Origin and Evolution of the Cepheus Bubble NA Patel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scutum Apus Aquarius Aquila Ara Bootes Canes Venatici Capricornus Centaurus Cepheus Circinus Coma Berenices Corona Austrina Coro
Polaris Ursa Minor Cepheus Camelopardus Thuban Draco Cassiopeia Mizar Ursa Major Lacerta Lynx Deneb Capella Perseus Auriga Canes Venatici Algol Cygnus Vega Cor Caroli Andromeda Lyra Bootes Leo Minor Castor Triangulum Corona Borealis Albireo Hercules Pollux Alphecca Gemini Vulpecula Coma Berenices Pleiades Aries Pegasus Sagitta Arcturus Taurus Cancer Aldebaran Denebola Leo Delphinus Serpens [Caput] Regulus Equuleus Altair Canis Minor Pisces Betelgeuse Aquila Procyon Orion Serpens [Cauda] Ophiuchus Virgo Sextans Monoceros Mira Scutum Rigel Aquarius Spica Cetus Libra Crater Capricornus Hydra Sirius Corvus Lepus Deneb Kaitos Canis Major Eridanus Antares Fomalhaut Piscis Austrinus Sagittarius Scorpius Antlia Pyxis Fornax Sculptor Microscopium Columba Caelum Corona Austrina Lupus Puppis Grus Centaurus Vela Norma Horologium Phoenix Telescopium Ara Canopus Indus Crux Pictor Achernar Hadar Carina Dorado Tucana Circinus Rigel Kentaurus Reticulum Pavo Triangulum Australe Musca Volans Hydrus Mensa Apus SampleOctans file Chamaeleon AND THE LONELY WAR Sample file STAR POWER VOLUME FOUR: STAR POWER and the LONELY WAR Copyright © 2018 Michael Terracciano and Garth Graham. All rights reserved. Star Power, the Star Power logo, and all characters, likenesses, and situations herein are trademarks of Michael Terracciano and Garth Graham. Except for review purposes, no portion of this publication may be reproduced or transmitted, in any form or by any means, without the express written consent of the copyright holders. All characters and events in this publication are fictional and any resemblance to real people or events is purely coincidental. Star chartsSample adapted from charts found at hoshifuru.jp file Portions of this book are published online at www.starpowercomic.com. This volume collects STAR POWER and the LONELY WAR Issues #16-20 published online between Oct 2016 and Oct 2017. -
October 2006
OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area. -
Star Wheel Questions Set the Star Wheel for 9Pm on November 1St
Star Wheel Questions Set the star wheel for 9pm on November 1st. the edges of the star window are where the sky meets the ground. This is called the horizon. 1. What constellation is near the northern horizon? (Ursa Major, Bootes) 2. What constellation is near the eastern horizon? (Orion, Eridanus) The center of the star wheel is the top of the sky, over your head. 3. Name two constellations that are near the top of the sky. (Cassiopeia, Cepheus, Andromeda) On the star wheel, bigger stars appear brighter in the sky. 4. Which constellation would be easier to see because it has more bright stars: Cassiopeia or Cepheus? (Cassiopeia) 5. Planets are not shown on the star wheel. Why not? (because they change positions over time) Now set the star wheel for midnight on March 15. 6. Where in the sky would you look to see Canis Major? (near the western horizon) 7. Look toward the east. What constellation is about halfway between the horizon and the top of the sky in the east? (Corona Borealis (best answer) also Hercules, Bootes) The lines connecting the stars give us an idea about which stars belong to a constellation, and offer a pattern for us to look for in the sky. Each star pattern is supposed to represent a person, object or animal. For instance, Leo is supposed to be a lion. You also may have noticed that some constellations are bigger than others. 8. What constellation in the southern sky is the largest? (Hydra) 9. What is a small constellation in the southern sky? (Corvus, Canis Minor) 10. -
Circumpolar Constellations Educator's Guide (Ages 12-15)
Circumpolar Constellations Educator’s Guide (Ages 12-15) At the end of these Night Sky activities students will understand: • Why the constellations move in the sky • Many constellations rise over and set under the horizon • The circumpolar constellations are always above the horizon • Why Polaris is called the Pole Star Astronomy background information Accessible Learning: The Earth rotates on its axis every day. The Earth’s axis is the imaginary line • Text size can be increased in running between the north and south poles. The Earth’s movement means that the Preferences section our view of the sky changes over time. As the Earth rotates the positions of the constellations will change. Many constellations rise over the horizon, move across • Star numbers can be reduced the sky and set. However, some constellations do not rise and set and are visible by sliding two fingers down throughout the night. These are known as thecircumpolar constellations. the screen In the northern hemisphere, the starPolaris in the constellation of Ursa Minor is located in space almost exactly above the Earth’s North Pole. This means that Polaris does not seem to move as it is so close to the sky’s centre of rotation. For this reason Polaris is also known as the Pole Star or North Star. The circumpolar constellations are all located around Polaris in the sky. Different constellations will be circumpolar depending on your location but if you live in the northern hemisphere examples include Ursa Major, Ursa Minor, Cassiopeia, Draco, Cepheus and Camelopardalis. Night Sky App Essential Settings Go to Night Sky Settings and make sure the following Preferences are set. -
Statistical Phenomena in Astronomy
Statistical Phenomena in Astronomy Lajos G. Bal´azs August 11, 2004 2 Contents I Mathematical introduction 7 1 Nature of astronomical information 9 1.1 Brief summary of multivariate methods . 10 1.1.1 Factor Analysis . 10 1.1.2 Cluster Analysis . 11 2 The basic equation of stellar statistics 13 2.1 Formulation of the problem . 13 2.2 Solutions of the basic equation . 14 2.2.1 Eddington’s solution . 14 2.2.2 Solution by Fourier transformation . 16 2.2.3 Malmquist’s solution . 17 2.2.4 Lucy’s algorithm . 19 2.2.5 The EM algorithm . 21 2.2.6 Dolan’s matrix method . 24 2.3 Concluding remarks . 25 II Statistical study of extended sources 27 3 Separation of Components 29 3.1 Separation of the Zodiacal and Galactic Light . 29 3.2 Sturucture and Dynamics of the Cepheus Bubble . 33 3.2.1 Basic characteristics . 33 3.2.2 Distribution of neutral Hydrogen . 34 3.2.3 Physical nature of the bubble . 45 4 Star count study of the extinction 49 4.1 Extinction map of L1251 . 49 4.2 Input data . 50 4.3 Extinction maps from star counts . 51 3 4 CONTENTS 4.3.1 Definition of areas of similar extinction . 52 4.3.2 Modelling the effect of extinction on the star counts . 54 4.3.3 Star count - extinction conversion . 57 4.3.4 Surface distribution of the obscuring material . 57 4.4 Discussion . 59 4.4.1 Shape of the cloud . 59 4.4.2 Properties of the obscuring material . -
Interstellarum 60 • Oktober/November 2008 1 Inhalt
Editorial fokussiert Liebe Leserinnen und Leser, das große Interesse am ersten Themenheft Teleskope ist die erhoff - te positive Reaktion der Leserschaft, die uns in der Entscheidung be- stärkt, die Zeitschrift von sechs auf acht Hefte pro Jahr zu erweitern. Zahlreiche Bestellungen lassen darauf schließen, dass wir thematisch mit einer dem boomenden Teleskopmarkt gewidmeten Publikation ins Schwarze treff en könnten. Ungewohnt ist noch der veränderte Rhythmus – diesmal können Sie das nächste interstellarum-Heft schon in nur vier Wochen in Händen halten. Was wir für Sie vorbereitet haben, können Sie in unserer Vor- schau nachlesen (Seite 78). Ronald Stoyan, Chefredakteur Einige Leser, darunter auch langjährige Abonnenten, haben den Wunsch geäußert, weiterhin nur sechs Hefte im Abonnement zu erhal- ten und auf die Themenhefte zu verzichten. Diese Möglichkeit können wir leider nicht anbieten, denn sie führte genau zum Gegenteil unseres Vorhabens: Ausdrückliches Ziel ist eine Erweiterung der bestehen- den Zeitschrift, nicht die Veröff entlichung von zusätzlichen Produkten außerhalb des Abonnements. Acht Hefte pro Jahr stellen dabei eine Kompromisslösung dar, weil uns eine Preissteigerung auf über 60 Euro bei zehn Heften zu hoch erschien. Acht Hefte sind aber nicht mit dem Monatsrhythmus vereinbar, sodass nur die Erscheinungsweise als Extra- Heft in Frage kam. Was mit einem nicht in das Abonnement eingebundenen Heft pas- sieren kann, mussten wir beim interstellarum-Jahrbuch »Das Astrono- mische Jahr« erleben: Nach hoff nungsvollem Beginn erreichten die Ver- kaufszahlen nicht annähernd das Niveau der Zeitschrift. Das Jahrbuch muss eingestellt werden und wird für 2009 nicht mehr erscheinen. Das 60. interstellarum-Heft geht auch mit einigen personellen Ver- änderungen einher. Stephan Schurig, seit Heft Nr. -
Supernova Star Maps
Supernova Star Maps Which Stars in the Night Sky Will Go Su pernova? About the Activity Allow visitors to experience finding stars in the night sky that will eventually go supernova. Topics Covered Observation of stars that will one day go supernova Materials Needed • Copies of this month's Star Map for your visitors- print the Supernova Information Sheet on the back. • (Optional) Telescopes A S A Participants N t i d Activities are appropriate for families Cre with children over the age of 9, the general public, and school groups ages 9 and up. Any number of visitors may participate. Location and Timing This activity is perfect for a star party outdoors and can take a few minutes, up to 20 minutes, depending on the Included in This Packet Page length of the discussion about the Detailed Activity Description 2 questions on the Supernova Helpful Hints 5 Information Sheet. Discussion can start Supernova Information Sheet 6 while it is still light. Star Maps handouts 7 Background Information There is an Excel spreadsheet on the Supernova Star Maps Resource Page that lists all these stars with all their particulars. Search for Supernova Star Maps here: http://nightsky.jpl.nasa.gov/download-search.cfm © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Star Maps: Stars likely to go Supernova! Leader’s Role Participants’ Role (Anticipated) Materials: Star Map with Supernova Information sheet on back Objective: Allow visitors to experience finding stars in the night sky that will eventually go supernova. -
251 — 8 November 2013 Editor: Bo Reipurth ([email protected]) List of Contents
THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 251 — 8 November 2013 Editor: Bo Reipurth ([email protected]) List of Contents The Star Formation Newsletter Interview ...................................... 4 My Favorite Object ............................ 6 Editor: Bo Reipurth [email protected] Perspective ................................... 12 Technical Editor: Eli Bressert Abstracts of Newly Accepted Papers .......... 15 [email protected] Abstracts of Newly Accepted Major Reviews . 50 Technical Assistant: Hsi-Wei Yen Dissertation Abstracts ........................ 51 [email protected] New Jobs ..................................... 52 Editorial Board Summary of Upcoming Meetings ............. 54 Short Announcements ........................ 55 Joao Alves Alan Boss Jerome Bouvier Lee Hartmann Thomas Henning Paul Ho Cover Picture Jes Jorgensen Charles J. Lada This image shows the reflection nebula NGC 1579 Thijs Kouwenhoven located in the dark cloud L1482 at an approximate Michael R. Meyer distance of 700 pc. The nebulosity is illuminated Ralph Pudritz by the peculiar object LkHα 101, which is a heavily Luis Felipe Rodr´ıguez reddened massive star in a very early evolutionary Ewine van Dishoeck stage (seen as a faint optical star just south of the Hans Zinnecker brightest part of the reflection nebula). The figure is a composite of B-, V-, and R-band images, and The Star Formation Newsletter is a vehicle for covers approximately 6×7 arcmin, -
SFA Star Chart 1
Nov 20 SFA Star Chart 1 - Northern Region 0h Dec 6 Nov 5 h 23 30º 1 h d Dec 21 h p Oct 21h s b 2 h 22 ANDROMEDA - Daughter of Cepheus and Cassiopeia Mirach Local Meridian for 8 PM q m ANTLIA - Air Pumpe p 40º APUS - Bird of Paradise n o i b g AQUILA - Eagle k ANDROMEDA Jan 5 u TRIANGULUM AQUARIUS - Water Carrier Oct 6 h z 3 21 LACERTA l h ARA - Altar j g ARIES - Ram 50º AURIGA - Charioteer e a BOOTES - Herdsman j r Schedar b CAELUM - Graving Tool x b a Algol Jan 20 b o CAMELOPARDALIS - Giraffe h Caph q 4 Sep 20 CYGNUS k h 20 g a 60º z CAPRICORNUS - Sea Goat Deneb z g PERSEUS d t x CARINA - Keel of the Ship Argo k i n h m a s CASSIOPEIA - Ethiopian Queen on a Throne c h CASSIOPEIA g Mirfak d e i CENTAURUS - Half horse and half man CEPHEUS e CEPHEUS - Ethiopian King Alderamin a d 70º CETUS - Whale h l m Feb 5 5 CHAMAELEON - Chameleon h i g h 19 Sep 5 i CIRCINUS - Compasses b g z d k e CANIS MAJOR - Larger Dog b r z CAMELOPARDALIS 7 h CANIS MINOR - Smaller Dog e 80º g a e a Capella CANCER - Crab LYRA Vega d a k AURIGA COLUMBA - Dove t b COMA BERENICES - Berenice's Hair Aug 21 j Feb 20 CORONA AUSTRALIS - Southern Crown Eltanin c Polaris 18 a d 6 d h CORONA BOREALIS - Northern Crown h q g x b q 30º 30º 80º 80º 40º 70º 50º 60º 60º 70º 50º CRATER - Cup 40º i e CRUX - Cross n z b Rastaban h URSA CORVUS - Crow z r MINOR CANES VENATICI - Hunting Dogs p 80º b CYGNUS - Swan h g q DELPHINUS - Dolphin Kocab Aug 6 e 17 DORADO - Goldfish q h h h DRACO o 7 DRACO - Dragon s GEMINI t t Mar 7 EQUULEUS - Little Horse HERCULES LYNX z i a ERIDANUS - River j -
Infrared Imaging with COAST
Infrared Imaging with COAST John Stephen Young St John’s College, Cambridge and Cavendish Astrophysics A dissertation submitted for the degree of Doctor of Philosophy in the University of Cambridge 26 March 1999 iii Preface This dissertation describes work carried out in the Astrophysics Group of the Department of Phys- ics, University of Cambridge, between October 1995 and March 1999. Except where explicit reference is made to the work of others, this dissertation is the result of my own work, and includes nothing which is the outcome of work done in collaboration. No part of this dissertation has been submitted for a degree, diploma, or other qualification at any University. This dissertation does not exceed 60,000 words in length. v Acknowledgements Many people say that this is the only page of a PhD. thesis worth reading. I hope that is not the case here. This is, however, the only page not written in the passive voice, and the only one which might make you smile. Above all, I would like to thank my supervisor, Professor John Baldwin, for always being available to give advice and encouragement, and for assisting with many hours of alignment and even more hours of observing. The shortbread was much appreciated! Many thanks are also due for his reading of this thesis. It has been a pleasure to work with all of the members of the COAST team. None of the work described in this thesis would have been possible without the NICMOS camera built by Martin Beckett. I would like to thank him for taking the time to explain it to me. -
Cassiopeia B1.Pdf
Cassiop eia Look in the northern part of the sky. You will see a pattern of stars a little like the letter W. This is the constellation Cassiopeia. Many people have told the story of Queen Cassiopeia. All of them tell about her great mistake. Here is one way her story has been told. Cassiopeia 2 There once was a queen named Cassiopeia. She was very proud of her beauty. She spent hours just looking at herself in her polished brass mirror. She would wear only lovely dresses. The queen’s servants worked hard to keep her hair pretty. One day the queen and her helpers walked along the ocean shore. When Cassiopeia saw her reflection in a pool of water, she was delighted. At that moment she said a very foolish thing. She said that she was more beautiful than even the daughters of Nereus, the god of the sea. Unfortunately for Cassiopeia, they heard her. 3 Nereus was a kindly god. Some called him the Old Man of the Sea. He had 50 daughters known as the Nereids. Cassiopeia’s words angered them all. The worst thing a person could do was to claim to be better than a god. Cassiopeia had insulted 50 of them with her boast. The Nereids went to their father. “Father, you must punish this woman!” they cried. “She has insulted us. She said she is more beautiful than us. No person should ever say they are better than a god. She must be punished!” Nereus, God of the Sea 4 Nereus did not wish to make waves about this, but he knew his daughters were right. -
The Cases of HD 17505A and HD 206267A? F
A&A 614, A60 (2018) https://doi.org/10.1051/0004-6361/201732376 Astronomy & © ESO 2018 Astrophysics Fundamental parameters of massive stars in multiple systems: The cases of HD 17505A and HD 206267A? F. Raucq1, G. Rauw1, L. Mahy1,2,??, and S. Simón-Díaz3,4 1 Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 19c, Bât. B5c, 4000 Liège, Belgium e-mail: [email protected] 2 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, Bus 2401, 3001 Leuven, Belgium 3 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain Received 28 November 2017 / Accepted 23 February 2018 ABSTRACT Context. Many massive stars are part of binary or higher multiplicity systems. The present work focusses on two higher multiplicity systems: HD 17505A and HD 206267A. Aims. Determining the fundamental parameters of the components of the inner binary of these systems is mandatory to quantify the impact of binary or triple interactions on their evolution. Methods. We analysed high-resolution optical spectra to determine new orbital solutions of the inner binary systems. After subtracting the spectrum of the tertiary component, a spectral disentangling code was applied to reconstruct the individual spectra of the primary and secondary. We then analysed these spectra with the non-LTE model atmosphere code CMFGEN to establish the stellar parameters and the CNO abundances of these stars. Results. The inner binaries of these systems have eccentric orbits with e ∼ 0:13 despite their relatively short orbital periods of 8.6 and 3.7 days for HD 17505Aa and HD 206267Aa, respectively.