messenger astronomy’, wherein astro- physical events are detected via non-electromagnetic means, such as neutrino or gravitational wave emission. We describe here our plans for the Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the Liverpool Telescope at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely C.M. Copperwheat · I.A. Steele · R.M. Barnsley · S.D. Bates · D. Bersier · M.F. Bode · D. -
Integral Observations of the Vela Region Focusing on Vela X-1
INTEGRAL OBSERVATIONS OF THE VELA REGION FOCUSING ON VELA X-1 Stéphane Schanne (1,*), Diego Götz (1) , Lucie Gérard (1) , Patrick Sizun (1) , Maurizio Falanga (1) , Clarisse Hamadache (1) , Bertand Cordier (1), Andreas von Kienlin (2) (1) CEA-Saclay, DAPNIA/Service d'Astrophysique, F-91191 Gif sur Yvette, France (2) Max-Planck-Institut für extraterrestrische Physik, D-85740 Garching, Germany (*) corresponding author: schanne{at}hep.saclay.cea.fr ABSTRACT sources found comprise four sources (Tab. 1) –all of them known– which are detected with significance The Vela region has been observed for 1.7 Ms in above 6 σ, considered to be the limit for firm source November 2005 by the INTEGRAL satellite. We detection. present preliminary spectral and temporal results of Vela X-1, an eclipsing neutron star hosted in a wind- accreting high-mass X-ray binary system. Using data from ISGRI, SPI and JEM-X, we firmly confirm the existence of cyclotron resonant scattering features (CRSF) at ~27 keV and ~54 keV, implying a neutron- star magnetic field of 3×10 12 Gauss, and the presence of an iron emission line at ~6.5 keV. During two strong flares those parameters remained unchanged. Furthermore we measure the neutron-star spin period of 283.6 s, indicating a still constant trend. 1. INTRODUCTION The Vela region has been observed by INTEGRAL [1], ESA’s gamma-ray satellite, in the frame of our accepted AO-3 open-time proposal. Data were taken from November 4 to December 4, 2005, during 1.7 Ms, Fig. 1. Image of the Vela region by ISGRI (18-60 keV). -
Gamma-Ray Pulsar Revolution
Gamma-ray Pulsar Revolution Patrizia A. Caraveo IASF-INAF Via Bassini, 15 20133 Milano Italy Abstract Isolated Neutron Stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. At first, in the ‘70s, there were only two identified sources, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space both in the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led to breakthrough developments in understanding the structure and physics of neutron star magnetospheres. In parallel, the 20-year-long chase to understand the nature of Geminga unveiled the existence of a radio-quiet, gamma- ray-emitting , INS, adding a new dimension to the INS family. Today we are living through an extraordinary time of discovery. The current generation of gamma-ray detectors has vastly increased the population of known of gamma-ray-emitting neutron stars. The 100 mark was crossed in 2011 and we are now approaching 150. The gamma-ray-emitting neutron star population exhibits roughly equal numbers of radio-loud and radio-quiet young INSs, plus an astonishing, and unexpected, group of isolated and binary millisecond pulsars (MSPs). The number of MSPs is growing so rapidly that they are on their way to becoming the most numerous members of the family of gamma- ray-emitting Neutron Stars (NSs) . Even as these findings have set the stage for a revolution in our understanding of gamma-ray-emitting neutron stars, long term monitoring of the gamma-ray sky has revealed evidence of flux variability in the Crab Nebula as well as in the pulsed emission from PSR J2021+4026, challenging a four-decade-old, constant-emission paradigm. -
Dark Matter Cosmology and Astrophysics
Journal of High Energy Physics, Gravitation and Cosmology, 2019, 5, 999-1050 https://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 Dark Matter Cosmology and Astrophysics Vladimir S. Netchitailo Biolase Inc., Irvine, CA, USA How to cite this paper: Netchitailo, V.S. Abstract (2019) Dark Matter Cosmology and As- trophysics. Journal of High Energy Physics, Hypersphere World-Universe Model (WUM) envisions Matter carried from Gravitation and Cosmology, 5, 999-1050. Universe into World from fourth spatial dimension by Dark Matter Particles https://doi.org/10.4236/jhepgc.2019.54056 (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 Received: June 27, 2019 Accepted: September 9, 2019 billion years) when only DMPs existed, and Luminous Epoch (ever since for Published: September 12, 2019 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Copyright © 2019 by author(s) and Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. Scientific Research Publishing Inc. This work is licensed under the Creative WUM solves a number of physical problems in contemporary Cosmology Commons Attribution International and Astrophysics through DMPs and their interactions: Angular Momen- License (CC BY 4.0). tum problem in birth and subsequent evolution of Galaxies and Extrasolar http://creativecommons.org/licenses/by/4.0/ systems—how -
Ultralight Bosonic Field Mass Bounds from Astrophysical Black Hole Spin
Ultralight Bosonic Field Mass Bounds from Astrophysical Black Hole Spin Matthew J. Stott Theoretical Particle Physics and Cosmology Group, Department of Physics, Kings College London, University of London, Strand, London, WC2R 2LS, United Kingdom∗ (Dated: September 16, 2020) Black Hole measurements have grown significantly in the new age of gravitation wave astronomy from LIGO observations of binary black hole mergers. As yet unobserved massive ultralight bosonic fields represent one of the most exciting features of Standard Model extensions, capable of providing solutions to numerous paradigmatic issues in particle physics and cosmology. In this work we explore bounds from spinning astrophysical black holes and their angular momentum energy transfer to bosonic condensates which can form surrounding the black hole via superradiant instabilities. Using recent analytical results we perform a simplified analysis with a generous ensemble of black hole parameter measurements where we find superradiance very generally excludes bosonic fields in −14 −11 −20 the mass ranges; Spin-0: f3:8 × 10 eV ≤ µ0 ≤ 3:4 × 10 eV; 5:5 × 10 eV ≤ µ0 ≤ 1:3 × −16 −21 −20 −15 −11 10 eV; 2:5×10 eV ≤ µ0 ≤ 1:2×10 eVg, Spin-1: f6:2×10 eV ≤ µ1 ≤ 3:9×10 eV; 2:8× −22 −16 −14 −11 −20 10 eV ≤ µ1 ≤ 1:9×10 eVg and Spin-2: f2:2×10 eV ≤ µ2 ≤ 2:8×10 eV; 1:8×10 eV ≤ −16 −22 −21 µ2 ≤ 1:8 × 10 eV; 6:4 × 10 eV ≤ µ2 ≤ 7:7 × 10 eVg respectively. We also explore these bounds in the context of specific phenomenological models, specifically the QCD axion, M-theory models and fuzzy dark matter sitting at the edges of current limits.