Reflectionsreflections the Newsletter of the Popular Astronomy Club ESTABLISHED 1936 February 2021

Total Page:16

File Type:pdf, Size:1020Kb

Reflectionsreflections the Newsletter of the Popular Astronomy Club ESTABLISHED 1936 February 2021 Affiliated with ReflectionsReflections The Newsletter of the Popular Astronomy Club ESTABLISHED 1936 February 2021 President’s Corner February 2021 the speed of light, this means the object is Welcome to the Febru- trapped in the black hole. ary edition of Reflec- The escape velocity for a planet is the speed at tions. We are in the which an object (like a rocket) would have to middle of winter, which be launched from the surface of the planet so should be obvious to that it would fly up and completely escape Page Topic everyone and especially from the planet and never fall back down for astronomers. We again. A rocket could orbit a planet at a slightly 1-2 Presidents have had very few op- slower speed and never fall back to the Corner Alan Sheidler portunities to view ce- planet’s surface, but in that case, the rocket 2-4 Announcements lestial objects and when would not have escaped, it would have been 5-10 Contributions we have, it has been too cold or snowy for trapped in an orbit around the planet. 11 Astronomy in most of us to get out under the stars. Print We can calculate the escape velocity for the For many of us, this is a time when we take a 12-13 Skyward Earth and other solar system objects using the vacation from observing and do other things 14 Upcoming Events fairly simple equation below. For those of you (like buy new telescopes or plan observing 15 Sign-Up Sheet not wanting to bother doing the math, I creat- sessions when the weather improves this 16 Astronomical ed the following table showing the escape ve- spring). For me, this is the time when my Calendar of locities for several solar system objects. mind gets to wandering. Events Earth’s escape velocity is slightly more than 17 Sky Views Over the last couple weeks, I became inter- 25,000mph (11.18km/s). Recall in 1968, Apol- 18 Planetary ested in black holes and in particular, about lo 8 reached this speed in order to escape from Alignments the size of black holes. In reality, a black Earth to reach the Moon. The escape velocity 19 Deep Sky hole is simply an object that has a gravita- for the Sun is nearly 1,382,000mph (618km/s) Wonders tional field strong enough to curve nearby and for Deimos (one of the two Martian 20 February space so drastically that nothing, not even moons) it is only 14mph. If you are a fast run- Night Sky light, can escape. It is difficult to imagine ner, you could escape from Deimos simply by 21 Golf on the how strong gravity has to be for this to hap- running! Moon pen. But essentially light is affected by gravi- 22 Spotlight I won’t bore you with the math, but if you are ty in the same way that physical objects are. 23-24 Landing on Mars good with algebra, you can solve the escape 25-29 News Links So, if one could shine a light beam up from velocity equation for r. Using the velocity of 29-41 Member the “surface” of a black hole, the beam light for the escape velocity and solving for r, Observations would eventually be curved back down by you can find the size of a black hole corre- 42 Paul Castle the black hole’s gravity. Simplistically, we sponding to any planet’s (or star’s) mass. The Observing can think of a black hole as having an escape radius r of a black hole is called the Schwarz- Sessions velocity equal to or greater than the speed schild Radius. For the Sun, this is just under 3 43 January Meeting of light. The “surface of the black hole” in km. In other words, if you could crunch the this case is a boundary known as the event Sun down to less than 6 km in diameter, it horizon. If anything passes inside the black would be a black hole! hole’s event horizon, that object would have It would take a lot of pressure to do that! In- to travel faster than the speed of light to be terestingly, if you could compress the earth able to escape and since nothing can exceed (Continued in next column) (Continued on next page) 1 (Continued from previous page) ANNOUNCEMENTS / INFO Popular down to the size of a penny, it would also be Astronomy a black hole! I’m not going to lay awake at NCRAL Club night worrying about this happening, but it Officers gives us a way to imagine the stupendous Seasonal density of a black hole. Messier PRESIDENT - Alan Sheidler Recently, astronomers were able to obtain Marathon 3528 56th Street Court, Moline, an image of the super massive black hole at Program IL, 61265 the center of super giant elliptical galaxy Phone: (309) 797-3120 M87. The mass of this black hole is estimat- NCRAL’s Seasonal Messier Marathon VICE PRESIDENT – Dino Milani ed at 6.5 billion times the mass of our Sun. I observing program is NOT designed 2317 29 1/2 Street, Rock Island, will leave the math to you, but if you do it, to qualify observers for the Astro- IL, 61201 you find the Schwarzschild radius of M87’s nomical League’s Messier Observing program; the two programs are unre- Phone: (309) 269-4735 black hole is 127 Astronomical Units (127 lated and observing requirements are times the Earth-Sun distance). That’s BIG! quite different. In the NCRAL pro- SECRETARY - Terry Dufek gram, the main requirement is to 2812 W. 65th Street, Davenport, Anyway, you see what happens when my quickly observe and essentially check IA, 52806 Phone: (563) 386-3509 mind gets to wandering. Let’s hope for a off items from one of four seasonal break in the weather and keep looking up! lists of Messier objects as noted in the section to follow. TREASURER – Dale Hachtel Al. 1617 Elm Shore Drive, Port Byron NCRAL recognition will consist a suit- IL, 61275 able printed certificate and a 3⁄4-inch Phone: (614) 935-5748 enameled star pin (a different color for each season). There will be no ALCOR – Roy E. Gustafson direct cost to the membership for participating in the award program; 11 Deer Run Road, Orion, IL, the cost of the program (pins, certifi- 61273 cates, mailers, postage) will be borne Phone: (309)526-3592 by the Region as a benefit of affilia- tion. Relevant program documents DIRECTOR OF OBSERVATORIES - are linked below Rusty Case 2123 W. 16th Street, Davenport, NCRAL Seasonal Messier Marathon Pro- IA, 52804 gram Rules Phone: (563) 349-2444 NCRAL WINTER Seasonal Messier List PAST PRESIDENT - Wayland Bauer NCRAL SPRING Seasonal Messier List 3256 Pleasant Drive, Bettendorf, IA., 52722 NCRAL SUMMER Seasonal Messier List Phone: (563) 332-4032 NCRAL AUTUMN Seasonal Messier List NEWSLETTER EDITOR - Terry Dufek 2812 W. 65th Street, Davenport, IA, 52806 Phone: (563) 386-3509 Contact for Information or questions here: This image of a black hole—the first ever popularastronomy- taken— was captured by an international [email protected] team of researchers in April 2017. The black hole in located in the center of Galaxy M87. 2 ANNOUNCEMENTS / INFO READY FOR MEMBERSHIP OR TO RENEW? LOOKING FOR OLDERLOOKING ISSUES FOR OF OLDER For PAC Documents REFLECTIONSISSUES OF REFLECTIONS Use NEWSLETTER?NEWSLETTER? “Enrollment Form” Click HERE HISTORY OF PAC? HISTORY OFClick PAC? HERE SUBMISSIONS If you have an article or photos to submit or Popular Astronomy Club items of interest, we encourage you to send Popular Astronomyon Facebook? Club them in by the 25th of the month. Links to on Facebook?Click HERE stories are welcome also. Thank you! Astronomical League Observing Programs The Astronomical League provides many different Observing Programs. These Observing Programs are designed to provide a direction for your obser- vations and to provide a goal. The Observing Pro- grams have certificates and pins to recognize the observers’ accomplishments and for demon- stratingstrating their their observingobserving skills skills withwith a avarie- variety of in- ty of instrumentsstruments and and objects objects Check out the Astronomical Click Here League ONLINE! Check out the North Central Region of the Astronomical League (NCRAL) online 3 ANNOUNCEMENTS / INFO Ever wonder Where New Horizons is right now and what it is up to ? 4 CONTRIBUTIONS Conjunction of Jupiter & Saturn, December 2020 You Tube Video by al Sheidler 5 CONTRIBUTIONS Make a Moon Phases Calendar and Calculator – NEW 6 CONTRIBUTIONS I wanted a close up picture of the Orion Nebula, so I went there in my Space Suit! Seriously, people can download an App called “NASA Selfies”, put themselves in a space suit, and chose a bunch of backgrounds and save the images. Might be something our members can do when they are home because of COVID-19. 7 CONTRIBUTIONS 8 CONTRIBUTIONS The habitable zone will move as the Sun ages. It will move so far that the Earth will not be in this zone in a few billion years. Jupiter and Saturn will be so, I am selling land deeds on some of their satellites now - buy now and avoid the rush and the price increase!! Contributed by Roy Gustafson (contact for purchasing info) 9 VIDEO CONTRIBUTIONS Some You Tube videos for you to view while being home bound Geminid Meteor Shower 2020 through the Northern Lights - real-time HD Interview: Is there life beyond Earth? I Left the City to Photograph the Andromeda Galaxy A Journey to the End of the Universe This Decade Will Be Remembered For Deep-Sky Astrophotography During a Full Moon? The Starlight Xpress Oculus all-sky camera These are the asteroids to worry about My CALIFORNIA NEBULA Project is DONE! (CANON EOS Ra) 10 ASTRONOMY IN PRINT SKYWATCH is closest to the sun Mercury s approximately 36 million miles from the sun.
Recommended publications
  • Occuttau'm@Newsteuer
    Occuttau'm@Newsteuer Volume IV, Number 3 january, 1987 ISSN 0737-6766 Occultation Newsletter is published by the International Occultation Timing Association. Editor and compos- itor: H. F. DaBo11; 6N106 White Oak Lane; St. Charles, IL 60174; U.S.A. Please send editorial matters, new and renewal memberships and subscriptions, back issue requests, address changes, graze prediction requests, reimbursement requests, special requests, and other IOTA business, but not observation reports, to the above. FROM THE PUBLISHER IOTA NEWS This is the first issue of 1987. Some reductions in David Id. Dunham prices of back issues are shown below. The main purpose of this issue is to distribute pre- dictions and charts for planetary and asteroidal oc- When renewing, please give your name and address exactly as they ap- pear on your mailing label, so that we can locate your file; if the cultations that occur during at least the first part label should be revised, tell us how it should be changed. of 1987. As explained in the article about these If you wish, you may use your VISA or NsterCard for payments to IOTA; events starting on p. 41, the production of this ma- include the account number, the expiration date, and your signature. terial was delayed by successful efforts to improve Card users must pay the full prices. If paying by cash, check, or the prediction system and various year-end pres- money order, please pay only the discount prices. Full Discount sures, including the distribution o"' lunar grazing price price occultation predictions. Unfortunately, this issue IOTA membership dues (incl.
    [Show full text]
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • Filter Performance Comparisons for Some Common Nebulae
    Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3.
    [Show full text]
  • Observing List
    day month year Epoch 2000 local clock time: 23.98 Observing List for 23 7 2019 RA DEC alt az Constellation object mag A mag B Separation description hr min deg min 20 50 Andromeda Gamma Andromedae (*266) 2.3 5.5 9.8 yellow & blue green double star 2 3.9 42 19 28 69 Andromeda Pi Andromedae 4.4 8.6 35.9 bright white & faint blue 0 36.9 33 43 30 55 Andromeda STF 79 (Struve) 6 7 7.8 bluish pair 1 0.1 44 42 16 52 Andromeda 59 Andromedae 6.5 7 16.6 neat pair, both greenish blue 2 10.9 39 2 45 67 Andromeda NGC 7662 (The Blue Snowball) planetary nebula, fairly bright & slightly elongated 23 25.9 42 32.1 31 60 Andromeda M31 (Andromeda Galaxy) large sprial arm galaxy like the Milky Way 0 42.7 41 16 31 61 Andromeda M32 satellite galaxy of Andromeda Galaxy 0 42.7 40 52 32 60 Andromeda M110 (NGC205) satellite galaxy of Andromeda Galaxy 0 40.4 41 41 17 55 Andromeda NGC752 large open cluster of 60 stars 1 57.8 37 41 17 48 Andromeda NGC891 edge on galaxy, needle-like in appearance 2 22.6 42 21 45 69 Andromeda NGC7640 elongated galaxy with mottled halo 23 22.1 40 51 46 57 Andromeda NGC7686 open cluster of 20 stars 23 30.2 49 8 30 121 Aquarius 55 Aquarii, Zeta 4.3 4.5 2.1 close, elegant pair of yellow stars 22 28.8 0 -1 12 120 Aquarius 94 Aquarii 5.3 7.3 12.7 pale rose & emerald 23 19.1 -13 28 32 152 Aquarius M72 globular cluster 20 53.5 -12 32 31 151 Aquarius M73 Y-shaped asterism of 4 stars 20 59 -12 38 16 117 Aquarius NGC7606 Galaxy 23 19.1 -8 29 32 149 Aquarius NGC7009 Saturn Neb planetary nebula, large & bright pale green oval 21 4.2 -11 21.8 38 135
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Report of Contributions
    Mapping the X-ray Sky with SRG: First Results from eROSITA and ART-XC Report of Contributions https://events.mpe.mpg.de/e/SRG2020 Mapping the X- … / Report of Contributions eROSITA discovery of a new AGN … Contribution ID : 4 Type : Oral Presentation eROSITA discovery of a new AGN state in 1H0707-495 Tuesday, 17 March 2020 17:45 (15) One of the most prominent AGNs, the ultrasoft Narrow-Line Seyfert 1 Galaxy 1H0707-495, has been observed with eROSITA as one of the first CAL/PV observations on October 13, 2019 for about 60.000 seconds. 1H 0707-495 is a highly variable AGN, with a complex, steep X-ray spectrum, which has been the subject of intense study with XMM-Newton in the past. 1H0707-495 entered an historical low hard flux state, first detected with eROSITA, never seen before in the 20 years of XMM-Newton observations. In addition ultra-soft emission with a variability factor of about 100 has been detected for the first time in the eROSITA light curves. We discuss fast spectral transitions between the cool and a hot phase of the accretion flow in the very strong GR regime as a physical model for 1H0707-495, and provide tests on previously discussed models. Presenter status Senior eROSITA consortium member Primary author(s) : Prof. BOLLER, Thomas (MPE); Prof. NANDRA, Kirpal (MPE Garching); Dr LIU, Teng (MPE Garching); MERLONI, Andrea; Dr DAUSER, Thomas (FAU Nürnberg); Dr RAU, Arne (MPE Garching); Dr BUCHNER, Johannes (MPE); Dr FREYBERG, Michael (MPE) Presenter(s) : Prof. BOLLER, Thomas (MPE) Session Classification : AGN physics, variability, clustering October 3, 2021 Page 1 Mapping the X- … / Report of Contributions X-ray emission from warm-hot int … Contribution ID : 9 Type : Poster X-ray emission from warm-hot intergalactic medium: the role of resonantly scattered cosmic X-ray background We revisit calculations of the X-ray emission from warm-hot intergalactic medium (WHIM) with particular focus on contribution from the resonantly scattered cosmic X-ray background (CXB).
    [Show full text]
  • Astronomy Magazine Special Issue
    γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006.
    [Show full text]
  • ASTRONOMY and ASTROPHYSICS the Elliptical Galaxy Formerly Known As the Local Group: Merging the Globular Cluster Systems
    Astron. Astrophys. 358, 471–480 (2000) ASTRONOMY AND ASTROPHYSICS The elliptical galaxy formerly known as the Local Group: merging the globular cluster systems Duncan A. Forbes1,2, Karen L. Masters1, Dante Minniti3, and Pauline Barmby4 1 University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, UK 2 Swinburne University of Technology, Astrophysics and Supercomputing, Hawthorn, Victoria 3122, Australia 3 P. Universidad Catolica,´ Departamento de Astronom´ıa y Astrof´ısica, Casilla 104, Santiago 22, Chile 4 Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Received 5 November 1999 / Accepted 27 January 2000 Abstract. Prompted by a new catalogue of M31 globular clus- al. 1995; Minniti et al. 1996). Furthermore Hubble Space Tele- ters, we have collected together individual metallicity values for scope studies of merging disk galaxies reveal evidence for the globular clusters in the Local Group. Although we briefly de- GC systems of the progenitor galaxies (e.g. Forbes & Hau 1999; scribe the globular cluster systems of the individual Local Group Whitmore et al. 1999). Thus GCs should survive the merger of galaxies, the main thrust of our paper is to examine the collec- their parent galaxies, and will form a new GC system around tive properties. In this way we are simulating the dissipationless the newly formed elliptical galaxy. merger of the Local Group, into presumably an elliptical galaxy. The globular clusters of the Local Group are the best studied Such a merger is dominated by the Milky Way and M31, which and offer a unique opportunity to examine their collective prop- appear to be fairly typical examples of globular cluster systems erties (reviews of LG star clusters can be found in Brodie 1993 of spiral galaxies.
    [Show full text]
  • Galactic Extinction Laws: II. Hidden in Plain Sight, a New Interstellar Absorption Band at 7700 Å Broader Than Any Known DIB
    MNRAS 000,1–17 (2020) Preprint 4 August 2020 Compiled using MNRAS LATEX style file v3.0 Galactic extinction laws: II. Hidden in plain sight, a new interstellar absorption band at 7700 Å broader than any known DIB J. Maíz Apellániz,1? R. H. Barbá,2 J. A. Caballero,1 R. C. Bohlin3; and C. Fariña4;5 1Centro de Astrobiología. CSIC-INTA. Campus ESAC. Camino bajo del castillo s/n. E-28 692 Villanueva de la Cañada. Madrid. Spain. 2Departamento de Astronomía. Universidad de La Serena. Av. Cisternas 1200 Norte. La Serena. Chile. 3Space Telescope Science Institute. 3700 San Martin Drive. Baltimore, MD 21 218, U.S.A. 4Instituto de Astrofísica de Canarias. E-38 200 La Laguna, Tenerife, Spain. 5Isaac Newton Group of Telescopes. Apartado de correos 321. E-38 700 Santa Cruz de La Palma, La Palma, Spain. Accepted 2020 August 3. Received 2020 August 3; in original form 2020 June 4. ABSTRACT We have detected a broad interstellar absorption band centred close to 7700 Å and with a FWHM of 176.6±3.9 Å. This is the first such absorption band detected in the optical range and is significantly wider than the numerous diffuse interstellar bands (DIBs). It remained undiscovered until now because it is partially hidden behind the A telluric band produced by O2. The band was discovered using STIS@HST spectra and later detected in a large sample of stars of diverse type (OB stars, BA supergiants, red giants) using further STIS and ground- based spectroscopy. The EW of the band is measured and compared with our extinction and K i λλ7667.021,7701.093 measurements for the same sample.
    [Show full text]
  • Proper Motion Surveys of the Young Open Clusters Alpha Persei and the Pleiades
    A&A 416, 125–136 (2004) Astronomy DOI: 10.1051/0004-6361:20034238 & c ESO 2004 Astrophysics Proper motion surveys of the young open clusters Alpha Persei and the Pleiades N. R. Deacon and N. C. Hambly Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK Received 28 August 2003 / Accepted 28 October 2003 Abstract. In this paper we present surveys of two open clusters using photometry and accurate astrometry from the SuperCOSMOS microdensitometer. These use plates taken by the Palomar Oschin Schmidt Telescope giving a wide field (5◦ from the cluster centre in both cases), accurate positions and a long time baseline for the proper motions. Distribution functions are fitted to proper motion vector point diagrams yielding formal membership probabilities. Luminosity and mass functions are then produced along with a catalogue of high probability members. Background star contamination limited the depth of the study of Alpha Per to R = 18. Due to this the mass function found for this cluster could only be fitted with a power ξ = −α α = . +0.14 law ( (m) m ) with 0 86−0.19. However with the better seperation of the Pleiades’ cluster proper motion from the field population results were obtained down to R = 21. As the mass function produced for this cluster extends to lower masses it is possible to see the gradient becoming increasingly shallow. This mass function is well fitted by a log normal distribution. Key words. astrometry – stars: low mass, brown dwarfs – Galaxy: open clusters and associations: individual: Alpha Per, Pleiades 1. Introduction Most recently Barrado y Navascu´es et al.
    [Show full text]
  • List of Easy Double Stars for Winter and Spring  = Easy  = Not Too Difficult  = Difficult but Possible
    List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8.
    [Show full text]