The Grasp Reflex and Moro Reflex in Infants: Hierarchy of Primitive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Focusing on the Re-Emergence of Primitive Reflexes Following Acquired Brain Injuries
33 Focusing on The Re-Emergence of Primitive Reflexes Following Acquired Brain Injuries Resiliency Through Reconnections - Reflex Integration Following Brain Injury Alex Andrich, OD, FCOVD Scottsdale, Arizona Patti Andrich, MA, OTR/L, COVT, CINPP September 19, 2019 Alex Andrich, OD, FCOVD Patti Andrich, MA, OTR/L, COVT, CINPP © 2019 Sensory Focus No Pictures or Videos of Patients The contents of this presentation are the property of Sensory Focus / The VISION Development Team and may not be reproduced or shared in any format without express written permission. Disclosure: BINOVI The patients shown today have given us permission to use their pictures and videos for educational purposes only. They would not want their images/videos distributed or shared. We are not receiving any financial compensation for mentioning any other device, equipment, or services that are mentioned during this presentation. Objectives – Advanced Course Objectives Detail what primitive reflexes (PR) are Learn how to effectively screen for the presence of PRs Why they re-emerge following a brain injury Learn how to reintegrate these reflexes to improve patient How they affect sensory-motor integration outcomes How integration techniques can be used in the treatment Current research regarding PR integration and brain of brain injuries injuries will be highlighted Cases will be presented Pioneers to Present Day Leaders Getting Back to Life After Brain Injury (BI) Descartes (1596-1650) What is Vision? Neuro-Optometric Testing Vision writes spatial equations -
Improvement and Neuroplasticity After Combined Rehabilitation to Forced Grasping
Hindawi Case Reports in Neurological Medicine Volume 2017, Article ID 1028390, 7 pages https://doi.org/10.1155/2017/1028390 Case Report Improvement and Neuroplasticity after Combined Rehabilitation to Forced Grasping Michiko Arima, Atsuko Ogata, Kazumi Kawahira, and Megumi Shimodozono Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan Correspondence should be addressed to Michiko Arima; [email protected] Received 20 September 2016; Revised 31 December 2016; Accepted 9 January 2017; Published 6 February 2017 Academic Editor: Pablo Mir Copyright © 2017 Michiko Arima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The grasp reflex is a distressing symptom but the need to treat or suppress it has rarely been discussed in the literature. We report the case of a 17-year-old man who had suffered cerebral infarction of the right putamen and temporal lobe 10 years previously. Forced grasping of the hemiparetic left upper limb was improved after a unique combined treatment. Botulinum toxin typeA (BTX-A) was first injected into the left biceps, wrist flexor muscles, and finger flexor muscles. Forced grasping was reduced along with spasticity of the upper limb. In addition, repetitive facilitative exercise and object-related training were performed under low-amplitude continuous neuromuscular electrical stimulation. Since this 2-week treatment improved upper limb function, we compared brain activities, as measured by near-infrared spectroscopy during finger pinching, before and after the combined treatment. -
The Concept of the Reflex in the Description of Behavior 321
THE CONCEPT OF THE REFLEX IN THE DESCRIPTION OF BEHAVIOR 321 The present paper was published in the Journal of General Psychology, I I 2 * s here the editor. ( 93 > 5' 4 7~45$) an^ reprinted by permission of INTRODUCTORY NOTE THE EXTENSION of the concept of the reflex to the description of the behavior of intact organisms is a common practice in modern theorizing. Nevertheless, we owe most of our knowledge of the reflex to investigators who have dealt only with "preparations," and who have never held themselves to be con- cerned with anything but a subsidiary function of the central nervous system. Doubtless, there is ample justification for the use of relatively simple systems in an early investigation. But it is true, nevertheless, that the concept of the reflex has not emerged unmarked by such a circumstance of its development. In its extension to the behavior of intact organisms, that is to say, the his- torical definition finds itself encumbered with what now appear to be super- fluous interpretations. The present paper examines the concept of the reflex and attempts to evaluate the historical definition. It undertakes eventually to frame an alterna- tive definition, which is not wholly in despite of the historical usage. The reader will recognize a method of criticism first formulated with respect to scientific Ernst Mach in The Science and concepts by [ of Mechanics} per- haps better stated by Henri Poincare. To the works of these men and to Bridgman's excellent application of the method [in The Logic of Modern Physics] the reader is referred for any discussion of the method qua method. -
Viewing in Ambient Illumination 66
VESTIBULO-OCULAR RESPONSES TO VERTICAL TRANSLATION by Ke Liao Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Thesis Adviser: Richard John Leigh M.D. Department of Biomedical Engineering CASE WESTERN RESERVE UNIVERSITY August, 2008 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Ke Liao candidate for the Ph.D. degree *. (signed) Robert F. Kirsch Ph.D (chair of the committee) R. John Leigh M.D. John Stahl M.D. Ph.D Louis F. Dell'Osso Ph.D Miklos Gratzl Ph.D (date) May 20th, 2008 *We also certify that written approval has been obtained for any proprietary material contained therein. Dedication To my parents 献给我的父母 And my wife 和我的妻子 Table of Contents Table of Contents 1 List of Tables 7 List of Figures 8 Acknowledgements 10 Abstract 11 Chapter 1 Introduction to Eye Movements during Natural Behaviors 13-40 1-1. Eye movements, visual acuity and motion parallax 13 1-2. Advantages of Studying Eye Movements 15 1-3. Eye movements during locomotion 17 1-4. Binocular vision and eye movements during locomotion 20 1-5. Prior Studies of translational vestibulo-ocular reflex (tVOR) 22 1-5-1. Methodological Considerations 22 1-5-2. Summary of tVOR Properties Reported to Date 24 1-6. Reference List 35 Chapter 2 Methodology 41-57 2-1. Summary of current eye movement recording techniques 41 2-1-1. Clinical observation and ophthalmoscopy 42 2-1-2. DC Electro-oculography (EOG) 43 1 2-1-3. Ocular electromyography (EMG) 44 2-1-4. -
Classic Signs Revisited Postgrad Med J: First Published As 10.1136/Pgmj.71.841.645 on 1 November 1995
Postgrad MedJ3 1995; 71: 645-648 C The Fellowship of Postgraduate Medicine, 1995 Classic signs revisited Postgrad Med J: first published as 10.1136/pgmj.71.841.645 on 1 November 1995. Downloaded from The Babinski reflex J van Gijn Summary The information that may be deduced from scratching a patient's sole, is as The plantar response is a reflex important as a diagnostic sign as it is simple to elicit. When the great toe moves that involves not only the toes, but upward (sign of Babinski), this signifies, as everybody knows, a disturbance of all muscles that shorten the leg. In the pyramidal tract. This explains why few patients with neurological symptoms the newborn the synergy is brisk, can avoid having their plantar reflexes examined - often to their great surprise, or involving all flexor muscles of the even alarm if the trouble is in the head. Unfortunately the reality is less simple leg; these include the toe 'exten- than the theory. Often it is difficult to decide whether the great toe actually does sors', which also shorten the leg go up: the toe movements may be slight, vacillate between up and down, seem on contraction and therefore are down one day but up the next, or be interrupted by voluntary withdrawal flexors in a physiological sense. As movements. It is therefore no great surprise that such difficult plantar responses the nervous system matures and give rise to wide variations between doctors, or even between different occasions the pyramidal tract gains more with the same observer. Under these circumstances the interpretation may be control over spinal motoneurones influenced by the physician's previous expectations.' Since it is obviously the flexion synergy becomes less important for the diagnosis in individual patients whether or not a lesion of the brisk, and the toe 'extensors' are pyramidal system exists, there is a need for criteria that are both reliable and no longer part of it. -
Parametric Exploration of the Fear-Inhibited Light Reflex
Psychophysiology, 42 (2005), 447–455. Blackwell Publishing Inc. Printed in the USA. Copyright r 2005 Society for Psychophysiological Research DOI: 10.1111/j.1469-8986.2005.00301.x Parametric exploration of the fear-inhibited light reflex EUGENIA HOURDAKI, STELLA G. GIAKOUMAKI, VANGELIS GRINAKIS, KATERINA THEOU, MARIA KARATARAKI, and PANOS BITSIOS Department of Psychiatry and Behavioural Sciences, University of Crete, Heraklion, Crete, Greece Abstract The effect of various parameters on the mediation of the fear-inhibited light reflex was examined. The light reflexes of 16 healthy men were measured across four light probe intensities, either in the presence of white noise alone or when the white noise was associated with the threat of either an electric shock or an acoustic sound blast. The white noise alone did not affect the light reflex amplitude. Both types of threat were subjectively anxiogenic and inhibited the light reflex across all light probe intensities, the threat of shock being more potent than the threat of sound blast. Importantly, the effect of either type of threat on the light reflex amplitude was found to increase with increasing light probe intensity, suggesting that brighter light probes may become more relevant motivationally in the threat condition, thus attracting greater allocation of attentional/cognitive resources. Descriptors: Anxiety, Conditioned fear, Anxiety models, Light reflex, Pupil, Healthy volunteers The startle reflex is a fast defensive response with the likely pur- The dynamic light reflex is a homeostatic parasympathetic reflex pose of facilitating the flight reaction and protecting the organ- and consists of a brisk and transient contraction of the smooth iris ism from a sudden threat. -
The Brain That Changes Itself
The Brain That Changes Itself Stories of Personal Triumph from the Frontiers of Brain Science NORMAN DOIDGE, M.D. For Eugene L. Goldberg, M.D., because you said you might like to read it Contents 1 A Woman Perpetually Falling . Rescued by the Man Who Discovered the Plasticity of Our Senses 2 Building Herself a Better Brain A Woman Labeled "Retarded" Discovers How to Heal Herself 3 Redesigning the Brain A Scientist Changes Brains to Sharpen Perception and Memory, Increase Speed of Thought, and Heal Learning Problems 4 Acquiring Tastes and Loves What Neuroplasticity Teaches Us About Sexual Attraction and Love 5 Midnight Resurrections Stroke Victims Learn to Move and Speak Again 6 Brain Lock Unlocked Using Plasticity to Stop Worries, OPsessions, Compulsions, and Bad Habits 7 Pain The Dark Side of Plasticity 8 Imagination How Thinking Makes It So 9 Turning Our Ghosts into Ancestors Psychoanalysis as a Neuroplastic Therapy 10 Rejuvenation The Discovery of the Neuronal Stem Cell and Lessons for Preserving Our Brains 11 More than the Sum of Her Parts A Woman Shows Us How Radically Plastic the Brain Can Be Appendix 1 The Culturally Modified Brain Appendix 2 Plasticity and the Idea of Progress Note to the Reader All the names of people who have undergone neuroplastic transformations are real, except in the few places indicated, and in the cases of children and their families. The Notes and References section at the end of the book includes comments on both the chapters and the appendices. Preface This book is about the revolutionary discovery that the human brain can change itself, as told through the stories of the scientists, doctors, and patients who have together brought about these astonishing transformations. -
The Leg Cross Flexion-Extension Reflex: Biomechanics, Neurophysiology, MNRI® Assessment, and Repatterning
Po R t a l t o n e u R o d e ve l o P m e n t a n d le a R n i n g t h e o R y a n d h i s t o R y o f m n R i ® R e f l e x i n t e g R a t i o n The Leg Cross Flexion-Extension Reflex: Biomechanics, Neurophysiology, MNRI® Assessment, and Repatterning Elvin Akhmatov, MA, Ph.D. Student, Orlando, FL, USA; Jakub Buraczewski, PT, MNRI® Core Specialist; Denis Masgutov, Director of SMEI , Poland Introduction wo separate reflexes, Phillipson’s Withdrawal and Leg Cross Flexion-Extension, are eas- ily confused because they have similar motor Tpatterns and are elicited by stimuli that can appear to be alike and usually manifest at the same time. The authors’ purpose is to distinguish clearly between these two reflexes and to present detailed information on the one they refer to as the Leg Cross Flexion-Extension Reflex. The other reflex, often con- Elvin Akhmatov Jakub Buraczewski Denis Masgutov fused with Leg Cross Flexion-Extension, goes by sev- eral names: Phillipson’s Withdrawal, Phillipson’s Leg Flexion, Crossed Extensor, and Leg Withdrawal Reflex, among others. For clarity in this paper, the other reflex will be referred to as Phillipson’s Withdrawal. On the neurophysiological level, these two reflex patterns present the work of two different nerve tracts – tactile and proprioceptive, activated and processed by different receptors. The Leg Cross Flexion-Extension Reflex is extremely important for overall sensory-motor integration, mo- tor programing and control. -
Normal Plantar Response: Integration of Flexor and Extensor Reflex Components
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.26.1.39 on 1 February 1963. Downloaded from J. Neurol. Neurosurg. Psychiat., 1963, 26, 39 Normal plantar response: integration of flexor and extensor reflex components LENNART GRIMBY From the Department of Neurology, Karolinska Institute, Serafimerlasarettet, Stockholm, Sweden The reflexes elicited by painful stimulation of the the suprasegmental control of the reflex centres, the plantar surface of the foot have been studied receptive field of the reflex is limited to the skin area extensively for a long time and the relation between where it is adequate for protective purposes, viz., the reflexes obtained in normal and in pathological the ball of the great toe. cases has been the subject of considerable debate. An Previous investigations (Eklund et al., 1959; excellent survey of previous investigations is to be Kugelberg et al., 1960) have shown that the main found in the review by Walshe (1956). As in most difference between the electromyographic pattern of studies of human reflexes, the technique commonly a flexor plantar response and that of an extensor used has, however, not permitted an exact deter- plantar response is that the reflex plantar flexion of mination of the latency values of the reflexes, and the great toe is associated with activity in the short it has thus not been possible to judge with certainty hallux flexor and reciprocal inhibition of the guest. Protected by copyright. to what extent the movements studied have been voluntary activity in the short hallux extensor, purely spinal and to what extent of cerebral origin. whereas, conversely, reflex dorsiflexion of the great By means of brief electric stimuli and an electro- toe is accompanied by activity in the short hallux myographic recording technique these latency values extensor and reciprocal inhibition of the voluntary can, however, be exactly determined, and in this way activity in the short hallux flexor. -
Brainstem Dysfunction in Critically Ill Patients
Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem -
Neurologic AESI Glossary of Terms
Neurologic AESI Glossary of Terms Includes terms for the following Brighton Collaboration Case Definitions: • Encephalitis, myelitis, acute disseminated encephalomyelitis • Guillain Barré and Miller Fisher Syndromes • Peripheral Facial Nerve Palsy (Bell’s palsy) • Aseptic meningitis • Generalized convulsion Acalculia: inability to perform simple mathematical tasks (addition, subtraction, multiplication) Agnosia: inability to recognize objects or persons Agraphesthesia: difficulty recognizing a written number or letter traced on the palm of the hand Agraphia: impairment in the ability to write AIDP: acute inflammatory demyelinating polyneuropathy (most common form of GBS) Alexia: impairment of ability to read AMAN: acute motor axonal neuropathy (a less common form of GBS) AMSAN: acute motor and sensory axonal neuropathy (a less common form of GBS) Aphasia / Dysphasia: impairment of spoken language abilities that affect production and/or comprehension of speech. Apraxia: inability to execute purposeful movements Aprosodia: decreased ability to generate or comprehend emotion as conveyed in spoken language Asterognosia: inability to identify an object by active touch of the hands without other sensory input (e.g. visual) Ataxia: loss of coordination in voluntary movements; can present in many ways including: lack of coordination, slurred speech, gait abnormalities, inability to balance, trouble eating and swallowing, loss of fine motor skills, tremors; Atonic motor manifestations: sudden loss in tone of postural muscles; may be preceded by -
Behavioral Analysis of Conditions and Treatments Affecting Movement and Nociception
Rowan University Rowan Digital Works Theses and Dissertations 6-21-2021 Behavioral analysis of conditions and treatments affecting movement and nociception Indu Mithra Madhuranthakam Rowan University Follow this and additional works at: https://rdw.rowan.edu/etd Part of the Medicinal and Pharmaceutical Chemistry Commons Recommended Citation Madhuranthakam, Indu Mithra, "Behavioral analysis of conditions and treatments affecting movement and nociception" (2021). Theses and Dissertations. 2923. https://rdw.rowan.edu/etd/2923 This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please contact [email protected]. BEHAVIORAL ANALYSIS OF CONDITIONS AND TREATMENTS AFFECTING MOVEMENT AND NOCICEPTION by Indu Mithra Madhuranthakam A Thesis Submitted to the Department of Chemistry and Biochemistry College of Science and Mathematics In partial fulfillment of the requirement For the degree of Master of Science in Pharmaceutical Sciences at Rowan University March 26, 2021 Thesis Advisor: Thomas M Keck, Ph.D. Committee Members: Kandalam Ramanujachary, Ph.D. Subash Jonnalagadda, Ph.D. © 2021 Indu Mithra Madhuranthakam Acknowledgements I would like to express my sincere gratitude to Professor Thomas Keck, my thesis advisor, for guiding me throughout my research period at the Rowan University. I am also grateful to Professor Kandalam Ramanujachary and Professor Subash Jonnalagadda for being supportive and helpful and also for being my thesis Committee members. Finally, I would like to thank my family, friends, and lab mates for extending their love and support. iii Abstract Indu Mithra Madhuranthakam BEHAVIORAL ANALYSIS OF CONDITIONS AND TREATMENTS AFFECTING MOVEMENT AND NOCICEPTION 2019-2021 Thomas M Keck, Ph.D.