Brainstem Dysfunction in Critically Ill Patients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hypoxia and Hypercapnia: Sensory and Effector Mechanisms
ISSN: 2574-1241 Volume 5- Issue 4: 2018 DOI: 10.26717/BJSTR.2018.08.001692 Kulchitsky Vladimir. Biomed J Sci & Tech Res Opinion Open Access Hypoxia and Hypercapnia: Sensory and Effector Mechanisms Kulchitsky Vladimir1*, Zamaro Alexandra1 and Koulchitsky Stanislav2 1Institute of Physiology, National Academy of Sciences, Minsk, Belarus, Europe 2Liege University, Liege, Belgium, Europe Received: Published: *Corresponding September author: 03, 2018; September 05, 2018 Kulchitsky Vladimir, Institute of Physiology, National Academy of Sciences, Minsk, Belarus, Europe Keywords: + Abbreviations:Central Chemoreceptors; Peripheral Chemoreceptors;2 Regulation of Respiration2 ATP: Adenosine Triphosphate; CО : Carbon Dioxide; H : Hydrogen Ions; О : Oxygen Introduction Human life is determined by plenty of factors, and normal Central and Peripheral Mechanisms of Breathing oxygen environment is one of the most important. Mammals and Regulation These receptors are located in blood vessels and tissues and in situations when discrepancy between amount of arriving O and human have obtained specific receptors during the evolution. Which mechanism helps living organism make timely decisions2 react on hypoxic stimulus [1-3]. Arterial system has the highest energy needs in brain’s nerve tissue develops? The mechanism of density of peripheral chemoreceptors which react on oxygen + precise control of carbon dioxide (CO2) and hydrogen ions (H ) - but (O ) content change in the internal milieu [1]. Chemoreceptors 2 not O2- in brain tissue has been evolutionally chosen. Such receptor located in carotid body in the area of carotid arteries bifurcation mechanisms (central chemoreceptors) were formed close to neural heads via carotid and vertebral arteries to brain, and strategically are the most important [2-5]. Significant part of cardiac output vital localization of those receptors in carotid body allows them networks of respiratory center - at caudal brain stem [7-9]. -
The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions. -
For Pneumograph
For Pneumograph: Central chemoreceptors are primarily sensitive to changes in the pH in the blood, (resulting from changes in the levels of carbon dioxide) and they are located on the medulla oblongata near to the medullar respiratory groups of the respiratory center (1. Pneumotaxic center - various nuclei of the pons and 2. Apneustic center -nucleus of the pons). The peripheral chemoreceptors that detect changes in the levels of oxygen and carbon dioxide are located in the arterial aortic bodies and the carotid bodies. Information from the peripheral chemoreceptors is conveyed along nerves to the respiratory groups of the respiratory center. There are four respiratory groups, two in the medulla and two in the pons. From the respiratory center, the muscles of respiration, in particular the diaphragm, are activated to cause air to move in and out of the lungs. Hyperventilation: When a healthy person takes several deep and fast breaths (hyperventilation), PCO2 in the lungs and blood falls. As a result there is an increase in diffusion of CO2 to the alveolar air from dissolved state in blood. As the conc. of H2CO3 is in equilibrium with that of dissolved CO2 in blood, hyperventilation increases the [HCO3]/ [H2CO3] ratio by falling of CO2 conc. Thus there is a rise of blood pH (greater than pH 7.4). The breathing centre detects this change and stops or reduces stimulation and work of the respiratory muscles (called apnea). (Blood leaving the lungs is normally fully saturated with oxygen, so hyperventilation of normal air cannot increase the amount of oxygen available.) Breath-holding: The person naturally holds their breath until the CO2 level reaches the initially pre- set value. -
Focusing on the Re-Emergence of Primitive Reflexes Following Acquired Brain Injuries
33 Focusing on The Re-Emergence of Primitive Reflexes Following Acquired Brain Injuries Resiliency Through Reconnections - Reflex Integration Following Brain Injury Alex Andrich, OD, FCOVD Scottsdale, Arizona Patti Andrich, MA, OTR/L, COVT, CINPP September 19, 2019 Alex Andrich, OD, FCOVD Patti Andrich, MA, OTR/L, COVT, CINPP © 2019 Sensory Focus No Pictures or Videos of Patients The contents of this presentation are the property of Sensory Focus / The VISION Development Team and may not be reproduced or shared in any format without express written permission. Disclosure: BINOVI The patients shown today have given us permission to use their pictures and videos for educational purposes only. They would not want their images/videos distributed or shared. We are not receiving any financial compensation for mentioning any other device, equipment, or services that are mentioned during this presentation. Objectives – Advanced Course Objectives Detail what primitive reflexes (PR) are Learn how to effectively screen for the presence of PRs Why they re-emerge following a brain injury Learn how to reintegrate these reflexes to improve patient How they affect sensory-motor integration outcomes How integration techniques can be used in the treatment Current research regarding PR integration and brain of brain injuries injuries will be highlighted Cases will be presented Pioneers to Present Day Leaders Getting Back to Life After Brain Injury (BI) Descartes (1596-1650) What is Vision? Neuro-Optometric Testing Vision writes spatial equations -
The Grasp Reflex and Moro Reflex in Infants: Hierarchy of Primitive
Hindawi Publishing Corporation International Journal of Pediatrics Volume 2012, Article ID 191562, 10 pages doi:10.1155/2012/191562 Review Article The Grasp Reflex and Moro Reflex in Infants: Hierarchy of Primitive Reflex Responses Yasuyuki Futagi, Yasuhisa Toribe, and Yasuhiro Suzuki Department of Pediatric Neurology, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan Correspondence should be addressed to Yasuyuki Futagi, [email protected] Received 27 October 2011; Accepted 30 March 2012 Academic Editor: Sheffali Gulati Copyright © 2012 Yasuyuki Futagi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The plantar grasp reflex is of great clinical significance, especially in terms of the detection of spasticity. The palmar grasp reflex also has diagnostic significance. This grasp reflex of the hands and feet is mediated by a spinal reflex mechanism, which appears to be under the regulatory control of nonprimary motor areas through the spinal interneurons. This reflex in human infants can be regarded as a rudiment of phylogenetic function. The absence of the Moro reflex during the neonatal period and early infancy is highly diagnostic, indicating a variety of compromised conditions. The center of the reflex is probably in the lower region of the pons to the medulla. The phylogenetic meaning of the reflex remains unclear. However, the hierarchical interrelation among these primitive reflexes seems to be essential for the arboreal life of monkey newborns, and the possible role of the Moro reflex in these newborns was discussed in relation to the interrelationship. -
Spinal Tracts.Pdf
Spinal Tracts Andreas Talgø Lie Illustrations by: Peder Olai Skjeflo Holman Previous material: Maja Solbakken Definitions to bring home Nerve Ganglion Neuron Nucleus Tract Collection neurons Collection of nerve A single cell Collection of Collection of axons that transmits cell bodies in the transmitting nerve cell bodies in traveling up or sensation or motor PNS, typically linked electrical impluses. the CNS, typically down the spinal impulses depending by synapses. linked by synapses. cord, depending on the function and Location: both on function destination. Location: PNS Location: CNS and destination. Location: PNS Location: CNS - does it matter? Tract - highway to pass anatomy exam? • Highway = Tract • Lane = Neuron • Car = Signal Slow... Fast!! Just to make sure... • Ipsilateral or contralateral • Ventral = anterior • Dorsal = posterior High yield points to understand • What does the tract transmit - Motor or sensory? If sensory: which sensation? • Where does the neurones synapse - 1.st, 2nd and 3rd order neron? Which ganglion/nuclei? • Where there are decussations - If there are any decussations at all? ASCENDING / SENSORY TRACTS Sensations * Temperature NOT transmitted by the tracts: * Pressure * Visualization * Pain * Audition * Fine touch * Olfaction * Crude touch * Gustation * Proprioception * Vibration Sensations Precise sensation Primitive sensation Fine touch Crude touch Pressure Pain Vibration Temperature Proprioception Other: sexual, itching, tickling Ascending tracts / Sensory tracts Dorsal coulmn Lat. Spinothalamic Ant. -
Regulation of Respiration
Regulation of respiration Breathing is controlled by the central neuronal network to meet the metabolic ddfthbddemands of the body – Neural regulation – Chemical regulation Respiratory center Definition: – A collection of functionally similar neurons that help to regulate the respiratory movement Respiratory center Medulla Basic respiratory center: produce and control the respiratory Pons rhythm Higher respiratory center: cerebral cortex, hypotha la mus & limb ic syste m Spinal cord: motor neurons Neural regulation of respiration Voluntary breathing center – Cerebral cortex Automatic (involuntary) breathing center – Medulla – Pons Neural generation of rhythmical breathing The discharge of medullary inspiratory neurons provides rhythmic input to the motor neurons innervating the inspiratory muscles. Then the action pottiltential cease, the inspiratory muscles relax, and expiration occurs as the elastic lungs recoil. Inspiratory neurons Exppyiratory neurons Respiratory center Dorsal respiratory group (medulla) – mainly causes inspiration Ventral respiratory group (medulla) – causes either exp itiiration or insp itiiration Pneumotaxic center ((pppupper pons ) – inhibits apneustic center & inhibits inspiration,helps control the rate and pattern of breathing Apneustic center (lower pons) – to promote inspiration Hering-Breuer inflation reflex (Pulmonary stretch reflex) The reflex is originated in the lungs and media te d by the fibers o f the vagus nerve: – Pulmonary inflation reflex: inflation of the lungs, eliciting expiration. -
Blink Reflex, H-Reflex and Nerve-Conduction Alterations In
Lepr Rev (2006) 77, 114–120 Blink reflex, H-reflex and nerve-conduction alterations in leprosy patients ANA BERTHA MORA-BRAMBILA*, BENJAMI´N TRUJILLO-HERNA´ NDEZ**, RAFAEL COLL-CARDENAS***, MIGUEL HUERTA***, XO´ CHITL TRUJILLO***, CLEMENTE VA´ SQUEZ***, BERTHA ALICIA OLMEDO-BUENROSTRO*, REBECA O. MILLAN-GUERRERO** & ALEJANDRO ELIZALDE*** *Facultad de Enfermerı´a, Universidad de Colima, Colima, Me´xico **Unidad de Investigacio´n en Epidemiologı´a Clı´nica, Hospital General de Zona y Medicina Familiar No. 1, Instituto Mexicano del Seguro Social, Colima, Colima, Me´xico ***Centro Universitario de Investigaciones Biome´dicas, Universidad de Colima, Colima, Me´xico Accepted for publication 14 February 2006 Summary Peripheral nerve lesions are the most important cause of disability in leprosy patients. Electrophysiological studies are used in the diagnosis and prognosis of neuropathy. Nerve conduction is the most frequently used electrophysiological test method to detect neuropathy, although it evaluates only a part of the peripheral nervous system. Blink reflex and H-reflex are electrophysiological tests which evaluate facial and trigeminal nerve function. This study determined the frequencies of blink reflex, H-reflex and motor and sensory nerve conduction alterations in twenty five heterogeneous, clinic patients with lepromatous leprosy and a control group of 20 healthy subjects. Study results showed a decrease in motor and sensory nerve conduction in 40% and 30%, respectively. In blink reflex (BR), right R1 was altered in latency. in 20% of patients, left R1 in 20%, right ipsilateral R2 in 16%, left ipsilateral R2 in 20%, and right and left contralateral R2 were altered in 32% of patients. There was an absence of H-reflex in 16% (n ¼ 4) and prolonged latency in 4% (n ¼ 1). -
L4-Physiology of Motor Tracts.Pdf
: chapter 55 page 667 Objectives (1) Describe the upper and lower motor neurons. (2) Understand the pathway of Pyramidal tracts (Corticospinal & corticobulbar tracts). (3) Understand the lateral and ventral corticospinal tracts. (4) Explain functional role of corticospinal & corticobulbar tracts. (5) Describe the Extrapyramidal tracts as Rubrospinal, Vestibulospinal, Reticulospinal and Tectspinal Tracts. The name of the tract indicate its pathway, for example Corticobulbar : Terms: - cortico: cerebral cortex. Decustation: crossing. - Bulbar: brainstem. Ipsilateral : same side. *So it starts at cerebral cortex and Contralateral: opposite side. terminate at the brainstem. CNS influence the activity of skeletal muscle through two set of neurons : 1- Upper motor neurons (UMN) 2- lower motor neuron (LMN) They are neurons of motor cortex & their axons that pass to brain stem and They are Spinal motor neurons in the spinal spinal cord to activate: cord & cranial motor neurons in the brain • cranial motor neurons (in brainstem) stem which innervate muscles directly. • spinal motor neurons (in spinal cord) - These are the only neurons that innervate - Upper motor neurons (UMN) are the skeletal muscle fibers, they function as responsible for conveying impulses for the final common pathway, the final link voluntary motor activity through between the CNS and skeletal muscles. descending motor pathways that make up by the upper motor neurons. Lower motor neurons are classified based on the type of muscle fiber the innervate: There are two UMN Systems through which 1- alpha motor neurons (UMN) control (LMN): 2- gamma motor neurons 1- Pyramidal system (corticospinal tracts ). 2- Extrapyramidal system The activity of the lower motor neuron (LMN, spinal or cranial) is influenced by: 1. -
(Corticobulbar) Tract
Cor$cospinal (cor$cobulbar) Tract 6/18/12 1. Appreciate the functions of the corticospinal & corticobulbar tracts. 2. Distinguish corticospinal and corticobulbar tracts. Theodore Tzavaras MD2015 3. Identify the locations of both Laurie L. Wellman Ph.D. tracts through the forebrain, Eastern Virginia Medical School brainstem and spinal cord. 4. Identify the level of decussation of the corticospinal tract, and it’s clinical importance. Dr. Craig Goodmurphy Anatomy Guy Pathway Overview Pathway Overview Corticospinal Corticobulbar ² Begin in primary motor cortex. ² Begin in primary motor cortex. ² Upper ² Travel through the posterior limb Travel through the posterior limb Upper of the internal capsule (somatotopic). Motor of the internal capsule (somatotopic). Motor ² Descend through the middle 3/5 of Neuron ² Descend through the middle 3/5 of the crus cerebri (somatotopic). the crus cerebri (somatotopic). Neuron ² Travel through the brainstem as ² Travel through the brainstem and the descending pyramidal system. synapse on brainstem nuclei. Crosses Lower ² Decussate at the caudal medulla in Midline ² α-Motor neurons project along the pyramidal decussation. cranial nerves for facial movements Motor ² Descend in the spinal cord as the and voice production. Neuron corticospinal tract Lower ² All cranial nerve nuclei receive ² Synapse on α-motor neurons Motor bilateral UMN input* ² Exit spinal cord in ventral rami Neuron *Part of CN VI is the exception AnatomyGuy.com 1 Cor$cospinal (cor$cobulbar) Tract 6/18/12 Overview Corticospinal ² Primary motor cortex Don’t ü ² Try to learn all the details on your first Posterior limb of the internal pass. capsule (somatotopic). Do ü Try to sketch out each brain, ² Middle 3/5 of the crus cerebri brainstem, and cord level we showed (somatotopic). -
Studies of Oculomotor-System Neural Connections Ronald S
Journal of the Arkansas Academy of Science Volume 34 Article 26 1980 How We Look: Studies of Oculomotor-System Neural Connections Ronald S. Remmel University of Arkansas for Medical Sciences Robert D. Skinner University of Arkansas for Medical Sciences Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Sense Organs Commons Recommended Citation Remmel, Ronald S. and Skinner, Robert D. (1980) "How We Look: Studies of Oculomotor-System Neural Connections," Journal of the Arkansas Academy of Science: Vol. 34 , Article 26. Available at: http://scholarworks.uark.edu/jaas/vol34/iss1/26 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 34 [1980], Art. 26 HOW WE LOOK: STUDIES OF OCULOMOTOR-SYSTEM NEURAL CONNECTIONS . R. S. REMMELandR. D. SKINNER i Department of Physiology and Biophysics and Department of Anatomy University of Arkansas forMedical Sciences Little Rock, Arkansas 72205 ABSTRACT The neural connections of the reticular formation (RF) withthe vestibular nuclei (8V)and the ascending medial longitudinal fasciculus (MLF) were studied, because many neurons in these structures carry eye-movement and head-movement (vestibular) signals and are only one or two synaptic connections removed from eye motorneurons. -
Identification of the Corticobulbar Tracts of the Tongue and Face Using Deterministic and Probabilistic DTI Fiber Tracking in Pa
Published August 6, 2015 as 10.3174/ajnr.A4430 ORIGINAL RESEARCH ADULT BRAIN Identification of the Corticobulbar Tracts of the Tongue and Face Using Deterministic and Probabilistic DTI Fiber Tracking in Patients with Brain Tumor M. Jenabi, X K.K. Peck, X R.J. Young, N. Brennan, and X A.I. Holodny ABSTRACT BACKGROUND AND PURPOSE: The corticobulbar tract of the face and tongue, a critical white matter tract connecting the primary motor cortex and the pons, is rarely detected by deterministic DTI fiber tractography. Detection becomes even more difficult in the presence of a tumor. The purpose of this study was to compare identification of the corticobulbar tract by using deterministic and probabilistic tractography in patients with brain tumor. MATERIALS AND METHODS: Fifty patients with brain tumor who underwent DTI were studied. Deterministic tractography was per- formed by using the fiber assignment by continuous tractography algorithm. Probabilistic tractography was performed by using a Monte Carlo simulation method. ROIs were drawn of the face and tongue motor homunculi and the pons in both hemispheres. RESULTS: In all subjects, fiber assignment by continuous tractography was ineffectual in visualizing the entire course of the corticobulbar tract between the face and tongue motor cortices and the pons on either side. However, probabilistic tractography successfully visualized the corticobulbar tract from the face and tongue motor cortices in all patients on both sides. No significant difference (P Ͻ .08) was found between both sides in terms of the number of voxels or degree of connectivity. The fractional anisotropy of both the face and tongue was significantly lower on the tumor side (P Ͻ .03).