The Third Nervous System in the Lung

Total Page:16

File Type:pdf, Size:1020Kb

The Third Nervous System in the Lung Thorax: first published as 10.1136/thx.39.8.561 on 1 August 1984. Downloaded from Thorax 1984;39:561-567 Editorial The third nervous system in the lung: physiology and clinical perspectives The autonomic nervous system controls many are neither adrenergic nor cholinergic were aspects of pulmonary function' and, until recently, it described by Campbell in 1971.4 Since then NANC was thought that this was achieved entirely by means nerves which relax airway smooth muscle have been of classical cholinergic and adrenergic mechanisms. found in several species, including man.55 In these This view has recently been challenged by the studies airway strips are mounted in an organ bath demonstration of a third nervous system in the air- and stimulated by an electrical current that selec- ways (fig). Although the identities of the neuro- tively activates nerves. In guinea pig tracheal strips transmitters in this newly recognised nervous system electrical field stimulation produces an initial con- are not certain, there is increasing evidence that they traction that is blocked by the anticholinergic drug are peptides. This third nervous system is of particu- atropine and therefore due to acetylcholine release lar interest as it is the predominant inhibitory nerv- from cholinergic nerves. The initial contraction is ous pathway to human airway smooth muscle and followed by a relaxation, which is only partially this raises the possibility that a functional defect in inhibited by ,3 adrenergic blockers.56 Thus, although this nervous system might underlie bronchial hyper- a component of the inhibitory response is reactivity in asthma. The recognition that a third adrenergic, there is a component that is non- component of the autonomic nervous system regu- adrenergic. The nerve toxin tetrodotoxin abolishes lates airway smooth muscle tone and other aspects these responses to field stimulation and proves that copyright. of lung physiology has stimulated great interest, they are mediated by nerves (which must be post- since it may provide new insights into diseases such ganglionic), and not due to a direct effect on smooth as asthma and chronic obstructive lung disease, and muscle. Thus guinea pig trachea appears to have may also lead to novel therapeutic approaches. excitatory cholinergic nerves and inhibitory nerves which are both adrenergic and non-adrenergic. In http://thorax.bmj.com/ A third component of the autonomic nervous system similar studies on human airway smooth muscle a cholinergic contractile component is also demon- The existence of a nervous system in the gastrointes- strable, but the inhibitory response is unaffected by tinal tract which is neither adrenergic nor adrenergic blockade.78 This indicates, rather surpris- cholinergic has been established for many years. ingly, that there is no functional sympathetic inner- Non-adrenergic, non-cholinergic (NANC) nerves vation of human airway smooth muscle and that control gut motility and secretions and have been inhibitory nerves are non-adrenergic. The absence demonstrated in vertebrates from fish to man.23 of sympathetic nerves in human airway smooth Indeed, the presence of NANC nerves in primitive muscle is supported by histological studies showing on September 30, 2021 by guest. Protected vertebrates indicates that this nervous system an absence of adrenergic nerve terminals within developed early in evolution. The third nervous sys- smooth muscle,79 by studies showing a lack of effect tem has also been demonstrated in the urogenital of cocaine (a neuronal uptake inhibitor) on norad- tract, the eye, and the cardiovascular system.3 renaline dose-response curves,'0 and by the lack of Because the airways develop embroyologically from effect of tyramine (which directly releases norad- the foregut it is not surprising to find that NANC renaline from nerve terminals) on airway function in nerves are also present in the lung. man." There are, of course, adrenergic receptors in airway smooth muscle,'2 and these are presumably NANC nerves in the airways regulated by circulating adrenaline.'3 NANC nerves appear to be the only neural inhibitory pathway in Inhibitory nerves which relax toad lungs and which human airway smooth muscle from the trachea to the smallest bronchi,7 and for this reason there is Address for reprint requests: Dr Peter J Barnes, Department of particular interest in their physiological role and Medicine (Respiratory Division), Royal Postgraduate Medical regulation. School, Hammersmith Hospital, London W12 OHS. NANC nerves have also been demonstrated in 561 Thorax: first published as 10.1136/thx.39.8.561 on 1 August 1984. Downloaded from 562 NON-ADRENERG IC, ADRENERGIC CHOLINERGIC NON-CHOLINERGIC I c2 v vagus sympathetic nerve cholinergic efferent ik adrenal medulla non -adrenergic, mnt afferent ACh NVIP smooth muscle copyright. epithelium Im *M ef Xa * X 0* * 0 a 0-Gre). a% lm )JI/Millil IIIIIIIIII)nfliff/ I)IIJImill a airway lumen http://thorax.bmj.com/ Innervation ofhuman airway smooth muscle: the three components ofthe autonomic nervous system. In addition to classical adrenergic and cholinergic pathways, there is a third component to the autonomic nervous system, shown by the dashed lines. The non-cholinergic, non-adrenergic pathway is inhibitory to airway smooth muscle, the neurotransmitter of which is likely to be vasoactive intestinal peptide (VIP). There may also be an excitatory non-cholinergic pathway, which may consist ofcollateral branches ofafferent nerves which release substance P. Specific receptors for these neurotransmitters present on airway smooth muscle cells: 3,-8 adrenergic, M-muscarnic cholinergic, V-VIP, and P-substance on September 30, 2021 by guest. Protected P receptors. ACh-acety1choline. cats and guinea pigs in vivo by electrical stimulation promotes mucus secretion in cat trachea, which is of the vagus nerve after cholinergic and adrenergic reduced but not abolished by cholinergic and blockade.'4-'6 Stimulation of this pathway produces adrenergic blockers"; and electrical field stimula- pronounced and long lasting bronchodilatation. This tion of ferret tracheal segments in vitro also indi- response can be inhibited by ganglion blockers, sug- cates that NANC nerves stimulate mucus secre- gesting that these NANC nerves are preganglionic tion.'8 NANC nerves may also mediate relaxation of as well as postganglionic.'4 It has not yet been poss- pulmonary blood vessels.'9 ible to establish whether NANC nerves mediate bronchodilation in human airways in vivo, although The search for the neurotransmitter such studies should be possible with pharmacologi- cal blockade and reflex stimulation. Although it has been possible to demonstrate the NANC nerves also regulate secretion of airway existence of NANC nerves in the lung both in vitro mucus in animals. Stimulation of the vagus nerves and in vivo, it is difficult to investigate the physio- Thorax: first published as 10.1136/thx.39.8.561 on 1 August 1984. Downloaded from 563 logical role of this nervous system until the neuro- ised to neurones and nerve terminals in airway transmitter has been identified and a specific blocker smooth muscle (particularly in the upper airways), developed. Burnstock originally proposed that the around submucosal glands, beneath airway epi- neurotransmitter might be a purine nucleotide such thelial cells, and in bronchial and pulmonary as adenosine triphosphate (ATP) or adenosine, vessels. 273132 In addition, VIP is localised in airway since in the gut these purines are released on nerve ganglia in both neurones and preganglionic nerve stimulation and both exogenous ATP and adenosine terminals (CB Basbaum, PJ Barnes, unpublished mimic some of the effects of NANC nerve stimula- observations). VIP produces prolonged relaxation tion.2 These nerves were therefore termed of airway smooth muscle in vitro, which is unaf- purinergic. The evidence is, however, against a fected by adrenergic or cholinergic blockers.2'2230 purine as the neurotransmitter of NANC nerves in Moreover, VIP mimics the electrophysiological the airways. Although ATP relaxes isolated guinea changes in airway smooth muscle produced by pig airway smooth muscle,202' its antagonist NANC nerve stimulation.2' 22 In vivo inhaled VIP quinidine does not block NANC relaxation either in protects against histamine induced bronchoconstric- vitro or in vivo,202223 nor does the purine uptake tion in dogs'9 and guinea pigs,33 and infused VIP inhibitor dipyridamole enhance non-adrenergic reverses serotonin induced bronchoconstriction in bronchodilation.2'22 cats.34 In isolated human airways VIP has a small More recent studies suggest that the neurotrans- relaxant effect8 and inhaled VIP has only a weak mitter may be a regulatory peptide, so that NANC protective effect against histamine induced bron- nerves are probably "peptidergic." There is now choconstriction compared with a /8 agonist.35 VIP rather convincing evidence that several regulatory given by infusion has a small bronchodilator effect peptides may be neurotransmitters or and protects against histamine induced wheeze in neuromodulators in the gut.24 Electron microscopy asthmatics,36 although the cardiovascular actions of has revealed different types of neurosecretory the infused peptide may have accounted for these granules in autonomic nerve terminals in the gut25: effects. The relative lack of effect of VIP in human small clear vesicles which contain acetylcholine and airways by no means excludes it as a possible small dense granules containing catecholamines
Recommended publications
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • Student Academic Learning Services Nervous System Quiz
    Student Academic Learning Services Page 1 of 8 Nervous System Quiz 1. The term central nervous system refers to the: A) autonomic and peripheral nervous systems B) brain, spinal cord, and cranial nerves C) brain and cranial nerves D) spinal cord and spinal nerves E) brain and spinal cord 2. The peripheral nervous system consists of: A) spinal nerves only B) the brain only C) cranial nerves only D) the brain and spinal cord E) the spinal and cranial nerves 3. Which of these cells are not a type of neuroglia found in the CNS: A) astrocytes B) microglia C) Schwann cells D) ependymal cells E) oligodendrocytes 4. The Schwann cells form a myelin sheath around the: A) dendrites B) cell body C) nucleus D) axon E) nodes of Ranvier 5. The neuron processes that normally receives incoming stimuli are called: A) axons B) dendrites C) neurolemmas D) Schwann cells E) satellite cells www.durhamcollege.ca/sals Student Services Building (SSB), Room 204 905.721.2000 ext. 2491 This document last updated: 7/29/2011 Student Academic Learning Services Page 2 of 8 6. Collections of nerve cell bodies inside the PNS are called: A) ganglia B) tracts C) nerves D) nuclei E) tracts or ganglia 7. Which of the following best describes the waxy-appearing material called myelin: A) an outermembrane on a neuroglial cell B) a lipid-protein (lipoprotein) cell membrane on the outside of axons C) a mass of white lipid material that surrounds the cell body of a neuron D) a mass of white lipid material that insulates the axon of a neuron E) a mass of white lipid material that surrounds the dendrites of a neuron 8.
    [Show full text]
  • A Brief Introduction Into the Peripheral Nervous System
    A Brief Introduction into the Peripheral Nervous System Bianca Flores, PhD Candidate, Neuroscience Tuesday, October 15th, 2019 Brief overview: • What are you hoping to learn? • Subdivisions of the peripheral nervous system (PNS) • Physiology • Diseases associated with PNS • Special topics (current research at Vanderbilt) Brief question- • Is there a location in our body that does not have neurons (signals being sent to move or sense)? The body’s nervous system is made up of two parts: The Peripheral Nervous System (PNS) is divided into two parts PNS: Sensory components: • Nociception • Proprioception • Mechanoreception • Thermoception Parasympathetic vs Sympathetic PNS • Includes everything outside of the brain and spinal cord • Is divided into motor and sensory subsets • Controls the “rest and relax” and “flight or fight” responses PNS: Physiology & Anatomy Dorsal Root ganglion are sensory body of the PNS Anatomy of the PNS- Dorsal Root Ganglion How the PNS sends signals to the CNS Nerve impulses carry electrical signals Myelin sheath on surrounds to the nerve to contribute to signal propagation Myelin sheath on surrounds to the nerve to contribute to signal propagation Nerve impulses carry electrical signals PNS Physiology and Anatomy • Dorsal root ganglion are the sensory bodies of the PNS • The Ventral root is responsible for motor movement • Myelin Sheath is imperative to proper nerve function Diseases associated with the PNS: Peripheral Neuropathy What is peripheral neuropathy? Peripheral Neuropathy: -Damage to peripheral nerves
    [Show full text]
  • The Peripheral Nervous System
    The Peripheral Nervous System Dr. Ali Ebneshahidi Peripheral Nervous System (PNS) – Consists of 12 pairs of cranial nerves and 31 pairs of spinal nerves. – Serves as a critical link between the body and the central nervous system. – peripheral nerves contain an outermost layer of fibrous connective tissue called epineurium which surrounds a thinner layer of fibrous connective tissue called perineurium (surrounds the bundles of nerve or fascicles). Individual nerve fibers within the nerve are surrounded by loose connective tissue called endoneurium. Cranial Nerves Cranial nerves are direct extensions of the brain. Only Nerve I (olfactory) originates from the cerebrum, the remaining 11 pairs originate from the brain stem. Nerve I (Olfactory)- for the sense of smell (sensory). Nerve II (Optic)- for the sense of vision (sensory). Nerve III (Oculomotor)- for controlling muscles and accessory structures of the eyes ( primarily motor). Nerve IV (Trochlear)- for controlling muscles of the eyes (primarily motor). Nerve V (Trigeminal)- for controlling muscles of the eyes, upper and lower jaws and tear glands (mixed). Nerve VI (Abducens)- for controlling muscles that move the eye (primarily motor). Nerve VII (Facial) – for the sense of taste and controlling facial muscles, tear glands and salivary glands (mixed). Nerve VIII (Vestibulocochlear)- for the senses of hearing and equilibrium (sensory). Nerve IX (Glossopharyngeal)- for controlling muscles in the pharynx and to control salivary glands (mixed). Nerve X (Vagus)- for controlling muscles used in speech, swallowing, and the digestive tract, and controls cardiac and smooth muscles (mixed). Nerve XI (Accessory)- for controlling muscles of soft palate, pharynx and larynx (primarily motor). Nerve XII (Hypoglossal) for controlling muscles that move the tongue ( primarily motor).
    [Show full text]
  • What Is the Autonomic Nervous System?
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_3.iii31 on 21 August 2003. Downloaded from AUTONOMIC DISEASES: CLINICAL FEATURES AND LABORATORY EVALUATION *iii31 Christopher J Mathias J Neurol Neurosurg Psychiatry 2003;74(Suppl III):iii31–iii41 he autonomic nervous system has a craniosacral parasympathetic and a thoracolumbar sym- pathetic pathway (fig 1) and supplies every organ in the body. It influences localised organ Tfunction and also integrated processes that control vital functions such as arterial blood pres- sure and body temperature. There are specific neurotransmitters in each system that influence ganglionic and post-ganglionic function (fig 2). The symptoms and signs of autonomic disease cover a wide spectrum (table 1) that vary depending upon the aetiology (tables 2 and 3). In some they are localised (table 4). Autonomic dis- ease can result in underactivity or overactivity. Sympathetic adrenergic failure causes orthostatic (postural) hypotension and in the male ejaculatory failure, while sympathetic cholinergic failure results in anhidrosis; parasympathetic failure causes dilated pupils, a fixed heart rate, a sluggish urinary bladder, an atonic large bowel and, in the male, erectile failure. With autonomic hyperac- tivity, the reverse occurs. In some disorders, particularly in neurally mediated syncope, there may be a combination of effects, with bradycardia caused by parasympathetic activity and hypotension resulting from withdrawal of sympathetic activity. The history is of particular importance in the consideration and recognition of autonomic disease, and in separating dysfunction that may result from non-autonomic disorders. CLINICAL FEATURES c copyright. General aspects Autonomic disease may present at any age group; at birth in familial dysautonomia (Riley-Day syndrome), in teenage years in vasovagal syncope, and between the ages of 30–50 years in familial amyloid polyneuropathy (FAP).
    [Show full text]
  • Are Astrocytes Executive Cells Within the Central Nervous System? ¿Son Los Astrocitos Células Ejecutivas Dentro Del Sistema Nervioso Central? Roberto E
    DOI: 10.1590/0004-282X20160101 VIEW AND REVIEW Are astrocytes executive cells within the central nervous system? ¿Son los astrocitos células ejecutivas dentro del Sistema Nervioso Central? Roberto E. Sica1, Roberto Caccuri1, Cecilia Quarracino1, Francisco Capani1 ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well. Keywords: astrocytes; physiology; central nervous system; neurodegenerative diseases. RESUMEN Evidencias experimentales sugieren que los astrocitos desempeñan un rol crucial en la fisiología del sistema nervioso central (SNC) modulando la actividad y plasticidad sináptica. En base a lo actualmente conocido creemos que los astrocitos participan, en pie de igualdad con las neuronas, en los procesos de información del SNC. Además, observaciones experimentales y humanas encontraron que algunas de las enfermedades degenerativas primarias del SNC: la demencia fronto-temporal; las enfermedades de Parkinson, de Alzheimer, y de Huntington, las ataxias cerebelosas primarias y la esclerosis lateral amiotrófica, que afectan solo a los humanos, pueden deberse a astroglíopatía.
    [Show full text]
  • Appendix A: Glossary for Section 2.1 (PDF)
    APPENDIX A GLOSSARY FOR SECTION 2.1 Sources: The Concise Columbia Encyclopedia. 1995. Columbia University Press; Solomon et al. 1993. Biology, Third Edition. Harcourt Brace Publishing astrocyte - a star-shaped cell, especially a neuroglial cell of nervous tissue. axon - the long, tubular extension of the neuron that conducts nerve impulses away from the cell body. blood-brain barrier - system of capillaries that regulates the movement of chemical substances, ions, and fluids in and out of the brain. central nervous system - the portion of the vertebrate nervous system consisting of the brain and spinal cord. cerebellum - the trilobed structure of the brain, lying posterior to the pons and medulla oblongata and inferior to the occipital lobes of the cerebral hemispheres, that is responsible for the regulation and coordination of complex voluntary muscular movement as well as the maintenance of posture and balance. cerebral cortex - the extensive outer layer of gray matter of the cerebral hemispheres, largely responsible for higher brain functions, including sensation, voluntary muscle movement, thought, reasoning, and memory. cerebrum - the large, rounded structure of the brain occupying most of the cranial cavity, divided into two cerebral hemispheres that are joined at the bottom by the corpus callosum. It controls and integrates motor, sensory, and higher mental functions, such as thought, reason, emotion, and memory. cognitive development - various mental tasks and processes (e.g. receiving, processing, storing, and retrieving information) that mediate between stimulus and response and determine problem-solving ability. demyelination - to destroy or remove the myelin sheath of (a nerve fiber), as through disease. dendrite - a branched protoplasmic extension of a nerve cell that conducts impulses from adjacent cells inward toward the cell body.
    [Show full text]
  • Brainstem Dysfunction in Critically Ill Patients
    Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem
    [Show full text]
  • The Autonomic Nervous System and Gastrointestinal Tract Disorders
    NEUROMODULATION THE AUTONOMIC NERVOUS SYSTEM AND GASTROINTESTINALTRACT DISORDERS TERRY L. POWLEY, PH.D. PURDUE UNIVERSITY • MULTIPLE REFRACTORY GI DISORDERS EXIST. • VISCERAL ATLASES OF THE GI TRACT ARE AVAILABLE. • REMEDIATION WITH ELECTROMODULATION MAY BE PRACTICAL. TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY 50 INTERNATIONAL I:"' NEUROMODULATION SOCIETY 0 40 ·­IS 12TH WORLD CONGRESS -I: -• 30 !"' A. -..0 20 ..a• E 10 z::::t TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY DISORDERS TO TREAT WITH NEUROMODULATION ACHALASIA DYSPHAGIA GASTROPARESIS GERD GUT DYSMOTILITY MEGA ESOPHAGUS DYSPEPSIA ,, VISCERAL PAIN l1 ' I NAUSEA, EMESIS OBESITY ,, ' 11 I PYLORIC STENOSIS ==..:.= --- "" .:.= --- .. _ _, DUMPING REFLUX COLITIS I:' . - IBS -·-- - CROHN'S DISEASE HIRSCHSPRUNG DISEASE CHAGAS DISUSE Gastrointestinal Tract Awodesk@ Ma;·a@ TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY TIME The Obesity Epidemic in America ·. TERRY l. POWLEY, PH.D. PURDUE NEU ROMODUlATION : THE AUTO N OMIC NERVOUS SYSTEM A N D G A STP.OINTESTINAL TRACT DISORDERS UNI V E R SI TY ROUX-EN-Y BYPASS Bypassed portion of stomach Gastric -"'~­ pouch Bypassed - ­ Jejunum duodenum -1" food -___----_,,.,. digestivejuice TERRY l. POWLEY, PH.D. PURDUE NEU ROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM A N D GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY 8y~s~ portionof i t()(l\3Ch • TERRYl. POWLEY, PH.D. PURDUE NEUROMOOUlATION: THE AUTONOMIC NERVOUS SYSTEM ANO 0.-STP.OINTESTINAL TRACT DISORDERS UHIVlflSITY • DESPERATE PATIENTS • ABSENCE OF SATISFACTORY PHARMACOLOGICAL TREATMENTS • POPULAR MEDIA HYPE • ABSENCE OF A SOLID MECHANISTIC UNDERSTANDING • UNCRITICAL ACCEPTANCE OF PROPONENT'S CLAIMS • MYOPIA REGARDING SIDE EFFECTS TERRY l.
    [Show full text]
  • Biology 251 Fall 2015 1 TOPIC 6: CENTRAL NERVOUS SYSTEM I
    Biology 251 Fall 2015 TOPIC 6: CENTRAL NERVOUS SYSTEM I. Introduction to the Nervous System A. Objective: We’ve discussed mechanisms of how electrical signals are transmitted within a neuron (Topic 4), and how they are transmitted from neuron to neuron (Topic 5). For the next 3 Topics, we will discuss how neurons are organized into functioning units that allow you to think, walk, smell, feel pain, etc. B. Organization of nervous system. Note that this is a subdivision of a single integrated system, based on differences in structure, function and location (Fig 7.1). Such a subdivision allows easier analysis and understanding than trying to comprehend the system as a whole. 1. Central Nervous System (integrates and issues information) a) brain b) spinal cord 2. Peripheral Nervous System a) Afferent Division (sends information to CNS) b) Efferent Division (receives information from CNS) (1) Somatic nervous system (2) Autonomic nervous system (a) Sympathetic nervous system (b) Parasympathetic nervous system C. Three classes of neurons (Fig 7.4) 1. afferent neurons a) have sensory receptors b) axon terminals in CNS c) send information to CNS from body 2. efferent neurons a) cell body in CNS b) axon terminals in effector organ c) send information from CNS to body 3. interneurons a) lie within CNS b) some connect afferent neurons and efferent neurons (1) integrate peripheral responses and peripheral information c) some connect other interneurons (1) responsible for activity of the “mind”, i.e., thoughts, emotions, motivation, etc. d) 99% of all neurons are interneurons II. The Brain: Gross Structure and Associated Functions (Fig 9.11) A.
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]
  • Anatomy Review: Digestive System
    THE DIGESTIVE SYSTEM Topic 2: Control of the Digestive System Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1: Title Page • The autonomic nervous system, hormones, and other chemicals control motility and secretion of the digestive system. The Autonomic Nervous System Parasympathetic Sympathetic Page 2: Goals • To list the phases of GI control • To describe the interaction between the enteric and autonomic nervous systems • To discuss short and long reflexes. • To list the hormones that control digestion and describe the function of each hormone. Page 3: Control of the GI tract depends on the location of food • The sight, smell, taste, and mental images of food trigger the cephalic phase of digestion via the vagus nerve (N X) which includes: o salivation o gastric juice production o gastric contractions • Increased volume of food in the stomach and subsequent stimulation of stomach stretch receptors triggers the gastric phase of digestion which includes: o gastric juice production o increased gastric motility • As food moves into the small intestine (duodenum), the chemical composition and volume of that food triggers specific reflexes during the intestinal phase of digestion which may include: o pancreatic secretion of bicarbonate into the duodenum o pancreatic secretion of digestive enzymes into the duodenum o gall bladder release of bile into the duodenum o segmentation contractions of the small intestine • The small intestine reflexively slows gastric emptying to allow for neutralizing, enzymatic digestion, and absorption of its contents Page 4: Parasympathetic and sympathetic nerves innervate the GI tract • Both parasympathetic and sympathetic divisions of the autonomic nervous system control digestion by contacting the enteric nervous system in the wall of the digestive tract • The parasympathetic division typically stimulates digestion while the sympathetic division typically inhibits it.
    [Show full text]