SEPTEMBER 2019 President’S Corner SEPTEMBER 2019 Face of Jupiter Or Saturn Because They Have Welcome to the September No Tangible Surface

Total Page:16

File Type:pdf, Size:1020Kb

SEPTEMBER 2019 President’S Corner SEPTEMBER 2019 Face of Jupiter Or Saturn Because They Have Welcome to the September No Tangible Surface ReflectionsReflections Newsletter of the Popular Astronomy Club SEPTEMBER 2019 President’s Corner SEPTEMBER 2019 face of Jupiter or Saturn because they have Welcome to the September no tangible surface. Jupiter, Saturn, Uranus 2019 edition of “Reflections”, and Neptune are gas giants—they don’t have the universe’s best astronomy a hard surface upon which one can stand. But newsletter. I am always imagine we could! Ok. So assuming we amazed by the level of activi- could stand on the equator of all the planets in ties and enthusiasm for the our solar system (and the Moon), I made hobby our club members con- some quick calculations to estimate the speed tinue to demonstrate. You can read about these activities in you would have just passively standing there. this edition. This summer, we Below is a table of my calculations: have had a number of very Alan Sheidler successful public observing sessions, all of which are documented in this Diameter Rotation Equatorial newsletter. One of the aspects of public observ- Planet (mi) Period (hr) Speed (mph) ing sessions is the possibility to engage visitors, Mercury 3032 1407.6 6.8 not only to glimpse objects in the eyepiece of the 7523 -5832.5 telescope, but also to discuss some of the physi- Venus -4.1 cal attributes of those selfsame objects. During Earth 7928 23.9 1042 one of these sessions, I was involved in a discus- Moon 2160 655.7 10.3 sion about the planet Jupiter about how quickly 4221 24.6 the Red Spot rotates into and out of view as seen Mars 539 in the telescope. During the course of a typical Jupiter 88865 9.9 28200 public observing session, if the Red Spot is visi- Saturn 74914 10.7 21995 ble, it is not unusual to see it move significantly or Uranus 31770 -17.2 -5803 even rotate out of view. It is also very surprising 30782 16.1 how fast the moons in the Jupiter system (the Neptune 6006 Galilean moons: Io, Ganymede, Callisto, and Eu- These calculations are indeed interesting. On ropa) move. Jupiter and its moons move very earth, for example, at the equator, if you were quickly indeed and depending on where they are standing there in blissful calm, you would in in their orbits, can even be seen to change posi- fact be moving with a speed of over 1000 tion almost in real time. miles per hour! This is fast, but look at Jupi- ter. If you could stand on Jupiter’s equator Anyway, the speed with which astronomical ob- you would be moving at more than 28,000 jects move got me to wondering about how fast miles per hour! This high speed is amazing to planets rotate. In this case I am talking about the me. But at the other end of the spectrum, speed a person would be moving at if they were consider the slothfulness of Venus. On Venus theoretically standing (or could stand) on the you would only be moving at a speed of 4.1 equator of a planet as it is spinning on its axis. miles per hour. This is the speed at which you Obviously, it is not possible to stand on the sur- could walk (quickly) or jog. Notice though, the (Continued in next column) (Continued on next page) 1 (Continued from previous page) (Continued from previous page) negative sign? This means Venus rotates in the oppo- Popular site direction of earth and most of the other planets. Astronomy Club Pretty interesting, but the speed is at the rate of a fast Officers walk or a jog. So on the one hand, you have planets like Jupiter and Saturn, spinning at hypersonically fast speeds and Mercury and Venus that move only at a crawl. PRESIDENT - Alan Sheidler 3528 56th Street Court, Moline, IL, In any event, we have earth with an equatorial spin 61265 speed of 1042mph. This is indeed fast, but comfortably Phone: (309) 797-3120 between that of Jupiter and Venus—in the “Goldilocks Zone” of spin speeds, if you will. I would like to throw VICE PRESIDENT – Dino Milani 2317 this out as another key characteristic of a planetary can- 29 1/2 Street, Rock Island, IL, 61201 didate for in-depth investigation for life. What do you Phone: (309) 269-4735 think? Give this some thought as you peruse the pages of yet another superb newsletter for your reading enjoy- SECRETARY - Terry Dufek ment. Thanks and keep looking up! 2812 W. 65th Street, Davenport, IA, 52806 Phone: (563) 386-3509 Alan Sheidler TREASURER – Dale Hachtel 1617 Elm Shore Drive, Port Byron IL, 61275 Phone: (614) 935-5748 CONTENTS ALCOR – Roy E. Gustafson 11 Deer Run Road, Orion, IL, 61273 Phone: (309)526-3592 Page Topic 1 Presidents Corner DIRECTOR OF OBSERVATORIES - 2 Index /Officers List Rusty Case 3 Announcements/ Info 2123 W. 16th Street, Davenport, IA, 4-5 Contributions 52804 6-10 PAC Outreach Events Phone: (563) 349-2444 11-12 Astronomy in Print 13 Upcoming Events PAST PRESIDENT - Wayland Bauer 14 Astronomical Calendar of 3256 Pleasant Drive, Bettendorf, IA., Events/ The Planets 52722 15 Sky Views Phone: (563) 332-4032 16 Deep Sky Wonders 17 Spotlight: IC 1396 Elephants Trunk Nebula NEWSLETTER EDITOR - Terry Dufek 18 NASA Space Place 2812 W. 65th Street, Davenport, IA, 19-20 News Links 52806 21-22 Member Observations Phone: (563) 386-3509 23-26 Paul Castle Observing Sessions 27-30 2019 PAC Picnic Contact for Information 31 2019 Banquet Registration Form or questions here: [email protected] 2 READY FOR MEMBERSHIP OR TO RENEW? Click Here LOOKING FOR OLDER ISSUES OF REFLECTIONS NEWSLETTER? Click HERE YES! We have HISTORY OF PAC? openings for….. Click HERE Newspaper Articles , Programs and Popular Astronomy Club Constellation reports on Facebook? Click HERE See meeting notes page for list of openings or Please contact Dino Milani if Interested Do you have a great astronomy photo that you would like to submit SUBMISSIONS for the cover photo on the If you have an article or photos to Facebook Popular submit or items of interest, Astronomy Page? Would like to we encourage you to send them in change out every 30 days. by the 25th of the month. Links to Email to [email protected] stories are welcome also. Thank you! EMAIL HERE TO SUBSCRIBE Do you subscribe to the Northern Lights newsletter? It is free and full of information on what is going on in the North Central Region (NCRAL) Click on link above to subscribe by email and receive monthly! (Click HERE to see latest issue) 3 CONTRIBUTIONS BBC’s The Sky At Night BBC The Sky at Night 2019 The Moon The Mission and The BBC CLICK HERE FOR LINK TO YOU TUBE VIDEO https://store.astroleague.org The North American eclipse of 1869 What The Sun Looks Like From Other Planets Story Here Contributed by Sara Sheidler Contributed by Joel Carter See Story HERE 4 CONTRIBUTIONS CLICK HERE FOR LINK TO MAGAZINE CLICK HERE FOR LINK TO MAGAZINE 5 Illiniwek Campground Outreach August 3rd, 2019 Here are a few pictures of some of the folks who came out last night to sup- port the observing session at Illiniwek Campground. This was a fantastic public event with probably 150-200 visi- tors. I think there were about 10-12 telescopes set up last night including scopes visitors brought to the campground. We observed the cres- cent moon, Jupiter, Saturn, various double stars such as Albireo, Mizar, and Polaris, globular star clusters M13 and M22, planetary nebulas such as M57 (the Ring Nebula) and M27 (the Dumbbell Nebula), and many other ob- jects which graced the beautiful sum- mer sky last night. Saturn and Jupiter were particularly interesting objects last night. Saturn is just past opposition meaning it rises just as the sun sets. This makes Saturn an ideal ob- ject to observe since it is visible all night long. Saturn's rings were spec- tacular and several of Saturn's moons (Titan, Rhea, Dione and Tethys) were also visible. Jupi- ter's moons put on a real show last night too. At around 10:35, we watched as Io, Jupiter's inner- most moon, passed in front of Jupiter in what is known as a transit. A transit is similar to an eclipse; one object passes in front of another ob- ject, but because Io is many times smaller than Jupiter, it cannot completely block our view of the planet. The really cool thing about the transit is we could literally watch as Io approached and passed in front of Jupiter--we witnessed Io's or- bital choreography play out in real time as Io transited Jupiter. It's something to behold. Keep looking up. Thanks. Alan Sheidler (Continued on next page) 6 (Continued from previous page) 7 Niabi Outreach August 17th, 2019 The weather cooperated for a beautiful public observing session last night at Niabi Zoo. Approximately 100 visitors attended the event. Club mem- bers in attendance were Way- land Bauer, Rusty Case, Terry Dufek, Dale Hachtel, Alex Holt, Mary Holt, Tim Holt, Dino Mila- ni, Eric Sheidler, and Al Sheidler. Six scopes were set up including the PACMO to view numerous objects including Saturn, Jupiter, the Moon, double stars (Albireo, Mizar, Polaris), planetary nebulae, globular cluster M13 (the Hercules Cluster), open clusters M29 (The Cool- ing Tower) and M39, the deep red super giant carbon star La Superba and many other ob- jects. One of the planetary nebulae we observed was NGC6826 in the constellation Cygnus the Swan. NCG6826 is called the "Blinking Plane- tary".
Recommended publications
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • Filter Performance Comparisons for Some Common Nebulae
    Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3.
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • Interstellar Extinction in the Direction of Young Open Star Clusters
    ISSN (Online) 2393-8021 ISSN (Print) 2394-1588 IARJSET International Advanced Research Journal in Science, Engineering and Technology Vol. 6, Issue 5, May 2019 Interstellar Extinction in the Direction of Young Open Star Clusters Alok K. Durgapal* Center of Advanced Study, Department of Physics, D. S. B. Campus, Kumaun University Nainital, India Abstract: The total to selective extinction law in optical and near-IR wavelengths for twenty young open star clusters namely Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 2401, NGC 6231, NGC 6823, NGC 7380 have been studied. It is found that fifteen clusters follow normal extinction law and five clusters show an anomalous behavior. Keywords: Star cluster: Reddening, interstellar dust- Interstellar extinction I. INTRODUCTION The interstellar dust which is remnant of star formation process can transmit and redirect the light of stars ([2]). As a result it becomes very difficult to determine accurate distances and magnitudes of astronomical objects ([11]); to overcome this difficulty we must have knowledge of composition of interstellar dust in every line of sight. The interstellar extinction is caused either by general interstellar medium (ISM) or by localized region of higher mean density ([9], [15]). Study of interstellar extinction provides information about components of the molecular cloud from which a star was formed. Young stars contain dust around them so young open star clusters are the ideal objects for extinction study ([5], [8], [10], [16], [17]). First started with Trumpler in 1920 and then many investigators studied extinction in the Galaxy.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • Übersicht NGC-Objektauswahl Cepheus Zur Übersichtskarte
    NGC-Objektauswahl Cepheus NGC 40 NGC 7055 NGC 7354 NGC 188 NGC 7076 NGC 7380 NGC 1184 NGC 7129 NGC 7419 NGC 1544 NGC 7139 NGC 7423 NGC 2276 NGC 7142 NGC 7429 NGC 2300 NGC 7160 NGC 7510 NGC 6939 NGC 7226 NGC 7538 NGC 6949 NGC 7235 NGC 7708 NGC 6951 NGC 7261 NGC 7762 NGC 7023 NGC 7281 NGC 7822 Sternbild- Übersicht Zur Objektauswahl: Nummer anklicken Zur Übersichtskarte: Objekt anklicken Sternbildübersicht Auswahl NGC 40_7708 Aufsuchkarte Auswahl NGC 188_Aufsuchkarte 2 UMi 2 Auswahl NGC 1184 Aufsuchkarte Auswahl NGC 1544_2276_2300 Aufsuchkarte Auswahl NGC 6939 Aufsuchkarte Auswahl NGC 6949_6951 Aufsuchkarte Auswahl NGC 7023 Aufsuchkarte Auswahl NGC 7055 Aufsuchkarte Auswahl NGC 7076 Aufsuchkarte Auswahl NGC 7129_7142 Aufsuchkarte Auswahl NGC 7139_7160 Aufsuchkarte Auswahl NGC 7226_7235 Aufsuchkarte Auswahl N 7261_7281 Aufsuchkarte Auswahl NGC 7354_7419_7429_7510_7538 Aufsuchkarte Auswahl NGC 7380_7423 Aufsuchkarte Auswahl NGC 7762_7822 Aufsuchkarte Auswahl NGC 40 Übersichtskarte Aufsuch- Auswahl karte NGC 188 Übersichtskarte Aufsuch- Auswahl karte NGC 1184 Übersichtskarte Aufsuch- Auswahl karte NGC 1544 Übersichtskarte Aufsuch- Auswahl karte N 2276_N 2300 Übersichtskarte Aufsuch- Auswahl karte NGC 6939 Übersichtskarte Aufsuch- Auswahl karte NGC 6949 Übersichtskarte Aufsuch- Auswahl karte NGC 6951 Übersichtskarte Aufsuch- Auswahl karte NGC 7023 Übersichtskarte Aufsuch- Auswahl karte NGC 7055 Übersichtskarte Aufsuch- Auswahl karte NGC 7076 Übersichtskarte Aufsuch- Auswahl karte NGC 7129_7142 Übersichtskarte Aufsuch- Auswahl karte NGC 7139
    [Show full text]
  • V·M·I University Microfilms International a Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, M148106-1346 USA 313/761-4700 800/521-0600
    The dynamics of satellite galaxies. Item Type text; Dissertation-Reproduction (electronic) Authors Zaritsky, Dennis Fabian. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 09:44:33 Link to Item http://hdl.handle.net/10150/185639 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy.
    [Show full text]
  • Wide-Field Plate Archive of the University Observatory Jena
    Astron. Nachr. / AN 999, No.88, 789–794 (2014) / DOI please set DOI! Wide-Field Plate Archive of the University Observatory Jena ⋆ A.V. Poghosyan1, W. Pfau1, K.P. Tsvetkova2, M. Mugrauer1, M.K. Tsvetkov2,3, V.V. Hambaryan1,⋆⋆, R. Neuhauser¨ 1, and D.G.Kalaglarsky2 1 Astrophysikalisches Institut und Universit¨ats-Sternwarte Jena, Schillerg¨aß chen 2, D-07745 Jena, Germany 2 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria 3 Institute of Astronomy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria Received 17 Feb 2014, accepted 19 Mar 2014 Published online later Key words astronomical databases: catalogs We present the archive of the wide-field plate observations obtained at the University Observatory Jena, which is stored at the Astrophysical Institute of the Friedrich Schiller University Jena. The archive contains plates taken in the period February 1963 to December 1982 with the 60/90/180-cm Schmidt telescope of the university observatory. A computer- readable version of the plate metadata catalogue (for 1257 plates), the logbooks, as well as the digitized Schmidt plates in low and high resolution are now accessible to the astronomical community.This paper describes the properties of the archive, as well as the processing procedure of all plates in detail. c 2014 WILEY-VCH Verlag GmbH& Co. KGaA, Weinheim 1 Introduction Großschwabhausen,about 10 km to the west of Jena. Archi- tect of the telescope building was Hans Schlag, an architect The large astronomical plate collections provide unique re- who together with J. Schreiter is also famous for the Plan- sources for photometric and astrometric studies of astro- etarium in Jena, built in 1926.
    [Show full text]
  • Mandm Direct Spreads
    Touring the moonlit Spring Skies... Observations from Saturday 11th May 2019 8.30pm - 2.15am Equipment used: TEC 140, tracking Nova Hitch Alt-Az with slow-mo controls and encoders on a Berlebach Planet, iPad Air2 running SkySafari Pro 5, Nexus WiFi, 10 and 21mm Ethos, Baader BBHS diagonal, Lumicon 2” UHC and OIII filters in a True-Tech manual filter wheel. Mixed forecasts, Clear Outside suggesting 27% cloud around midnight, Xasteria saying clear, Clear Outside loaded from within Xasteria offering something in-between (how do you get that, hey!?) and Meteoblue forecasting clear skies from 11 but with poor ‘Index 2’ and Jet Stream readings.... Having neglected visual astronomy for many months (having spent my time finally getting the imaging gear to play ball), I spent forty odd minutes re-learning how to set everything back up - in fact, it be on offer with the moon in attendance... took longer than it does to wheel out the imaging gear. Times have changed, my usual (100% visual) observing buddy was having a go at imaging (spectroscopy), so I was on my own for this evening. It meant I’d have to keep my own notes for a change, but also allow me to go at my own pace as I reacquainted myself with the night sky. By 8.30 I was ready to go, clear skies, still a shade of blue with a half moon hanging over in the south western sky. Temperature rapidly dropping. 21mm eyepiece in place easily held the entire moon. Fantastic details, sharp, contrasty, zero colour..
    [Show full text]