Interstellarum 60 • Oktober/November 2008 1 Inhalt
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Filter Performance Comparisons for Some Common Nebulae
Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3. -
Winter Constellations
Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the Orion Nebula. -
Interstellar Extinction in the Direction of Young Open Star Clusters
ISSN (Online) 2393-8021 ISSN (Print) 2394-1588 IARJSET International Advanced Research Journal in Science, Engineering and Technology Vol. 6, Issue 5, May 2019 Interstellar Extinction in the Direction of Young Open Star Clusters Alok K. Durgapal* Center of Advanced Study, Department of Physics, D. S. B. Campus, Kumaun University Nainital, India Abstract: The total to selective extinction law in optical and near-IR wavelengths for twenty young open star clusters namely Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 2401, NGC 6231, NGC 6823, NGC 7380 have been studied. It is found that fifteen clusters follow normal extinction law and five clusters show an anomalous behavior. Keywords: Star cluster: Reddening, interstellar dust- Interstellar extinction I. INTRODUCTION The interstellar dust which is remnant of star formation process can transmit and redirect the light of stars ([2]). As a result it becomes very difficult to determine accurate distances and magnitudes of astronomical objects ([11]); to overcome this difficulty we must have knowledge of composition of interstellar dust in every line of sight. The interstellar extinction is caused either by general interstellar medium (ISM) or by localized region of higher mean density ([9], [15]). Study of interstellar extinction provides information about components of the molecular cloud from which a star was formed. Young stars contain dust around them so young open star clusters are the ideal objects for extinction study ([5], [8], [10], [16], [17]). First started with Trumpler in 1920 and then many investigators studied extinction in the Galaxy. -
Übersicht NGC-Objektauswahl Cepheus Zur Übersichtskarte
NGC-Objektauswahl Cepheus NGC 40 NGC 7055 NGC 7354 NGC 188 NGC 7076 NGC 7380 NGC 1184 NGC 7129 NGC 7419 NGC 1544 NGC 7139 NGC 7423 NGC 2276 NGC 7142 NGC 7429 NGC 2300 NGC 7160 NGC 7510 NGC 6939 NGC 7226 NGC 7538 NGC 6949 NGC 7235 NGC 7708 NGC 6951 NGC 7261 NGC 7762 NGC 7023 NGC 7281 NGC 7822 Sternbild- Übersicht Zur Objektauswahl: Nummer anklicken Zur Übersichtskarte: Objekt anklicken Sternbildübersicht Auswahl NGC 40_7708 Aufsuchkarte Auswahl NGC 188_Aufsuchkarte 2 UMi 2 Auswahl NGC 1184 Aufsuchkarte Auswahl NGC 1544_2276_2300 Aufsuchkarte Auswahl NGC 6939 Aufsuchkarte Auswahl NGC 6949_6951 Aufsuchkarte Auswahl NGC 7023 Aufsuchkarte Auswahl NGC 7055 Aufsuchkarte Auswahl NGC 7076 Aufsuchkarte Auswahl NGC 7129_7142 Aufsuchkarte Auswahl NGC 7139_7160 Aufsuchkarte Auswahl NGC 7226_7235 Aufsuchkarte Auswahl N 7261_7281 Aufsuchkarte Auswahl NGC 7354_7419_7429_7510_7538 Aufsuchkarte Auswahl NGC 7380_7423 Aufsuchkarte Auswahl NGC 7762_7822 Aufsuchkarte Auswahl NGC 40 Übersichtskarte Aufsuch- Auswahl karte NGC 188 Übersichtskarte Aufsuch- Auswahl karte NGC 1184 Übersichtskarte Aufsuch- Auswahl karte NGC 1544 Übersichtskarte Aufsuch- Auswahl karte N 2276_N 2300 Übersichtskarte Aufsuch- Auswahl karte NGC 6939 Übersichtskarte Aufsuch- Auswahl karte NGC 6949 Übersichtskarte Aufsuch- Auswahl karte NGC 6951 Übersichtskarte Aufsuch- Auswahl karte NGC 7023 Übersichtskarte Aufsuch- Auswahl karte NGC 7055 Übersichtskarte Aufsuch- Auswahl karte NGC 7076 Übersichtskarte Aufsuch- Auswahl karte NGC 7129_7142 Übersichtskarte Aufsuch- Auswahl karte NGC 7139 -
Statistical Phenomena in Astronomy
Statistical Phenomena in Astronomy Lajos G. Bal´azs August 11, 2004 2 Contents I Mathematical introduction 7 1 Nature of astronomical information 9 1.1 Brief summary of multivariate methods . 10 1.1.1 Factor Analysis . 10 1.1.2 Cluster Analysis . 11 2 The basic equation of stellar statistics 13 2.1 Formulation of the problem . 13 2.2 Solutions of the basic equation . 14 2.2.1 Eddington’s solution . 14 2.2.2 Solution by Fourier transformation . 16 2.2.3 Malmquist’s solution . 17 2.2.4 Lucy’s algorithm . 19 2.2.5 The EM algorithm . 21 2.2.6 Dolan’s matrix method . 24 2.3 Concluding remarks . 25 II Statistical study of extended sources 27 3 Separation of Components 29 3.1 Separation of the Zodiacal and Galactic Light . 29 3.2 Sturucture and Dynamics of the Cepheus Bubble . 33 3.2.1 Basic characteristics . 33 3.2.2 Distribution of neutral Hydrogen . 34 3.2.3 Physical nature of the bubble . 45 4 Star count study of the extinction 49 4.1 Extinction map of L1251 . 49 4.2 Input data . 50 4.3 Extinction maps from star counts . 51 3 4 CONTENTS 4.3.1 Definition of areas of similar extinction . 52 4.3.2 Modelling the effect of extinction on the star counts . 54 4.3.3 Star count - extinction conversion . 57 4.3.4 Surface distribution of the obscuring material . 57 4.4 Discussion . 59 4.4.1 Shape of the cloud . 59 4.4.2 Properties of the obscuring material . -
251 — 8 November 2013 Editor: Bo Reipurth ([email protected]) List of Contents
THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 251 — 8 November 2013 Editor: Bo Reipurth ([email protected]) List of Contents The Star Formation Newsletter Interview ...................................... 4 My Favorite Object ............................ 6 Editor: Bo Reipurth [email protected] Perspective ................................... 12 Technical Editor: Eli Bressert Abstracts of Newly Accepted Papers .......... 15 [email protected] Abstracts of Newly Accepted Major Reviews . 50 Technical Assistant: Hsi-Wei Yen Dissertation Abstracts ........................ 51 [email protected] New Jobs ..................................... 52 Editorial Board Summary of Upcoming Meetings ............. 54 Short Announcements ........................ 55 Joao Alves Alan Boss Jerome Bouvier Lee Hartmann Thomas Henning Paul Ho Cover Picture Jes Jorgensen Charles J. Lada This image shows the reflection nebula NGC 1579 Thijs Kouwenhoven located in the dark cloud L1482 at an approximate Michael R. Meyer distance of 700 pc. The nebulosity is illuminated Ralph Pudritz by the peculiar object LkHα 101, which is a heavily Luis Felipe Rodr´ıguez reddened massive star in a very early evolutionary Ewine van Dishoeck stage (seen as a faint optical star just south of the Hans Zinnecker brightest part of the reflection nebula). The figure is a composite of B-, V-, and R-band images, and The Star Formation Newsletter is a vehicle for covers approximately 6×7 arcmin, -
Interstellar Extinction in Twenty Open Star Clusters 3 Error ∼ 0.01 Mag in V and ∼ 0.02 Mag in (B − V ), (V − R) and (V − I) While ∼ 0.03 Mag in (U − B)
Publications of the Astronomical Society of Australia (PASA) c Astronomical Society of Australia 2017; published by Cambridge University Press. doi: 10.1017/pas.2017.xxx. Interstellar extinction in twenty open star clusters Geeta Rangwal1∗, R. K. S. Yadav2†, Alok Durgapal1‡, D. Bisht3SS 1 Center of Advanced Study, Department of Physics, D. S. B. Campus, Kumaun University Nainital 263002, India. 2 Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263002, India. 3 Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009, Gujarat, India. Abstract The interstellar extinction law in twenty open star clusters namely Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 2401, NGC 6231, NGC 6823 and NGC 7380 have been studied in the optical and near-IR wavelength ranges. The difference between maximum and minimum values of E(B − V ) indicates the presence of non-uniform extinction in all the clusters except Collinder 69, NGC 2362 and NGC 2384. The colour excess ratios are consistent with a normal extinction law for the clusters NGC 6823, Haffner 18, Haffner 19, NGC 7160, NGC 6193, NGC 2401, NGC 2384, NGC 6871, NGC 7380, Berkeley 7, Collinder 69 and IC 4996. We have found that the differential color-excess ∆E(B − V ), which may be due to the occurrence of dust and gas inside the clusters, decreases with the age of the clusters. A spatial variation of color excess is found in NGC 6193 in the sense that it decreases from east to west in the cluster region. -
SEPTEMBER 2019 President’S Corner SEPTEMBER 2019 Face of Jupiter Or Saturn Because They Have Welcome to the September No Tangible Surface
ReflectionsReflections Newsletter of the Popular Astronomy Club SEPTEMBER 2019 President’s Corner SEPTEMBER 2019 face of Jupiter or Saturn because they have Welcome to the September no tangible surface. Jupiter, Saturn, Uranus 2019 edition of “Reflections”, and Neptune are gas giants—they don’t have the universe’s best astronomy a hard surface upon which one can stand. But newsletter. I am always imagine we could! Ok. So assuming we amazed by the level of activi- could stand on the equator of all the planets in ties and enthusiasm for the our solar system (and the Moon), I made hobby our club members con- some quick calculations to estimate the speed tinue to demonstrate. You can read about these activities in you would have just passively standing there. this edition. This summer, we Below is a table of my calculations: have had a number of very Alan Sheidler successful public observing sessions, all of which are documented in this Diameter Rotation Equatorial newsletter. One of the aspects of public observ- Planet (mi) Period (hr) Speed (mph) ing sessions is the possibility to engage visitors, Mercury 3032 1407.6 6.8 not only to glimpse objects in the eyepiece of the 7523 -5832.5 telescope, but also to discuss some of the physi- Venus -4.1 cal attributes of those selfsame objects. During Earth 7928 23.9 1042 one of these sessions, I was involved in a discus- Moon 2160 655.7 10.3 sion about the planet Jupiter about how quickly 4221 24.6 the Red Spot rotates into and out of view as seen Mars 539 in the telescope. -
The Cases of HD 17505A and HD 206267A? F
A&A 614, A60 (2018) https://doi.org/10.1051/0004-6361/201732376 Astronomy & © ESO 2018 Astrophysics Fundamental parameters of massive stars in multiple systems: The cases of HD 17505A and HD 206267A? F. Raucq1, G. Rauw1, L. Mahy1,2,??, and S. Simón-Díaz3,4 1 Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 19c, Bât. B5c, 4000 Liège, Belgium e-mail: [email protected] 2 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, Bus 2401, 3001 Leuven, Belgium 3 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain Received 28 November 2017 / Accepted 23 February 2018 ABSTRACT Context. Many massive stars are part of binary or higher multiplicity systems. The present work focusses on two higher multiplicity systems: HD 17505A and HD 206267A. Aims. Determining the fundamental parameters of the components of the inner binary of these systems is mandatory to quantify the impact of binary or triple interactions on their evolution. Methods. We analysed high-resolution optical spectra to determine new orbital solutions of the inner binary systems. After subtracting the spectrum of the tertiary component, a spectral disentangling code was applied to reconstruct the individual spectra of the primary and secondary. We then analysed these spectra with the non-LTE model atmosphere code CMFGEN to establish the stellar parameters and the CNO abundances of these stars. Results. The inner binaries of these systems have eccentric orbits with e ∼ 0:13 despite their relatively short orbital periods of 8.6 and 3.7 days for HD 17505Aa and HD 206267Aa, respectively. -
Xiithgeneral Asseltibly Hamburg, Germany
XIIthGeneral AsselTIbly Hamburg, Germany 1964 XIIe Assemblée Générale Hambourg, Allemagne 1964 RESOLUTIONS ADOPTED BY THE GENERAL ASSEMBLy SUMMARY OF DECISIONS C9NTAIl''iED IN THE REPORT OF THE GENERAL ASSEMBLY 1. Statutes and By-laws. The revised texts of the Statutes and By-laws, as indicated on page 37, will be printed in Volume XIIC of the Transactions. 2. Commissions. The following decisions were taken (see page 43). (a) To create a new Commission no. 45: Spectral Classifications and Multi-band Colour Indices. (h) To create a new Commission no. 46: The Teaching of Astronomy. (c) To re-name Commission no. 17: The Moon (d) To re-name Commission no. 19: The Rotation of the Earth (e) To re-name Commission no. 30: Radial Velocities 3. Resolutions proposed by Commissions. Sorne Commissions submitted resolutions, either of a financial or general character. The financial resolutions have been included in the Budget when it was considered possible to make the appropriate provision; in accepting the Budget as proposed by the Finance Committee (see page 39), the General Assembly accepted these financial resolutions; they are not reproduced here. Furthermore, the Resolutions Committee recommended 'that certain resolutions were of sufficiently general importance to be considered .by the General Assembly; these are included in the following resolutions. Finally, the other resolutions adopted by the Commissions were given a general endorsement by Resolution no. 8, given below. These resolutions have not been reproduced separately here, but will be found in the reports of the meetings of Commissions in Part 3. RESOLUTIONS ADOPTEES PAR L'ASSEMBLEE GENERALE SOMMAIRE DES DÉCISIONS CONTENUES DANS LE RAPPORT DE L'ASSEMBLÉE GÉNÉRALE 1. -
XMM-Newton View of Eight Young Open Star Clusters
XMM-Newton view of eight young open star clusters Himali Bhatt INSPIRE FACULTY (Department of Science & Technology) Astrophysical Sciences Division Bhabha Atomic Research Center (BARC), Trombay, Mumbai INDIA Collaborators : J. C. Pandey, Ram Sagar (ARIES India); K. P. Singh (TIFR India) June 16-19, 2014 “The X-ray Universe 2014” Trinity College Dublin Outline Introduction Sample Selection and classification Temporal and Spectral Analysis X-ray Characteristics : Massive, Intermediate and Low mass stars Conclusions Introduction Stars Structure X-ray Massive Winds (M> 10 Msun) L ~ 10-7 L O - B Stars x bol Intermediate ??? (2<M<10 Msun) L absent ? A Stars x Low mass (M<2 Msun) Dynamo 2 F to M Stars Lx ~ Vrot Yummy! Young Clusters All this hydrogen (age<100 Myr) keeps me HOT!!!! Main-sequence Pre Main-sequence Chandra Orion Ultra deep Evolution of X-rays Project (COUP): 13 days nearly continuous observation in 2003 1 - 5 Myr 100 Myr X-ray levels are roughly constant during ??? Class I-II-III phases … but drop greatly on the main sequence Preibisch & Feigelson (2005) Pre main sequence Main sequence bol /L X ) [erg/sec] x Log L Log Log (L Pre main sequence Main sequence Log Lbol/Lsun Prot [days] 1.0 PMS : no activity - rotation relation COUP (PMS) : LX ∝ Lbol even slow rotators are highly active 0.4 −2 NEXXUS (MS) : LX ∝ Lbol MS : LX ∝ Prot - saturation at log (LX / Lbol ) ~ −3 Schmitt& Liefke 2004 for Prot ≤ 3 days Thomas Preibisch http://www.mpifr-bonn.mpg.de/staff/tpreibis/3-02-preibisch.pdf Open Questions ???? Low Mass Stars Not clear exactly at which stage of the PMS stellar evolution, low mass stars deviate from the X-ray saturation level. -
RASC Double Star Observing Program Checklist
RASC Double Star Observing Program Checklist Use this checklist to monitor your progress. If you cannot split a See the supplemental spreadsheet for detailed information for each double, it's OK; try again on another night. View a pair of stars for component of these double stars including all visible companions, each target. Some targets are triples or have additional stars. Only the magnitudes, separation values, position angles, visual impressions, etc. If brightest or most obvious pair is required. you enjoy "discovery moments," avoid reading the supplement. Record your detailed observations on the provided or your own log The checklist is organised by season, with doubles grouped by sheets. Sketching is optional but highly encouraged. constellation, and sorted by RA. LEGEND Target a common name for the target double star or multi-star system Con host constellation Alternate ID other designation including Bayer, Flamsteed, Draper, etc. MagC calculated combined magnitude of two bright stars SAO Smithsonian Astrophysical Observatory catalogue designation Mm suggested telescope size, aperture in millimetres HIP Hipparcos star catalogue designation X suggested starting power or magnification WDS Washington Double Star catalogue discoverer designation PSA page number in Pocket Sky Atlas RA/Dec 2000 rounded coordinates for the target, J2000 epoch Seen? use check box to indicate target was viewed Version 4.1a. Edited on 23 February 2021. Target Alternate ID SAO HIP WDS Con MagC RA 2000 Dec 2000 Mm X PSA Seen? WINTER (part 1) HD 21700 BD+27