Defining "Dangerous Drug Analogue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INVESTIGATION of NATURAL PRODUCT SCAFFOLDS for the DEVELOPMENT of OPIOID RECEPTOR LIGANDS by Katherine M
INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS By Katherine M. Prevatt-Smith Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _________________________________ Chairperson: Dr. Thomas E. Prisinzano _________________________________ Dr. Brian S. J. Blagg _________________________________ Dr. Michael F. Rafferty _________________________________ Dr. Paul R. Hanson _________________________________ Dr. Susan M. Lunte Date Defended: July 18, 2012 The Dissertation Committee for Katherine M. Prevatt-Smith certifies that this is the approved version of the following dissertation: INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS _________________________________ Chairperson: Dr. Thomas E. Prisinzano Date approved: July 18, 2012 ii ABSTRACT Kappa opioid (KOP) receptors have been suggested as an alternative target to the mu opioid (MOP) receptor for the treatment of pain because KOP activation is associated with fewer negative side-effects (respiratory depression, constipation, tolerance, and dependence). The KOP receptor has also been implicated in several abuse-related effects in the central nervous system (CNS). KOP ligands have been investigated as pharmacotherapies for drug abuse; KOP agonists have been shown to modulate dopamine concentrations in the CNS as well as attenuate the self-administration of cocaine in a variety of species, and KOP antagonists have potential in the treatment of relapse. One drawback of current opioid ligand investigation is that many compounds are based on the morphine scaffold and thus have similar properties, both positive and negative, to the parent molecule. Thus there is increasing need to discover new chemical scaffolds with opioid receptor activity. -
Alternative Formats If You Require This Document in an Alternative Format, Please Contact: [email protected]
University of Bath PHD The extraction and chemistry of the metabolites of Mimosa tenuiflora and Papaver somniferum Ninan, Aleyamma Award date: 1990 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 THE EXTRACTION AND CHEMISTRY OF THE METABOLITES OF MIMOSA TENUIFLORA AND PAP AVER SOMNIFERUM. submitted by ALEYAMMA NINAN for the degree of Doctor of Philosophy of the University of Bath 1990 Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior consent of the author. -
ECO-Ssls for Pahs
Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1 -
Hallucinogens and Dissociative Drugs
Long-Term Effects of Hallucinogens See page 5. from the director: Research Report Series Hallucinogens and dissociative drugs — which have street names like acid, angel dust, and vitamin K — distort the way a user perceives time, motion, colors, sounds, and self. These drugs can disrupt a person’s ability to think and communicate rationally, or even to recognize reality, sometimes resulting in bizarre or dangerous behavior. Hallucinogens such as LSD, psilocybin, peyote, DMT, and ayahuasca cause HALLUCINOGENS AND emotions to swing wildly and real-world sensations to appear unreal, sometimes frightening. Dissociative drugs like PCP, DISSOCIATIVE DRUGS ketamine, dextromethorphan, and Salvia divinorum may make a user feel out of Including LSD, Psilocybin, Peyote, DMT, Ayahuasca, control and disconnected from their body PCP, Ketamine, Dextromethorphan, and Salvia and environment. In addition to their short-term effects What Are on perception and mood, hallucinogenic Hallucinogens and drugs are associated with psychotic- like episodes that can occur long after Dissociative Drugs? a person has taken the drug, and dissociative drugs can cause respiratory allucinogens are a class of drugs that cause hallucinations—profound distortions depression, heart rate abnormalities, and in a person’s perceptions of reality. Hallucinogens can be found in some plants and a withdrawal syndrome. The good news is mushrooms (or their extracts) or can be man-made, and they are commonly divided that use of hallucinogenic and dissociative Hinto two broad categories: classic hallucinogens (such as LSD) and dissociative drugs (such drugs among U.S. high school students, as PCP). When under the influence of either type of drug, people often report rapid, intense in general, has remained relatively low in emotional swings and seeing images, hearing sounds, and feeling sensations that seem real recent years. -
Hallucinogens
Hallucinogens What Are Hallucinogens? Hallucinogens are a diverse group of drugs that alter a person’s awareness of their surroundings as well as their thoughts and feelings. They are commonly split into two categories: classic hallucinogens (such as LSD) and dissociative drugs (such as PCP). Both types of hallucinogens can cause hallucinations, or sensations and images that seem real though they are not. Additionally, dissociative drugs can cause users to feel out of control or disconnected from their body and environment. Some hallucinogens are extracted from plants or mushrooms, and others are synthetic (human-made). Historically, people have used hallucinogens for religious or healing rituals. More recently, people report using these drugs for social or recreational purposes. Hallucinogens are a Types of Hallucinogens diverse group of drugs Classic Hallucinogens that alter perception, LSD (D-lysergic acid diethylamide) is one of the most powerful mind- thoughts, and feelings. altering chemicals. It is a clear or white odorless material made from lysergic acid, which is found in a fungus that grows on rye and other Hallucinogens are split grains. into two categories: Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) comes from certain classic hallucinogens and types of mushrooms found in tropical and subtropical regions of South dissociative drugs. America, Mexico, and the United States. Peyote (mescaline) is a small, spineless cactus with mescaline as its main People use hallucinogens ingredient. Peyote can also be synthetic. in a wide variety of ways DMT (N,N-dimethyltryptamine) is a powerful chemical found naturally in some Amazonian plants. People can also make DMT in a lab. -
SENATE BILL No. 52
As Amended by Senate Committee Session of 2017 SENATE BILL No. 52 By Committee on Public Health and Welfare 1-20 1 AN ACT concerning the uniform controlled substances act; relating to 2 substances included in schedules I, II and V; amending K.S.A. 2016 3 Supp. 65-4105, 65-4107 and 65-4113 and repealing the existing 4 sections. 5 6 Be it enacted by the Legislature of the State of Kansas: 7 Section 1. K.S.A. 2016 Supp. 65-4105 is hereby amended to read as 8 follows: 65-4105. (a) The controlled substances listed in this section are 9 included in schedule I and the number set forth opposite each drug or 10 substance is the DEA controlled substances code which has been assigned 11 to it. 12 (b) Any of the following opiates, including their isomers, esters, 13 ethers, salts, and salts of isomers, esters and ethers, unless specifically 14 excepted, whenever the existence of these isomers, esters, ethers and salts 15 is possible within the specific chemical designation: 16 (1) Acetyl fentanyl (N-(1-phenethylpiperidin-4-yl)- 17 N-phenylacetamide)......................................................................9821 18 (2) Acetyl-alpha-methylfentanyl (N-[1-(1-methyl-2-phenethyl)-4- 19 piperidinyl]-N-phenylacetamide)..................................................9815 20 (3) Acetylmethadol.............................................................................9601 21 (4) AH-7921 (3.4-dichloro-N-[(1- 22 dimethylaminocyclohexylmethyl]benzamide)...............................9551 23 (4)(5) Allylprodine...........................................................................9602 -
Soma and Haoma: Ayahuasca Analogues from the Late Bronze Age
ORIGINAL ARTICLE Journal of Psychedelic Studies 3(2), pp. 104–116 (2019) DOI: 10.1556/2054.2019.013 First published online July 25, 2019 Soma and Haoma: Ayahuasca analogues from the Late Bronze Age MATTHEW CLARK* School of Oriental and African Studies (SOAS), Department of Languages, Cultures and Linguistics, University of London, London, UK (Received: October 19, 2018; accepted: March 14, 2019) In this article, the origins of the cult of the ritual drink known as soma/haoma are explored. Various shortcomings of the main botanical candidates that have so far been proposed for this so-called “nectar of immortality” are assessed. Attention is brought to a variety of plants identified as soma/haoma in ancient Asian literature. Some of these plants are included in complex formulas and are sources of dimethyl tryptamine, monoamine oxidase inhibitors, and other psychedelic substances. It is suggested that through trial and error the same kinds of formulas that are used to make ayahuasca in South America were developed in antiquity in Central Asia and that the knowledge of the psychoactive properties of certain plants spreads through migrants from Central Asia to Persia and India. This article summarizes the main arguments for the botanical identity of soma/haoma, which is presented in my book, The Tawny One: Soma, Haoma and Ayahuasca (Muswell Hill Press, London/New York). However, in this article, all the topics dealt with in that publication, such as the possible ingredients of the potion used in Greek mystery rites, an extensive discussion of cannabis, or criteria that we might use to demarcate non-ordinary states of consciousness, have not been elaborated. -
CONTROLLED SUBSTANCE, DRUG, DEVICE and COSMETIC ACT - SCHEDULE I CONTROLLED SUBSTANCES Act of Jun
CONTROLLED SUBSTANCE, DRUG, DEVICE AND COSMETIC ACT - SCHEDULE I CONTROLLED SUBSTANCES Act of Jun. 23, 2011, P.L. 36, No. 7 Cl. 35 Session of 2011 No. 2011-7 SB 1006 AN ACT Amending the act of April 14, 1972 (P.L.233, No.64), entitled "An act relating to the manufacture, sale and possession of controlled substances, other drugs, devices and cosmetics; conferring powers on the courts and the secretary and Department of Health, and a newly created Pennsylvania Drug, Device and Cosmetic Board; establishing schedules of controlled substances; providing penalties; requiring registration of persons engaged in the drug trade and for the revocation or suspension of certain licenses and registrations; and repealing an act," further providing for Schedule I controlled substances. The General Assembly of the Commonwealth of Pennsylvania hereby enacts as follows: Section 1. Section 4(1) of the act of April 14, 1972 (P.L.233, No.64), known as The Controlled Substance, Drug, Device and Cosmetic Act, amended November 24, 1999 (P.L.894, No.55), is amended to read: Section 4. Schedules of Controlled Substances.--The following schedules include the controlled substances listed or to be listed by whatever official name, common or usual name, chemical name, or trade name designated. (1) Schedule I--In determining that a substance comes within this schedule, the secretary shall find: a high potential for abuse, no currently accepted medical use in the United States, and a lack of accepted safety for use under medical supervision. The following controlled substances are included in this schedule: (i) Any of the following opiates, including their isomers, esters, ethers, salts, and salts of isomers, esters, and ethers, unless specifically excepted, whenever the existence of such isomers, esters, ethers and salts is possible within the specific chemical designation: 1. -
2. Study Report Synopsis of Protocol 7164-L-01
Clinical Trial Report - Study 7164L01 Pholcodine 2. STUDY REPORT SYNOPSIS OF PROTOCOL 7164-L-01 Name of Sponsor Company Individual Study Table referring to the dossier (for National Authority use only) Zambon Group S.p.A. PART: [……] Name of finished product VOLUME: [……] Name of active ingredient Pholcodine PAGE: [……] Title of the study A MULTICENTER, RANDOMIZED, PARALLEL GROUP, CONTROLLED, DOUBLE-BLIND STUDY TO EVALUATE EFFICACY AND SAFETY OF PHOLCODINE AS ANTITUSSIVE AGENT VS DEXTROMETORPHAN IN NON-PRODUCTIVE COUGH Principal Investigators and study sites The study took place in Italy and involved 20 recruiters General Practitioners. 101: M. Acciarresi (v. Ponti, Foligno, PG); 102: P. Bonifazi (v. Ponti, Foligno, PG); 103: R. Equinozzi (v. Roma 84/, Foligno, PG); 104: R. Falcinelli (v. Carducci 3, Montefalco, PG); 105: M. Montironi (v. Flaminia Km 182, Gualdo Tadino, PG), 106 L. Pisell (v. Arco di Druso 5, Spoleto, PG); 201 G. Amoretti (v. Repubblica 9, Imperia, IM); 202: A. Astorino, v. Cipressa 32, San Lorenzo al Mare, IM); 203: R. Buccelli (v. S. Antonio 11, Imperia, IM); 204: F. Dolmetta (v. Vignasse 68, San Lorenzo al Mare , IM); 205; G. Lanteri( v. Carducci 1, Imperia, IM); 206: A. Novaro (v. Nazionale 29, Imperia, IM); 207: M. Pinelli (v. Parini 34, Imperia, IM); 301 GL Balderi (v. Carducci 33, Marina di Pietrasanta, LU); 302: F. Bertuccelli (v. Leopardi 35, Viareggio, LU); 303: C. Bonin (v. Montemagno,2, Montemagno, LU); 304: PL Franceschi (v. Misericordia 89, Stiava, LU); 305: M. Pardini (v. Garibaldi 29, Viareggio, LU); 306: M. Pardini (v. Italica 70, Lido di Camaiore, LU); 307: A. -
Acupuncture and Traditional Chinese Medicine in the Treatment of Parkinson’S Disease
Schulz Capstone Acupuncture and Traditional Chinese Medicine In the Treatment of Parkinson’s Disease By Mary M. Schulz Presented in partial fulfillment for the Doctor of Acupuncture and Oriental Medicine Degree Capstone Advisors: Eric Tamrazian, M.D., Lawrence J. Ryan, Ph.D. Yo San University April 2014 Schulz Capstone Approvals Signatures Page This Capstone Project has been reviewed and approved by: _________________________________________ __5/4/2015__________ Eric Tamrazian, M.D., Capstone Project Advisor Date _________________________________________ _5/4/2015____________ Lawrence Ryan, Ph.D., Capstone Project Advisor Date _________________________________________ __5/4/2015___________ Don Lee, L.Ac., Specialty Chair Date _________________________________________ __5/4/2015____________ Andrea Murchison, DAOM, L.Ac., Program Director Date 2 Schulz Capstone ABSTRACT Research has shown that arresting progress of disease by early intervention is paramount to preventing its progression. Recent studies reveal early signs and symptoms of Parkinson’s Disease (PD) to be anosmia (loss of smell), constipation and REM Sleep Disorder and are confirmed to develop up to ten years prior to the more well known, and classical diagnosed, motor symptoms of resting tremor, bradykinesia, and rigidity. Motor symptoms in PD appear as a result of the progressive loss of dopamine in the basal ganglia, particularly within the substantia nigra, pars compacta region. By the time PD motor symptoms develop and are diagnosed, an estimated 80% of striatal nerve terminals and 60% of dopaminergic neurons have already been lost. Modern biomedical intervention for motor symptoms primarily focuses on the use of the pharmaceutical combination of carbidopa/levodopa (L-Dopa therapy). It is well known L- Dopa therapy has a waning period after 3 to 5 years of use, with up to 50% of patients developing dyskinesias as a result of this treatment. -
DEMAND REDUCTION a Glossary of Terms
UNITED NATIONS PUBLICATION Sales No. E.00.XI.9 ISBN: 92-1-148129-5 ACKNOWLEDGEMENTS This document was prepared by the: United Nations International Drug Control Programme (UNDCP), Vienna, Austria, in consultation with the Commonwealth of Health and Aged Care, Australia, and the informal international reference group. ii Contents Page Foreword . xi Demand reduction: A glossary of terms . 1 Abstinence . 1 Abuse . 1 Abuse liability . 2 Action research . 2 Addiction, addict . 2 Administration (method of) . 3 Adverse drug reaction . 4 Advice services . 4 Advocacy . 4 Agonist . 4 AIDS . 5 Al-Anon . 5 Alcohol . 5 Alcoholics Anonymous (AA) . 6 Alternatives to drug use . 6 Amfetamine . 6 Amotivational syndrome . 6 Amphetamine . 6 Amyl nitrate . 8 Analgesic . 8 iii Page Antagonist . 8 Anti-anxiety drug . 8 Antidepressant . 8 Backloading . 9 Bad trip . 9 Barbiturate . 9 Benzodiazepine . 10 Blood-borne virus . 10 Brief intervention . 11 Buprenorphine . 11 Caffeine . 12 Cannabis . 12 Chasing . 13 Cocaine . 13 Coca leaves . 14 Coca paste . 14 Cold turkey . 14 Community empowerment . 15 Co-morbidity . 15 Comprehensive Multidisciplinary Outline of Future Activities in Drug Abuse Control (CMO) . 15 Controlled substance . 15 Counselling and psychotherapy . 16 Court diversion . 16 Crash . 16 Cross-dependence . 17 Cross-tolerance . 17 Custody diversion . 17 Dance drug . 18 Decriminalization or depenalization . 18 Demand . 18 iv Page Demand reduction . 19 Dependence, dependence syndrome . 19 Dependence liability . 20 Depressant . 20 Designer drug . 20 Detoxification . 20 Diacetylmorphine/Diamorphine . 21 Diuretic . 21 Drug . 21 Drug abuse . 22 Drug abuse-related harm . 22 Drug abuse-related problem . 22 Drug policy . 23 Drug seeking . 23 Drug substitution . 23 Drug testing . 24 Drug use . -
Additional Requested Drugs
PART 1 PART PATIENT PRESCRIBED MEDICATIONS: o ACTIQ o DESIPRAMINE o HYDROCODONE o MORPHINE o ROXICODONE o ADDERALL o DIAZEPAM* o HYDROMORPHONE o MS CONTIN o SOMA o ALPRAZOLAM* o DILAUDID o IMIPRAMINE o NEURONTIN o SUBOXONE o AMBIEN o DURAGESIC o KADIAN o NORCO o TEMAZEPAM o AMITRIPTYLINE o ELAVIL o KETAMINE o NORTRIPTYLINE o TRAMADOL* o ATIVAN o EMBEDA o KLONOPIN o NUCYNTA o TYLENOL #3 o AVINZA o ENDOCET o LORAZEPAM o OPANA o ULTRAM o BUPRENEX o FENTANYL* o LORTAB o OXYCODONE o VALIUM o BUPRENORPHINE o FIORICET o LORCET o OXYCONTIN o VICODIN o BUTRANS o GABAPENTIN o LYRICA o PERCOCET o XANAX o CLONAZEPAM* o GRALISE o METHADONE o RESTORIL TO RE-ORDER CALL RITE-PRINT 718/384-4288 RITE-PRINT CALL TO RE-ORDER ALLIANCE DRUG PANEL (SEE BELOW) o ALCOHOL o BARBITURATES o ILLICITS o MUSCLE RELAXANTS o OPIODS (SYN) ETHANOL PHENOBARBITAL 6-MAM (HEROIN)* CARISPRODOL FENTANYL* BUTABARBITAL a-PVP MEPROBAMATE MEPERIDINE o AMPHETAMINES SECOBARBITAL BENZOYLECGONINE NALOXONE AMPHETAMINE PENTOBARBITAL LSD o OPIODS (NATURAL) METHADONE* METHAMPHETAMINE BUTALBITAL MDA CODEINE METHYLPHENEDATE MDEA MORPHINE o NON-OPIOID o BENZODIAZEPINES MDMA ANALGESICS o OPIODS (SEMI-SYN) o ANTICONVULSIVES ALPRAZOLAM* MDPV TRAMADOL BUPRENORPHINE* GABAPENTIN CLONAZEPAM* MEPHEDRONE TAPENTADOL DIHROCODEINE PREGABALIN DIAZEPAM METHCATHINONE DESOMORPHINE o NON-BENZODIAZEPINE FLUNITRAZEPAM* METHYLONE HYDROCODONE HYPNOTIC o ANTIDEPRESSANTS FLURAZEPAM* PCP HYDROMORPHONE ZOLPIDEM* AMITRIPTYLINE LORAZEPAM THC* OXYCODONE DOXEPIN OXAZEPAM CBD ° OXYMORPHONE o MISCELLANEOUS DRUGS IMIPRIMINE