Successful Commissioning of FORS1 – the First Optical Instrument on the VLT I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neutron Stars
Chandra X-Ray Observatory X-Ray Astronomy Field Guide Neutron Stars Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% Chandra Image of Vela Pulsar open space! (NASA/PSU/G.Pavlov et al. What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see—or feel—the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons! Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons. -
II Publications, Presentations
II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class. -
Multiphysics Modeling, Sensitivity Analysis, and Optical Performance Optimization for Optical Laser Head in Additive Manufacturing
applied sciences Article Multiphysics Modeling, Sensitivity Analysis, and Optical Performance Optimization for Optical Laser Head in Additive Manufacturing Jiaping Yang 1, Xiling Yao 1,* , Yuxin Cai 1,2 and Guijun Bi 1,* 1 Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, Singapore 637662, Singapore; [email protected] (J.Y.); [email protected] (Y.C.) 2 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore * Correspondence: [email protected] (X.Y.); [email protected] (G.B.) Abstract: Optical laser head is a key component used to shape the laser beam and to deliver higher power laser irradiation onto workpieces for material processing. A focused laser beam size and optical intensity need to be controlled to avoid decreasing beam quality and loss of intensity in laser material processing. This paper reports the multiphysics modeling of an in-house developed laser head for laser-aided additive manufacturing (LAAM) applications. The design of computer experiments (DoCE) combined with the response surface model was used as an efficient design approach to optimize the optical performance of a high power LAAM head. A coupled structural- thermal-optical-performance (STOP) model was developed to evaluate the influence of thermal effects on the optical performance. A number of experiments with different laser powers, laser beam focal plane positions, and environmental settings were designed and simulated using the STOP model for sensitivity analysis. The response models of the optical performance were constructed using DoCE and regression analysis. Based on the response models, optimal design settings were predicted and validated with the simulations. -
Lab 11: the Compound Microscope
OPTI 202L - Geometrical and Instrumental Optics Lab 9-1 LAB 9: THE COMPOUND MICROSCOPE The microscope is a widely used optical instrument. In its simplest form, it consists of two lenses Fig. 9.1. An objective forms a real inverted image of an object, which is a finite distance in front of the lens. This image in turn becomes the object for the ocular, or eyepiece. The eyepiece forms the final image which is virtual, and magnified. The overall magnification is the product of the individual magnifications of the objective and the eyepiece. Figure 9.1. Images in a compound microscope. To illustrate the concept, use a 38 mm focal length lens (KPX079) as the objective, and a 50 mm focal length lens (KBX052) as the eyepiece. Set them up on the optical rail and adjust them until you see an inverted and magnified image of an illuminated object. Note the intermediate real image by inserting a piece of paper between the lenses. Q1 ● Can you demonstrate the final image by holding a piece of paper behind the eyepiece? Why or why not? The eyepiece functions as a magnifying glass, or simple magnifier. In effect, your eye looks into the eyepiece, and in turn the eyepiece looks into the optical system--be it a compound microscope, a spotting scope, telescope, or binocular. In all cases, the eyepiece doesn't view an actual object, but rather some intermediate image formed by the "front" part of the optical system. With telescopes, this intermediate image may be real or virtual. With the compound microscope, this intermediate image is real, formed by the objective lens. -
Optical Observations of Pulsars: the ESO Contribution R.P
Figure 3: The normalised spectral energy distribution of 3 galaxies. From left to right we show a regular Ly-break galaxy (Fig. 2c), the “spiral” galaxy (Fig. 2d), and the very red galaxy from Figure 2e. The red continuum feature of the last two galaxies can be due to the Balmer/4000 Angstrom break or due to dust. Only one of these would be selected by the regular Ly-break selection technique, as the others are too faint in the optical (rest-frame UV). Acknowledgement References van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D., Illingworth, G. D., 2000, sub- Dickinson, M., et al, 1999, preprint, as- It is a pleasure to thank the staff at mitted to ApJ. troph/9908083. Steidel, C. C., Giavalisco, M., Pettini, M., ESO who contributed to the construc- Gioia, I., and Luppino, G. A., 1994, ApJS, tion and operation of the VLT and Dickinson, M., Adelberger, K. L., 1996, 94, 583. ApJL, 462, L17. ISAAC. This project has only been van Dokkum, P. G., Franx, M., Fabricant, D., Williams, R. E., et al, 2000, in prepara- possible because of their enormous ef- Kelson, D., Illingworth, G. D., 1999, ApJL, tion. forts. 520, L95. Optical Observations of Pulsars: the ESO Contribution R.P. MIGNANI1, P.A. CARAVEO 2 and G.F. BIGNAMI3 1ST-ECF, [email protected]; 2IFC-CNR, [email protected]; 3ASI [email protected] Introduction matic gamma-rays source Geminga, and ESO telescopes gave to the not yet recognised as an X/gamma-ray European astronomers the chance to Our knowledge of the optical emis- pulsar, was proposed. -
Galaxies with Rows A
Astronomy Reports, Vol. 45, No. 11, 2001, pp. 841–853. Translated from Astronomicheski˘ı Zhurnal, Vol. 78, No. 11, 2001, pp. 963–976. Original Russian Text Copyright c 2001 by Chernin, Kravtsova, Zasov, Arkhipova. Galaxies with Rows A. D. Chernin, A. S. Kravtsova, A. V. Zasov, and V. P. Arkhipova Sternberg Astronomical Institute, Universitetskii˘ pr. 13, Moscow, 119899 Russia Received March 16, 2001 Abstract—The results of a search for galaxies with straight structural elements, usually spiral-arm rows (“rows” in the terminology of Vorontsov-Vel’yaminov), are reported. The list of galaxies that possess (or probably possess) such rows includes about 200 objects, of which about 70% are brighter than 14m.On the whole, galaxies with rows make up 6–8% of all spiral galaxies with well-developed spiral patterns. Most galaxies with rows are gas-rich Sbc–Scd spirals. The fraction of interacting galaxies among them is appreciably higher than among galaxies without rows. Earlier conclusions that, as a rule, the lengths of rows are similar to their galactocentric distances and that the angles between adjacent rows are concentrated near 120◦ are confirmed. It is concluded that the rows must be transient hydrodynamic structures that develop in normal galaxies. c 2001 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION images were reproduced by Vorontsov-Vel’yaminov and analyze the general properties of these objects. The long, straight features found in some galaxies, which usually appear as straight spiral-arm rows and persist in spite of differential rotation of the galaxy 2. THE SAMPLE OF GALAXIES disks, pose an intriguing problem. These features, WITH STRAIGHT ROWS first described by Vorontsov-Vel’yaminov (to whom we owe the term “rows”) have long escaped the To identify galaxies with rows, we inspected about attention of researchers. -
Astronomy and Growth in Chile
UC Santa Barbara UC Santa Barbara Previously Published Works Title Reaching for the Stars? Astronomy and Growth in Chile Permalink https://escholarship.org/uc/item/2g5196vz Journal Minerva, 53(2) ISSN 0026-4695 Author Barandiaran, J Publication Date 2015-06-17 DOI 10.1007/s11024-015-9272-7 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Reaching for the Stars? Astronomy and Growth in Chile Javiera Barandiaran Minerva A Review of Science, Learning and Policy ISSN 0026-4695 Volume 53 Number 2 Minerva (2015) 53:141-164 DOI 10.1007/s11024-015-9272-7 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Minerva (2015) 53:141–164 DOI 10.1007/s11024-015-9272-7 Reaching for the Stars? Astronomy and Growth in Chile Javiera Barandiaran1 Published online: 17 April 2015 Ó Springer Science+Business Media Dordrecht 2015 Abstract While scholars and policy practitioners often advocate for science and technology transfer as a motor for economic growth, many in Latin America have long warned of the pitfalls of such top-down, North-South transfers. -
The SAI Catalog of Supernovae and Radial Distributions of Supernovae
Astronomy Letters, Vol. 30, No. 11, 2004, pp. 729–736. Translated from Pis’ma v Astronomicheski˘ı Zhurnal, Vol. 30, No. 11, 2004, pp. 803–811. Original Russian Text Copyright c 2004 by Tsvetkov, Pavlyuk, Bartunov. TheSAICatalogofSupernovaeandRadialDistributions of Supernovae of Various Types in Galaxies D. Yu. Tsvetkov*, N.N.Pavlyuk**,andO.S.Bartunov*** Sternberg Astronomical Institute, Universitetski ˘ı pr. 13, Moscow, 119992 Russia Received May 18, 2004 Abstract—We describe the Sternberg Astronomical Institute (SAI)catalog of supernovae. We show that the radial distributions of type-Ia, type-Ibc, and type-II supernovae differ in the central parts of spiral galaxies and are similar in their outer regions, while the radial distribution of type-Ia supernovae in elliptical galaxies differs from that in spiral and lenticular galaxies. We give a list of the supernovae that are farthest from the galactic centers, estimate their relative explosion rate, and discuss their possible origins. c 2004MAIK “Nauka/Interperiodica”. Key words: astronomical catalogs, supernovae, observations, radial distributions of supernovae. INTRODUCTION be found on the Internet. The most complete data are contained in the list of SNe maintained by the Cen- In recent years, interest in studying supernovae (SNe)has increased signi ficantly. Among other rea- tral Bureau of Astronomical Telegrams (http://cfa- sons, this is because SNe Ia are used as “standard www.harvard.edu/cfa/ps/lists/Supernovae.html)and candles” for constructing distance scales and for cos- the electronic version of the Asiago catalog mological studies, and because SNe Ibc may be re- (http://web.pd.astro.it/supern). lated to gamma ray bursts. -
Important Events in Chile
No. 87 – March 1997 Important Events in Chile R. GIACCONI, Director General of ESO The political events foreseen in the December 1996 issue of The Messenger did take place in Chile in the early part of December 1996. On December 2, the Minister of Foreign Affairs of the Republic of Chile, Mr. Miguel Insulza, and the Director General of ESO, Professor Riccardo Giacconi, exchanged in Santiago Instruments of Ratification of the new “Interpretative, Supplementary and Amending Agreement” to the 1963 Convention between the Government of Chile and the European Southern Observatory. This agreement opens a new era of co-operation between Chilean and European Astronomers. On December 4, 1996, the “Foundation Ceremony” for the Paranal Observatory took place on Cerro Paranal, in the presence of the President of Chile, Mr. Eduardo Frei Ruiz-Tagle, the Royal couple of Sweden, King Carl XVI Gustaf and Queen Silvia, the Foreign Minister of the Republic of Chile, Mr. José Miguel Insulza, the Ambassadors of the Member States, members of the of the ESO Executive, ESO staff and the Paranal contractors’ workers. The approximately 250 guests heard addresses by Dr. Peter Creo- la, President of the ESO Council, Professor Riccardo Giacconi, Direc- tor General of ESO, Foreign Minis- ter José Miguel Insulza and Presi- dent Eduardo Frei Ruiz-Tagle. The original language version of the four addresses follows this introduction. (A translation in English of the Span- ish text is given on pages 58 and 59 in this issue of The Messenger.) A time capsule whose contents are described in Dr. Richard West's article was then deposited by Presi- dent Frei with the works being bless- ed by the Archbishop of Antofagas- ta, Monsignor Patricio Infante. -
My Chilean Telescopes and Southern Sky Experience
Observatories at the Extreme My Chilean Telescopes and Southern Sky Experience Sian Proctor South Mountain Community College Photo by John Blackwell Astronomy in Chile Educator Ambassadors Program The Astronomy in Chile Educator Ambassadors Program (ACEAP) is a program that brings amateur astronomers, planetarium personnel, and K-16 formal and informal astronomy educators to US astronomy facilities in Chile. The ambassadors visit Cerro Tololo Inter-American Observatory (CTIO), Gemini-South Observatory, and the Atacama Large Millimeter-submillimeter Array (ALMA) along with smaller tourist observatories. The ambassadors also participate in local school outreach. The program is funded by the National Science Foundation. In 2016, nine ambassadors were chosen from across the United States to travel to Chile and learn about the observatories, researchers, and science being conducted. The image to the right is of me with my fellow ambassadors. Gemini Observatory ALMA The Gemini Observatory The Atacama Large Millimeter-submillimeter Array (ALMA) consists of twin 8.1 meter consists of sixty-six 12m (39 ft) and 7m (23 ft) radio telescopes optical/infrared telescopes located in the Atacama desert at an altitude of 5,059m (16,597 ft) located in Hawai'i on top of Mauna Kea and in Chile on Cerro Pachón. The Gemini telescopes can collectively cover both hemispheres providing a complete view of the night sky. The antennas probe deep into our universe in search of the very first stars and galaxies to help us understand our cosmic origins. Gemini is operated through an international agreement between the USA, Canada, Brazil, Argentina, and Chile. Astronomers from these partnering countries can apply for time on Gemini. -
Optical Calibration System of NIPR for Aurora and Airglow Observations 1
1 Optical calibration system of NIPR for aurora and airglow observations 2 3 Y. Ogawa1,2,3, A. Kadokura1,2,3, and M. K. Ejiri1,2 4 5 1 National Institute of Polar Research, Japan 6 2 The Graduate University for Advanced Studies (SOKENDAI), Japan 7 3 Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 8 Japan 9 10 11 Abstract 12 13 Calibration of optical instruments is important for accurate measurement of the absolute emission intensity 14 of aurora and airglow. The National Institute of Polar Research (NIPR), Japan, has been operating a facility 15 for the optical calibration which consists of three independent calibration systems to share it with 16 collaborating researchers. This paper introduces an outline of the facility and specifications of each system, 17 calibration procedures, and examples of calibration results. With this facility, we can obtain the calibration 18 data for the absolute sensitivity of optical instruments with an accuracy of about 2% within the wavelength 19 range between 420 and 1050 nm. In addition, it is possible to obtain wavelength characteristics of optical 20 filters and detectors used for aurora and airglow observations. Current facility, upgraded in 2012 has been 21 used by many researchers to calibrate their various optical instruments. 22 23 24 1. Background 25 26 Aurora and airglow phenomena have been studied for a long time. Since their emission intensity is often 27 very weak, it is important that instruments for their observations should have enough sensitivity even for 28 such a weak emission, and they should be calibrated to assure their sensitivity before the observations. -
SAC's 110 Best of the NGC
SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog.