Mechanisms of Toxicity

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Toxicity Mechanisms of Toxicity NST110, Toxicology Department of Nutritional Sciences and Toxicology University of California, Berkeley Mechanisms of Toxicity 1. Delivery: Site of Exposure to the Target 2. Reaction of the Ultimate Toxicant with the Target Molecule 3. Cellular Dysfunction and Resultant Toxicity 4. Repair or Dysrepair Mechanisms of Toxicity 1. Delivery: Site of Exposure to the Target 2. Reaction of the Ultimate Toxicant with the Target Molecule 3. Cellular Dysfunction and Resultant Toxicity 4. Repair or Dysrepair Chemical Factors that Cause Cellular Dysfunction • Chemicals that cause DNA adducts can lead to DNA mutations which can activate cell death pathways; if mutations activate oncogenes or inactivate tumor suppressors, it can lead to uncontrolled cell proliferation and cancer (e.g. benzopyrene) • Chemicals that cause protein adducts can lead to protein dysfunction which can activate cell death pathways; protein adducts can also lead to autoimmunity; if protein adducts activate oncogenes or inactivate tumor suppressors, it can lead to uncontrolled cell proliferation and cancer (e.g. diclofenac glucuronidation metabolite) • Chemicals that cause oxidative stress can oxidize DNA or proteins leading to DNA mutations or protein dysfunction and all of the above. (e.g. benzene, CCl4) • Chemicals that specifically interact with protein targets • chemicals that activate or inactivate ion channels can cause widespread cellular dysfunction and cause cell death and many physiological symptoms—Na+, Ca2+, K+ levels are extremely important in neurotransmission, muscle contraction, and nearly every cellular function (e.g. tetrodotoxin closes voltage-gated Na+ channels) • Chemicals that inhibit cellular respiration—inhibitors of proteins or enzymes involved in oxygen consumption, fuel utilization, and ATP production will cause energy depletion and cell death (e.g. cyanide inhibits cytochrome c oxidase) • Chemicals that inhibit the production of cellular building blocks, e.g. nucleotides, lipids, amino acids (e.g. amanitin from Deathcap mushrooms) • Chemicals that inhibit enzymatic processes of bioactive metabolites that alter ion channels and metabolism (e.g. sarin inhibits acetylcholinesterase and elevates acetylcholine levels to active signaling pathways and ion channels) • All of the above can also cause inflammation which can lead to cellular dysfunction Cellular Dysfunction: Necrosis versus Apoptosis Two Forms of Cell Death 1. Necrosis: unprogrammed cell death (dangerous) A. Passive form of cell death induced by accidental damage of tissue and does not involve activation of any specific cellular program. B. Early loss of plasma membrane integrity and swelling of the cell body followed by bursting of cell. C. Mitochondria and various cellular processes contain substances that can be damaging to surrounding cells and are released upon bursting and cause inflammation. D. Cells necrotize in response to tissue damage [injury by chemicals and viruses, infection, cancer, inflammation, ischemia (death due to blockage of blood to tissue)]. 2. Apoptosis: one of the main forms of programmed cell death (not as dangerous to organism as necrosis). A. Active form of cell death enabling individual cells to commit suicide. B. Caspase-dependent C. Dying cells shrink and condense and then fragment, releasing small membrane-bound apoptotic bodies, which are phagocytosed by immune cells (i.e. macrophages). D. Intracellular constituents are not released where they might have deleterious effects on neighboring cells. Mechanisms of Apoptosis Apoptosis is a cell mechanism used to eliminate cells that contain mutations, are unnecessary, or dangerous to the body It is critical to normal embryonic development and to cancer prevention Mechanisms of Apoptosis Phenotypes of apoptosis: 1. Overall shrinkage in volume of the cell and its nucleus 2. Loss of adhesion to neighboring cells 3. Formation of blebs on the cell surface 4. DNA fragmentation: dissection of the chromatin into small fragments 5. Rapid engulfment of the dying cell by phagocytosis Factors that induce apoptosis: 1. Internal stimuli: abnormalities in DNA 2. External stimuli: removal of growth factors, addition of cytokines (tumor necrosis factor—TNF) Signal transduction pathways leading to apoptosis: Two major pathways: 1. Intrinsic pathway (mitochondria-dependent) 2. Extrinsic pathway (mitochondria-independent) Extrinsic Apoptosis • The death receptor pathway I activated by external cytokines and is mitochondria- independent • The ligands of the death receptors are members of the tumor necrosis factor (TNF) family of proteins, including TNF-alpha, Fas ligand (FasL), TRAIL/Apo2L, Apo3L • Binding of ligand to the death receptors results in homotrimerization of the receptors • Death receptors contain a death domain in the cytoplasmic region that is required for apoptosis signaling Extrinsic Apoptosis Trimerization of the receptor death domains allows binding and activation of FADD (Fas-associated death domain protein) and formation of death-inducing signaling complex (DISC), which recruits and activates procaspase 8 and 10 to caspase 8 and 10. Caspases are a family of cyteine-aspartyl-specific proteases that are activated at an early stage of apoptosis and are responsible for triggering most of the changes during apoptosis. Caspases are proteolytically activated and then diffuse into the cytoplasm to cleave target proteins Extrinsic Apoptosis Two major classes of caspases: 1. Initiator caspases 8,9,10: initiates the onset of apoptosis by activating the executioner caspases 2. Initiator caspases 3,6,7: destroy actual targets in the cell to execute apoptosis Caspases target: 1. FAK (focal adhesion kinase): inactivation of FAK disrupt cell adhesion, leading to detachment of the apoptotic cell from its neighbors 2. Lamins: important component of the nuclear envelope, cleavage of lamins leads to disassembly of the nuclear lamina 3. Proteins required for cell structure: actin, intermediate filaments, etc--cleavage of these proteins lead to changes in cell shape and the surface blebbing 4. Endonuclease CAD: responsible for chromosome fragmentation. CAD cuts DNA into small fragments. CAD normally binds to an inhibitor protein. Caspases cleaves the inhibitor protein to activate CAD 5. Enzymes involved in DNA repair Extrinsic Apoptosis Intrinsic Apoptosis Intrinsic apoptosis is mitochondria-dependent and is induced by DNA damage, binding of nuclear receptors by glucocorticoids, heat, radiation, nutrient deprivation, viral infection, hypoxia, and increased intracellular calcium concentration Process of Intrinsic apoptosis: 1. Bax forms homo-dimers in the presence of apoptotic signals, opening a channel that translocates cytochrome c from the intermembrane space to the cytoplasm 2. Bcl2 interferes with Bax function by forming a heterodimer with Bax, closing the channel and inhibiting cytochrome c translocation 3. In the cytosol, cytochrome c binds to Apaf-1 to form apoptosome 4. Apoptosome recruits procaspase 9 and activates it to caspase 9 5. Caspase 9 activates executioner caspases 3, 6, and 7 Summary of Apoptosis Mechanisms of Necrosis • Cells must synthesize endogenous molecules, assemble macromolecular complexes, membranes, and cell organelles, maintain intracellular environment, and produce energy for operation. • Agents that disrupt these functions (especially energy-producing function of the mitochondria and protein synthesis) will cause cell death. ATP-SYN: ATP synthase MET: mitochondrial electron transport NOS: nitric oxide synthase PARP: poly(ADP-ribose) polymerase ROS: reactive oxygen species RNS: reactive nitrogen species XO: xanthine oxidase ΔΨm: mitochondrial membrane potential Three Primary Metabolic Disorders Jeopardizing Cell Survival: I. ATP depletion II. Sustained rise in intracellular Ca2+ III. Overproduction of ROS, RNS I. ATP Depletion ATP plays a central role in cellular maintenance both as a chemical for biosynthesis and as the major source of energy. 1. ATP drives ion transporters such as Na+/K+-ATPase (plasma membrane), Ca2+ -ATPase (endoplasmic reticulum and plasma membrane) to maintain cellular ion gradients. (most important for necrosis!) 2. Used in biosynthetic reactions (phosphorylation and adenylation) 3. Used for signal transduction regulation (e.g. phosphorylation of receptor tyrosine kinase and kinase pathways) 4. Incorporated into DNA 5. Muscle contraction (actin/myosin interaction) and neurotransmission 6. Polymerization of cytoskeleton (actin and tubule polymerization) 7. Cell division 8. Maintenance of cell morphology ATP Production in the Mitochondria Direct Consequences of ATP Depletion ATP Depletion compromised ion pumps (eg Na/K ATPase and Ca2+-ATPases) Ca2+/Na+ levels rise intracellularly loss of ionic and volume and leads to opening of voltage-gated channels regulatory controls that depolarize membranes leading to further Ca2+ and Na+ influx into the cell cell swelling (water influx) (rise in intracellular Na+) cell lysis necrosis Agents That Impair ATP Synthesis 1. Inhibitors of electron transport 1. Cyanide inhibits cytochrome oxidase 2. Rotenone inhibits complex I—insecticide that may be an environmental cause of Parkinson’s Disease 3. Paraquat inhibits complex I—herbicide, but also causes lung hemorrhaging in humans 2. Inhibitors of oxygen delivery 1. Ischemic agents such as ergot alkaloids, cocaine 2. Carbon monoxide—displaces oxygen from hemoglobin 3. Inhibitors of ADP phosphorylation - DDT, DIM, phytochemicals 4. Chemicals causing mitochondrial DNA
Recommended publications
  • Acupuncture and Traditional Chinese Medicine in the Treatment of Parkinson’S Disease
    Schulz Capstone Acupuncture and Traditional Chinese Medicine In the Treatment of Parkinson’s Disease By Mary M. Schulz Presented in partial fulfillment for the Doctor of Acupuncture and Oriental Medicine Degree Capstone Advisors: Eric Tamrazian, M.D., Lawrence J. Ryan, Ph.D. Yo San University April 2014 Schulz Capstone Approvals Signatures Page This Capstone Project has been reviewed and approved by: _________________________________________ __5/4/2015__________ Eric Tamrazian, M.D., Capstone Project Advisor Date _________________________________________ _5/4/2015____________ Lawrence Ryan, Ph.D., Capstone Project Advisor Date _________________________________________ __5/4/2015___________ Don Lee, L.Ac., Specialty Chair Date _________________________________________ __5/4/2015____________ Andrea Murchison, DAOM, L.Ac., Program Director Date 2 Schulz Capstone ABSTRACT Research has shown that arresting progress of disease by early intervention is paramount to preventing its progression. Recent studies reveal early signs and symptoms of Parkinson’s Disease (PD) to be anosmia (loss of smell), constipation and REM Sleep Disorder and are confirmed to develop up to ten years prior to the more well known, and classical diagnosed, motor symptoms of resting tremor, bradykinesia, and rigidity. Motor symptoms in PD appear as a result of the progressive loss of dopamine in the basal ganglia, particularly within the substantia nigra, pars compacta region. By the time PD motor symptoms develop and are diagnosed, an estimated 80% of striatal nerve terminals and 60% of dopaminergic neurons have already been lost. Modern biomedical intervention for motor symptoms primarily focuses on the use of the pharmaceutical combination of carbidopa/levodopa (L-Dopa therapy). It is well known L- Dopa therapy has a waning period after 3 to 5 years of use, with up to 50% of patients developing dyskinesias as a result of this treatment.
    [Show full text]
  • NIDA Drug Supply Program Catalog, 25Th Edition
    RESEARCH RESOURCES DRUG SUPPLY PROGRAM CATALOG 25TH EDITION MAY 2016 CHEMISTRY AND PHARMACEUTICS BRANCH DIVISION OF THERAPEUTICS AND MEDICAL CONSEQUENCES NATIONAL INSTITUTE ON DRUG ABUSE NATIONAL INSTITUTES OF HEALTH DEPARTMENT OF HEALTH AND HUMAN SERVICES 6001 EXECUTIVE BOULEVARD ROCKVILLE, MARYLAND 20852 160524 On the cover: CPK rendering of nalfurafine. TABLE OF CONTENTS A. Introduction ................................................................................................1 B. NIDA Drug Supply Program (DSP) Ordering Guidelines ..........................3 C. Drug Request Checklist .............................................................................8 D. Sample DEA Order Form 222 ....................................................................9 E. Supply & Analysis of Standard Solutions of Δ9-THC ..............................10 F. Alternate Sources for Peptides ...............................................................11 G. Instructions for Analytical Services .........................................................12 H. X-Ray Diffraction Analysis of Compounds .............................................13 I. Nicotine Research Cigarettes Drug Supply Program .............................16 J. Ordering Guidelines for Nicotine Research Cigarettes (NRCs)..............18 K. Ordering Guidelines for Marijuana and Marijuana Cigarettes ................21 L. Important Addresses, Telephone & Fax Numbers ..................................24 M. Available Drugs, Compounds, and Dosage Forms ..............................25
    [Show full text]
  • List of Narcotic Substances Circulation of Which Is Restricted in Uzbekistan
    List of narcotic substances circulation of which is restricted in Uzbekistan 1. 2C-B(4-bromo-2,5-dimethoxyphenethylamine) 2. 3-methylfentanyl 3. 3-methylthiofentanyl 4. 3-Monoacetylmorphine 5. 4-methylaminorex 6. 6- Monoacetylmorphine 7. Acetorphine 8. Acetyl Dihydrocodeine 9. Acetyl-alfametilfentanil 10. Acetylated opium 11. Acetylcodeine 12. Acetylmethadol 13. Alfametadol 14. Alfatsetilmetadol 15. all fungi that contain Psilocine and Psilocybine 16. Allylprodine 17. Alpha Methylfentanyl 18. Alpha Metiltiofentanil 19. Alphaprodine 20. Anileridin 21. Benzethidine 22. Benzylmorphine 23. Betacetylmethadol 24. Betahydroxyfentanyl 25. Betameprodine 26. Betamethadol 27. Betaprodine 28. Bezitramide 29. Cannabis oil (hashish oil) 30. Cannabis, marihuana 31. Cathine ((+)-norpseudoephedrine) 32. Cathinone (l-alpha-aminopropiofenon) 33. Clonitazene 34. Cocaine 35. Codoxime 36. d- Methadone 37. DB [L-(3,4 - methylenedioxyphenyl) -2 butanamine] 38. Desmethylprodine; MPPP (1-methyl-4-phenyl-4-propionoxypiperidine) 39. Desomorphine 40. DET (N,N-diethyltryptamine) 41. Dexamphetamine 42. Diampromide 43. Diethyl phosphate 44. Diethylthiambutene 45. Dihydromorphine 46. Dimenoxadol 47. Dimepheptanol 48. Dimethylthiambutene 49. Dioxaphetyl butyrate 50. Diphenoxine 51. Dipipanone 52. DMA (2,5-dimethoxyamphetamine) 53. DMGP (dimetilgeptilpiran) 54. DMT (dimethyltryptamine) 55. DOB (d, L-2,5-dimethoxy-4-bromo-amphetamine) 56. DOC (d, L-2,5-dimethoxy-4-chloro-amphetamine) 57. DOET (2,5-dimethoxy-4-ethylamphetamine) 58. Drotebanol 59. Ecgonine 60. Ephedrone 61. Ethylmethylthiambutene 62. Eticyclidine 63. Etonitazene 64. Etorphine 65. Etoxeridine 66. Etryptamine 67. Furethidine 68. Hashish (Anasha, cannabis resin) 69. Heroin (Diacetylmorphine) 70. Hydrocodone 71. Hydrocodone phosphate 72. Hydromorphinol 73. Hydromorphone 74. Isomethadone 75. Ketobemidone 76. Khat 77. L- Methadone 78. Levomethorphan 79. Levomoramide 80. Levophenacylmorphan 81. Levorphanol 82. Lysergic acid and its preparations, that include d-Lysergide (LSD, LSD-25) 83.
    [Show full text]
  • WO 2017/066488 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/066488 A l 2 0 April 2017 (20.04.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/485 (2006.01) A61P 25/04 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/5415 (2006.01) A61P 1/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 16/0569 10 HN, HR, HU, ID, IL, EST, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 13 October 2016 (13.10.201 6) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/240,965 13 October 2015 (13. 10.2015) US (84) Designated States (unless otherwise indicated, for every 62/300,014 25 February 2016 (25.02.2016) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: CHARLESTON LABORATORIES, INC.
    [Show full text]
  • ATP, 489 Absolute Configuration Benzomotphans, 204 Levotphanol
    Index AIDA, 495 Affinity labeling, analogs of (Cont.) cAMP, 409, 489 motphine,448 ATP, 409, 489 naltrexone, 449 [3H] ATP, 489 norlevotphanol,449 Absolute configuration normetazocine, 181 benzomotphans, 204 norpethidine, 232 levotphanol, 115 oripavine, 453 methadone and analogs, 316 oxymotphone, 449 motphine, 86 K-Agonists, 179,405,434 phenoperidine, 234 Aid in Interactive Drug Analysis, 495 piperazine derivatives, 399 [L-Ala2] dermotphin, 363 prodines and analogs, 272 [D-Ala, D-Leu] enkephalin (DADL), 68, 344 sinomenine, 28, 115 [D-Ala2 , Bugs] enkephalinamide, 347, 447 viminol, 400 [D-Ala2, Met'] enkephalinamide, 337, 346, Ac 61-91,360 371,489 Acetylcholine, 5, 407 [D-Ala2]leu-enkephalin, 344, 346, 348 Acetylcholine analogs, 186, 191 [D-Ala2] met-enkephalin, 348 l-Acetylcodeine, 32 [D-Ala2] enkephalins, 347 Acetylmethadols (a and (3) Alfentanil, 296 maintenance of addicts by a-isomer, 304, 309 (±)-I1(3-Alkylbenzomotphans, 167, 170 metabolism, 309 11(3-Alkylbenzomotphans, 204 N-allyl and N-CPM analogs, 310, 431 7-Alkylisomotphinans, 146 stereochemistry, 323 N-Alkylnorketobemidones, 431 synthesis, 309 N-Alkylnorpethidines, 233 X-ray crystallography, 327 N-Allylnormetazocine, 420 6-Acetylmotphine, receptor binding, 27 N-Allylnormotphine, 405 Acetylnormethadol, 323 N-Allylnorpethidine, 233 8(3-Acyldihydrocodeinones, 52 3-Allylprodines (a and (3), 256 14-Acyl-4,5-epoxymotphinans, 58 'H-NMR and stereochemistry, 256 7-Acylhydromotphones, 128 X-ray crystallography, 256 Addiction, 4 N-Allylnormetazocine, 420 Adenylate cyclase, 6, 409, 413, 424,
    [Show full text]
  • Alcohol and Drug Abuse Subchapter 9 Regulated Drug Rule 1.0 Authority
    Chapter 8 – Alcohol and Drug Abuse Subchapter 9 Regulated Drug Rule 1.0 Authority This rule is established under the authority of 18 V.S.A. §§ 4201 and 4202 which authorizes the Vermont Board of Health to designate regulated drugs for the protection of public health and safety. 2.0 Purpose This rule designates drugs and other chemical substances that are illegal or judged to be potentially fatal or harmful for human consumption unless prescribed and dispensed by a professional licensed to prescribe or dispense them, and used in accordance with the prescription. The rule restricts the possession of certain drugs above a specified quantity. The rule also establishes benchmark unlawful dosages for certain drugs to provide a baseline for use by prosecutors to seek enhanced penalties for possession of higher quantities of the drug in accordance with multipliers found at 18 V.S.A. § 4234. 3.0 Definitions 3.1 “Analog” means one of a group of chemical components similar in structure but different with respect to elemental composition. It can differ in one or more atoms, functional groups or substructures, which are replaced with other atoms, groups or substructures. 3.2 “Benchmark Unlawful Dosage” means the quantity of a drug commonly consumed over a twenty-four hour period for any therapeutic purpose, as established by the manufacturer of the drug. Benchmark Unlawful dosage is not a medical or pharmacologic concept with any implication for medical practice. Instead, it is a legal concept established only for the purpose of calculating penalties for improper sale, possession, or dispensing of drugs pursuant to 18 V.S.A.
    [Show full text]
  • Synthetic Investigation of Natural Products Causing Dopaminergic Neurodegeneration
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 1-1-2018 Synthetic Investigation of Natural Products Causing Dopaminergic Neurodegeneration Michael John Cunningham University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Cunningham, Michael John, "Synthetic Investigation of Natural Products Causing Dopaminergic Neurodegeneration" (2018). Electronic Theses and Dissertations. 1457. https://egrove.olemiss.edu/etd/1457 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. SYNTHETIC INVESTIGATION OF NATURAL PRODUCTS CAUSING DOPAMINERGIC NEURODEGENERATION A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences, The University of Mississippi Michael John Cunningham May 2018 Copyright © 2018 by Michael Cunningham All rights reserved ABSTRACT The terrestrial organisms Streptomyces venezuelae and Rhaponticum repens produce toxic secondary metabolites that likely function as chemical deterrents. The polyketide SV-6 from S. venezuelae and the sesquiterpene lactone repin from R. repens both produce dose- dependent and selective degeneration of dopaminergic neurons. These molecules represent two possible tools that can be used to explore chemotoxic induction of Parkinson’s disease. In the case of SV-6, a newly isolated metabolite, total synthesis was undertaken to confirm its structure and biological activity. The natural product was produced from methacrolein and Roche ester starting materials that were elaborated to their respective fragments, a vinyl iodide and a Weinreb amide.
    [Show full text]
  • Words Underlined Are Additions. Hb0477-01-C1 FLORIDA HOUSE of REPRESENTATIVE S
    FLORIDA HOUSE OF REPRESENTATIVE S CS/HB 477 2017 1 A bill to be entitled 2 An act relating to controlled substances; amending s. 3 381.887, F.S.; providing that certain emergency 4 responders and crime laboratory personnel may possess, 5 store, and administer emergency opioid antagonists; 6 amending s. 782.04, F.S.; providing that unlawful 7 distribution of specified controlled substances and 8 analogs or mixtures thereof by an adult which 9 proximately cause a death is murder; providing 10 criminal penalties; creating s. 893.015, F.S.; 11 specifying purpose relating to drug abuse prevention 12 and control; providing that a reference to ch. 893, 13 F.S., or to any section or portion thereof, includes 14 all subsequent amendments; amending s. 893.03, F.S.; 15 adding certain synthetic opioid substitute compounds 16 to the list of Schedule I controlled substances; 17 amending s. 893.13, F.S.; prohibiting possession of 18 more than 10 grams of specified substances; providing 19 criminal penalties; amending s. 893.135, F.S.; 20 revising the substances that constitute the offenses 21 of trafficking and capital trafficking in, and capital 22 importation of, hydrocodone and oxycodone; creating 23 the offense of trafficking in fentanyl; providing 24 penalties and specifying minimum terms of imprisonment 25 and fines based on the quantity involved in the Page 1 of 167 CODING: Words stricken are deletions; words underlined are additions. hb0477-01-c1 FLORIDA HOUSE OF REPRESENTATIVE S CS/HB 477 2017 26 offense; revising the substances that constitute
    [Show full text]
  • 9: Analytical Standards
    CATALOGUE NUMBER 9 ANALYTICAL STANDARDS Table of Contents Standards for Special Applications 3 Standards for Routine Analytical Applications 82 Certified Primary Pharmaceutical Standards 3 Environmental Standards 82 Certified GMO Materials 31 Particle Size Standards 115 Certified Clinical Chemistry Standards 33 Conductivity Standards 116 Other Certified Standards 34 Ion Chromatography Standards 116 Custom & OEM Standards 44 Redox Standards 117 Certified Industrial Raw Materials 44 Forensic & Veterinary Standards 117 Certified Drugs, Metabolites, & Impurities 45 Polymer Standards 126 Certified Food & Agriculture Standards 58 Petrochemical Standards 127 Proficiency Testing for Environmental Analysis 60 AAS/ICP Standards 130 Chromatography & CE Test Mixes 131 Selected Certified Reference Materials 64 TOC Standards 132 Environmental Standards 64 Melting Point Standards 132 Trace Cert Organics 75 Spectroscopy Standards—TraceCert 132 Occupational Hygiene Standards 76 MS Markers 134 Secondary Pharma Standards 76 Pharmaceutical & Clinical Standards 134 Titrimetric Substances 81 X-Ray Standards 135 Certified Spectroscopy Standards 81 Food & Beverage Standards 135 Gravimetry Standards 147 NMR Standards 147 Color Reference Solutions 148 Miscellaneous 148 NOTE: This publication is designed for electronic use only. Hazard and Safety information can be found on product detail pages and at sigma-aldrich.com/safetycenter. 2 Analytical Standards Technical Support: [email protected] Standards for Special Applications Certified Primary Pharmaceutical
    [Show full text]
  • The Neurology Clinic Needs Monkey Research COLLOQUIUM PAPER Michael E
    PERSPECTIVE The neurology clinic needs monkey research COLLOQUIUM PAPER Michael E. Goldberga,b,c,1 Edited by Robert H. Wurtz, National Institutes of Health, Bethesda, MD, and approved August 2, 2019 (received for review May 4, 2019) This report discusses how a number of currently incurable diseases might be treated by advances developed as the result of current ongoing research on monkeys. The diseases discussed include Parkinson’s disease, amyotrophic lateral sclerosis, spinal cord injury, peripheral neuropathy, and stroke. Finally, the report discusses the devastating effect the animal rights movement and adverse publicity can have on basic neurobiological research on monkeys. neurological diseases | monkey research | needed therapies Neurological and psychiatric diseases present an im- nucleus, two structures within the basal ganglia. As mense public health burden in the United States and reviewed by Jerrold Vitek in his chapter, the current throughout the world. One estimate is that they com- state-of-the-art treatment is electrical stimulation of prise 19% of all disability-adjusted life years (1). In the subthalamic nucleus. This approach was devel- neurology, although our diagnostic capacity has grown oped as the result of years of basic neurophysiological significantly in the past 50 y, therapeutic strategies lag research by Mahlon DeLong and his colleagues, who far beyond diagnosis and are still limited to very narrow sought to understand the role of the basal ganglia in niches, such as the first 4.5 h after a stroke begins (2). the generation of normal movement. DeLong began Medical diseases, like heart or kidney failure, have a by studying the normal physiology of the basal gan- number of treatment modalities, like drugs, surgery, glia, including the substantia nigra (3), the globus or, when all else fails, transplant.
    [Show full text]
  • Drug Testing: the Moving Target
    4/20/2015 Drug Testing: the moving target Kara Lynch, PhD, DABCC [email protected] University of California San Francisco San Francisco, CA Learning Objectives • Understand recent trends in designer drug use • Describe challenges the laboratory faces in keeping up with the detection of novel psychoactive substances and new pharmaceutical agents • Develop a laboratory based approach for detecting novel psychoactive substances and new pharmaceutical agents in biological samples Emergence of Designer Drugs / Novel Psychoactive Substances (NPS) First synthetic cannabinoids Methcathinone sold on internet methylaminorex ALD‐52 Novel anabolic PCP analogues steroids 1960s 1970s 1980s 1990s 2000s 2010s DOM Internet Sales “research chemicals” for “scientific research” MDMA Fentanyl/meperidine analogues 2012: Synthetic Drug 1986: Federal Analogue Act Abuse Prevention Act 1 4/20/2015 Traditional Drug Screening Approach • Screening for classes of abused or prescribed drugs (Immunoassay, ELISA) –rapid, minimal labor • Limitations: 1) Assays not available for all drugs of clinical Screen interest, 2) prone to false positives and false negatives •Targeted confirmation testing (GC/MS or LC‐MS/MS) • Limitations: 1) Testing not always available in‐house, 2) Long turn around times, 3) not designed to detect new/novel Confirm pharmaceutical and illicit drugs Drug Screening Panels by Immunoassay Drugs commonly in “Drug of Abuse” and/or “Pain Management” Panels Amphetamines Opiates Benzodiazepines Cocaine Barbiturates Methadone Phencyclidine (PCP) Marijuana
    [Show full text]
  • Florida Statutes to Chapter 893 Or to Tion Drug Monitoring Program
    F.S. 2020 DRUG ABUSE PREVENTION AND CONTROL Ch. 893 CHAPTER 893 DRUG ABUSE PREVENTION AND CONTROL 893.01 Short title. 893.1495 Retail sale of ephedrine and related com- 893.015 Statutory references. pounds. 893.02 Definitions. 893.15 Rehabilitation. 893.03 Standards and schedules. 893.165 County alcohol and other drug abuse 893.0301 Death resulting from apparent drug over- treatment or education trust funds. dose; reporting requirements. 893.20 Continuing criminal enterprise. 893.031 Industrial exceptions to controlled sub- 893.21 Alcohol-related or drug-related overdoses; stance scheduling. medical assistance; immunity from ar- 893.033 Listed chemicals. rest, charge, prosecution, and penaliza- 893.035 Control of new substances; findings of fact; tion. delegation of authority to Attorney Gen- 893.30 Controlled substance safety education and eral to control substances by rule. awareness. 893.0355 Control of scheduled substances; delega- tion of authority to Attorney General to 893.01 Short title.ÐThis chapter shall be cited and reschedule substance, or delete sub- known as the ªFlorida Comprehensive Drug Abuse stance, by rule. Prevention and Control Act.º 893.0356 Control of new substances; findings of fact; History.Ðs. 1, ch. 73-331. ªcontrolled substance analogº defined. 893.04 Pharmacist and practitioner. 893.015 Statutory references.ÐThe purpose of 893.05 Practitioners and persons administering this chapter is to comprehensively address drug controlled substances in their absence. abuse prevention and control in this state. To this 893.055 Prescription drug monitoring program. end, unless expressly provided otherwise, a reference 893.0551 Public records exemption for the prescrip- in any section of the Florida Statutes to chapter 893 or to tion drug monitoring program.
    [Show full text]