Effects of GM-CSF on Dendritic Cells and Regulatory T Cells in Parkinson’S Disease Patients and Models of Parkinson’S Disease

Total Page:16

File Type:pdf, Size:1020Kb

Effects of GM-CSF on Dendritic Cells and Regulatory T Cells in Parkinson’S Disease Patients and Models of Parkinson’S Disease University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Fall 12-15-2017 Effects of GM-CSF on Dendritic Cells and Regulatory T cells in Parkinson’s Disease Patients and Models of Parkinson’s Disease Charles Schutt University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Immunopathology Commons, and the Other Neuroscience and Neurobiology Commons Recommended Citation Schutt, Charles, "Effects of GM-CSF on Dendritic Cells and Regulatory T cells in Parkinson’s Disease Patients and Models of Parkinson’s Disease" (2017). Theses & Dissertations. 236. https://digitalcommons.unmc.edu/etd/236 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. Effects of GM-CSF on Dendritic Cells and Regulatory T cells in Parkinson’s Disease Patients and Models of Parkinson’s Disease By Charles Schutt A Dissertation Presented to the Faculty of the Graduate College in the University of Nebraska in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Pharmacology and Experimental Neuroscience Under the Supervision of Professor R. Lee Mosley University of Nebraska Medical Center Omaha, Nebraska November, 2017 Supervisory Committee: Howard E. Gendelman M.D. Larisa Y. Poluektova, M.D., Ph.D. Tammy L Kielian Ph. D. Joyce C. Solheim Ph. D. ii ACKNOWLEDGMENTS There are too many people who have contributed to my graduate studies to acknowledge all of them, but several people need to be named. First, I would like to thank my advisor Dr. R. Lee Mosley for giving me the opportunity to pursue my careers goals. I am grateful for his time, patience, support, and guidance over the years spent in his laboratory. Through his efforts, I think I have become a better student, scientist, and person. I would also like to acknowledge my committee members, Drs. Howard, Gendelman, Tammy Kielian, Larisa Poluektova, and Joyce Solheim for their time, attention, and guidance. I am grateful for their comments, criticisms, encouragement, and support. This support is instrumental for my development as a student and a scientist. Especially, I would like to thank Dr. Gendelman for his continued financial support for these projects, especially for allowing me to play a role in the clinical trial. I would like to acknowledge all the past and current members of the Drs. Mosley and Gendelman laboratories. I would like to thank Dr. Kristi Anderson, Bhagya Dyavar Shetty, Dr. Katherine Estes, Dr. Lisa Kosloski, Dr. Elizabeth Kosmacek, Max Kuenstling, Yamen Lu, Dr. Jatin Machhi, Krista Namminga, Katherine Olson, Adam Szlachetka DDS, Rebecca Wilshusen, and Dr. Yuning Zhang for all their help planning, executing and analyzing experiments. I was grateful for the opportunity to learn from and work with each of you. I would also like to thank summer students Anna Miller, Katie Schueth, Katie Zheng, Sarah Whitmire, Chaoran Ji, Keith Prive, and X. Isabel Heifetz Ament for all their hard work and help generating some of the included data and for the opportunity I was given to teach them and improve my ability to instruct trainees. I would also like to acknowledge Dr. Shilpa Buch’s laboratory for their help performing luminex assays, Dr. Steven Bonesera’s laboratory for the use of their thermocycler for all PCR array iii experiments, the University of Nebraska Medical Center Flow Cytometry Research Core Facility, and graduate students Sam Johnson, Johnathan Herskovitz, and Nathan Smith for their help characterizing bone marrow dendritic cells. I would also like to thank the faculty and staff in the Pharmacology and Experimental Neuroscience Department. I am grateful for their help in navigating my time at the Nebraska Medical Center and for delivering lectures and facilitating my research projects. There are a great number of people who played a role in my development as a student and a scientist that I would like to acknowledge. I would like to thank Mr. Mark Stallman and Mr. Jerry Van Dyck, two high school science teachers who were instrumental turning an interest in science into a career path. I would like to thank Dr. Donald Stratton and Dr. Dean Hoganson, my two advisors at Drake University who guided me toward my goal of going to graduate school. I would like to thank the members of the Forage Additives Research Group at Pioneer Hi-Bred International who gave me my first research experiences which still shape how I plan and execute experiments. I would like to thank Dr. Jason Bartz, my advisor at Creighton University during my Master’s thesis work as well as Dr. Anthony Kincaid, Dr. Ron Shikiya, Dr. Jacob Ayers, Michelle Kramer, Dr. Sam Saunders, Dr. Qi Yuan, Dr. Katie Langenfeld, Melissa Clouse, Tom Eckland, and Maria Christensen for their guidance, patience, and support during my time at Creighton University and beyond. The lessons learned at Creighton University have shaped me as a person and as a scientist. Lastly, I would like to acknowledge the Institute for Environmental Health for giving me a chance to develop as a leader and a manager. Lastly, I would like to thank my parents, Robert and Kathi Schutt, my sister, Rebecca Jackson, my brother-in-law, Joshua Jackson, my nephew, Thomas Jackson, iv my nieces, Tabitha Jackson and Miriam Jackson, and countless other family members and friends for their encouragement, support and prayers. They have meant the world to me. This dissertation is dedicated to Sue Schutt and Steve Russo. Your love and support has been missed. v ABSTRACT Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. Pathologically, loss of nigrostriatal neurons and dopamine released by these neurons are responsible for PD motor symptoms. During PD, activation of resident microglia and infiltrating lymphocytes leads to progressive neuroinflammation and reduction in the number and function of regulatory immune cells. Neuroinflammation contributes to progressive neurodegeneration and declining motor function. Reducing neuroinflammation is the target for novel PD therapeutics. Our goal is to increase the number and function of regulatory T cells (Tregs) in PD patients to decrease neuroinflammation and reduce PD symptoms. One potential therapy is granulocyte- macrophage colony stimulating factor (GM-CSF) which induces Tregs, decreases neuroinflammation, and protects dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) model of PD. In a Phase 1 trial, recombinant human GM-CSF (sargramostim) was well- tolerated in PD patients, increased Treg frequency and function, and improved motor function. Expression of helper T cell-related genes in CD4+CD25- cells in blood was determined by PCR array. Sargramostim increased expression of both pro- and anti- inflammatory cytokine genes supporting the notion that sargramostim alters the immune response by increasing the expression of immune mediators, including anti-inflammatory genes. As T cells do not express GM-CSF receptors and to explore myeloid-mediated Treg induction, GM-CSF-induced bone marrow-derived dendritic cells were further cultured with GM-CSF and/or stimulated with nitrated α-synuclein. Continued culture with GM-CSF yielded little change in dendritic cells as determined by surface co-stimulatory molecule expression, and proinflammatory cytokine expression and release; however, vi their ability to induce Tregs was diminished. In contrast, stimulation with nitrated α- synuclein, regardless of continued culture in GM-CSF, increases proinflammatory gene expression by dendritic cells, but showed variable effects on Treg induction. In the MPTP model, adoptive transfer of GM-CSF-induced tolerogenic dendritic cells protect dopaminergic neurons in the substantia nigra, decrease neuroinflammation, and increase splenic Tregs in a fashion similar to direct administration of GM-CSF. In conclusion, GM-CSF induces Tregs in part by acting on dendritic cells to change their response to stimulation. The data suggest that GM-CSF may not suppress neuroinflammation directly, but rather alters the immune response with increased expression of anti-inflammatory mediators and induction of Tregs. Moreover, the introduction of nitrated α-synuclein and possibly other misfolded proteins diminishes homeostasis and Treg induction. vii TABLE OF CONTENTS ACKNOWLEDGMENTS ............................................................................................... ii ABSTRACT .................................................................................................................. v LIST OF FIGURES ..................................................................................................... ix LIST OF TABLES ........................................................................................................ xi LIST OF ABBREVIATIONS ........................................................................................ xii CHAPTER 1 ................................................................................................................... 1 INTRODUCTION ........................................................................................................ 1 PARKSINSON’S DISEASE ..................................................................................... 1 NEUROINFLAMATION AND PARKINSON’S DISEASE
Recommended publications
  • Therapeutic Class Overview Colony Stimulating Factors
    Therapeutic Class Overview Colony Stimulating Factors Therapeutic Class Overview/Summary: This review will focus on the granulocyte colony stimulating factors (G-CSFs) and granulocyte- macrophage colony stimulating factors (GM-CSFs).1-5 Colony-stimulating factors (CSFs) fall under the naturally occurring glycoprotein cytokines, one of the main groups of immunomodulators.6 In general, these proteins are vital to the proliferation and differentiation of hematopoietic progenitor cells.6-8 The G- CSFs commercially available in the United States include pegfilgrastim (Neulasta®), filgrastim (Neupogen®), filgrastim-sndz (Zarxio®), and tbo-filgrastim (Granix®). While filgrastim-sndz and tbo- filgrastim are the same recombinant human G-CSF as filgrastim, only filgrastim-sndz is considered a biosimilar drug as it was approved through the biosimilar pathway. At the time tbo-filgrastim was approved, a regulatory pathway for biosimilar drugs had not yet been established in the United States and tbo-filgrastim was filed under its own Biologic License Application.9 Only one GM-CSF is currently available, sargramostim (Leukine). These agents are Food and Drug Administration (FDA)-approved for a variety of conditions relating to neutropenia or for the collection of hematopoietic progenitor cells for collection by leukapheresis.1-5 Due to the pathway taken, tbo-filgrastim does not share all of the same indications as filgrastim and these two products are not interchangeable. It is important to note that although filgrastim-sndz is a biosimilar product, and it was approved with all the same indications as filgrastim at the time, filgrastim has since received FDA-approval for an additional indication that filgrastim-sndz does not have, to increase survival in patients with acute exposure to myelosuppressive doses of radiation.1-3A complete list of indications for each agent can be found in Table 1.
    [Show full text]
  • Sargramostim (Leukine®)
    Policy Medical Policy Manual Approved Revision: Do Not Implement until 8/31/21 Sargramostim (Leukine®) NDC CODE(S) 71837-5843-XX LEUKINE 250MCG Solution Reconstituted (PARTNER THERAPEUTICS) DESCRIPTION Sargramostim is a recombinant human granulocyte-macrophage colony stimulating factor (rGM-CSF) produced by recombinant DNA technology in a yeast (S. cerevisiae) expression system. Like endogenous GM-CSF, rGM-CSF is a hematopoietic growth factor which stimulates proliferation and differentiation of hematopoietic progenitor cells in the granulocyte-macrophage pathways which include neutrophils, monocytes/macrophages and myeloid-derived dendritic cells. It is also capable of activating mature granulocytes and macrophages. Various cellular responses such as division, maturation and activation are induced by GM-CSF binding to specific receptors expressed on the cell surface of target cells. POLICY Sargramostim for the treatment of the following is considered medically necessary: o Acute myelogenous leukemia following induction or consolidation chemotherapy o Bone Marrow Transplantation (BMT) failure or Engraftment Delay o Individuals acutely exposed to myelosuppressive doses of radiation (Hematopoietic Subsyndrome of Acute Radiation Syndrome [H-ARS]) o Myeloid reconstitution after autologous or allogeneic bone marrow transplant (BMT) o Peripheral Blood Progenitor Cell (PBPC) mobilization and transplant Sargramostim for the treatment of chemotherapy-induced febrile neutropenia is considered medically necessary if the medical appropriateness
    [Show full text]
  • Acupuncture and Traditional Chinese Medicine in the Treatment of Parkinson’S Disease
    Schulz Capstone Acupuncture and Traditional Chinese Medicine In the Treatment of Parkinson’s Disease By Mary M. Schulz Presented in partial fulfillment for the Doctor of Acupuncture and Oriental Medicine Degree Capstone Advisors: Eric Tamrazian, M.D., Lawrence J. Ryan, Ph.D. Yo San University April 2014 Schulz Capstone Approvals Signatures Page This Capstone Project has been reviewed and approved by: _________________________________________ __5/4/2015__________ Eric Tamrazian, M.D., Capstone Project Advisor Date _________________________________________ _5/4/2015____________ Lawrence Ryan, Ph.D., Capstone Project Advisor Date _________________________________________ __5/4/2015___________ Don Lee, L.Ac., Specialty Chair Date _________________________________________ __5/4/2015____________ Andrea Murchison, DAOM, L.Ac., Program Director Date 2 Schulz Capstone ABSTRACT Research has shown that arresting progress of disease by early intervention is paramount to preventing its progression. Recent studies reveal early signs and symptoms of Parkinson’s Disease (PD) to be anosmia (loss of smell), constipation and REM Sleep Disorder and are confirmed to develop up to ten years prior to the more well known, and classical diagnosed, motor symptoms of resting tremor, bradykinesia, and rigidity. Motor symptoms in PD appear as a result of the progressive loss of dopamine in the basal ganglia, particularly within the substantia nigra, pars compacta region. By the time PD motor symptoms develop and are diagnosed, an estimated 80% of striatal nerve terminals and 60% of dopaminergic neurons have already been lost. Modern biomedical intervention for motor symptoms primarily focuses on the use of the pharmaceutical combination of carbidopa/levodopa (L-Dopa therapy). It is well known L- Dopa therapy has a waning period after 3 to 5 years of use, with up to 50% of patients developing dyskinesias as a result of this treatment.
    [Show full text]
  • Regenerative Mechanisms and Novel Therapeutic Approaches
    brain sciences Review Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches Rashad Hussain 1,*, Hira Zubair 2, Sarah Pursell 1 and Muhammad Shahab 2,* 1 Center for Translational Neuromedicine, University of Rochester, NY 14642, USA; [email protected] 2 Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; [email protected] * Correspondence: [email protected] (R.H.); [email protected] (M.S.); Tel.: +1-585-276-6390 (R.H.); +92-51-9064-3014 (M.S.) Received: 13 July 2018; Accepted: 12 September 2018; Published: 15 September 2018 Abstract: Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches. Keywords: neuroregeneration; mechanisms; therapeutics; neurogenesis; intra-cellular signaling 1. Introduction Regeneration processes within the nervous system are referred to as neuroregeneration. It includes, but is not limited to, the generation of new neurons, axons, glia, and synapses. It was not considered possible until a couple of decades ago, when the discovery of neural precursor cells in the sub-ventricular zone (SVZ) and other regions shattered the dogma [1–4].
    [Show full text]
  • Sargramostim (Leukine) Reference Number: CP.PHAR.295 Effective Date: 12/16 Coding Implications Last Review Date: 10/16 Revision Log
    Clinical Policy: Sargramostim (Leukine) Reference Number: CP.PHAR.295 Effective Date: 12/16 Coding Implications Last Review Date: 10/16 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description The intent of the criteria is to ensure that patients follow selection elements established by Centene® clinical policy for sargramostim (Leukine® injection, for subcutaneous or intravenous use). Policy/Criteria It is the policy of health plans affiliated with Centene Corporation® that Leukine is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Acute Myeloid Leukemia (must meet all): 1. Leukine is prescribed for use following induction therapy for acute myeloid leukemia (AML); 2. Member has none of the following contraindications: a. Excessive leukemic myeloid blasts in the bone marrow/peripheral blood (≥ 10%); b. Known hypersensitivity to granulocyte-macrophage colony stimulating factor (GM-CSF), yeast-derived products or any component of the product; c. Concomitant use with chemotherapy/radiotherapy. Approval duration: 6 months B. Peripheral Blood Progenitor Cell Collection and Transplantation (must meet all): 1. Leukine is prescribed for either of the following: a. Mobilization of autologous hematopoietic progenitor cells into the peripheral blood for collection by leukapheresis in anticipation of transplantation after myeloablative chemotherapy; b. Following myeloablative chemotherapy and transplantation of autologous hematopoietic progenitor cells; 2. Member has none of the following contraindications: a. Excessive leukemic myeloid blasts in the bone marrow/ peripheral blood (≥ 10%); b. Known hypersensitivity to GM-CSF, yeast-derived products or any component of the product; c. Concomitant use with chemotherapy/radiotherapy. Approval duration: 6 months C.
    [Show full text]
  • Autoimmune Pulmonary Alveolar Proteinosis in an Adolescent Successfully Treated with Inhaled Rhgm-CSF
    Respiratory Medicine Case Reports 23 (2018) 167–169 Contents lists available at ScienceDirect Respiratory Medicine Case Reports journal homepage: www.elsevier.com/locate/rmcr Case report Autoimmune pulmonary alveolar proteinosis in an adolescent successfully T treated with inhaled rhGM-CSF (molgramostim) ∗ Marta E. Gajewskaa, , Sajitha S. Sritharana, Eric Santoni-Rugiub, Elisabeth M. Bendstrupa a Department of Respiratory Diseases and Allergology, Aarhus University Hospital, Denmark b Department of Pathology, Copenhagen University Hospital, Denmark ARTICLE INFO ABSTRACT Keywords: Autoimmune pulmonary alveolar proteinosis (aPAP) is a rare parenchymal lung disease characterized by ac- Pulmonary alveolar proteinosis cumulation of surfactant in the airways with high levels of granulocyte-macrophage colony stimulating factor Granulocyte-macrophage colony-stimulating (GM-CSF) antibodies in blood. Disease leads to hypoxemic respiratory failure. Whole lung lavage (WLL) is factor considered the first line therapy, but procedure can be quite demanding, specifically for children. Recently GM-SCF alternative treatment options with inhaled GM-CSF have been described but no consensus about the standard Molgramostim treatment exists. We here describe a unique case of a 14-year-old patient who was successfully treated with WLL Inhalation therapy and subsequent inhalations with molgramostim – new recombinant human GM-CSF (rhGM-CSF). 1. Introduction eosinophilic on hematoxylin-and eosin staining (HE) and positive with the periodic acid-Schiff stain and diastase-resistant (PAS + D), which is Pulmonary alveolar proteinosis (PAP) is a rare parenchymal lung considered characteristic for PAP (Fig. 2). Blood assays showed ele- disease characterized by accumulation of surfactant in the airways that vated high levels of GM-CSF antibodies. There was no suspicion of leads to hypoxemic respiratory failure [1–3].
    [Show full text]
  • Leukine® (Sargramostim)
    Leukine® (sargramostim) (Subcutaneous/Intravenous) Document Number: MODA-0237 Last Review Date: 04/06/2021 Date of Origin: 10/17/2008 Dates Reviewed: 06/2009, 12/2009, 06/2010, 07/2010, 09/2010, 12/2010, 03/2011, 06/2011, 09/2011, 12/2011, 03/2012, 06/2012, 09/2012, 12/2012, 03/2013, 06/2013, 09/2013, 12/2013, 03/2014, 06/2014, 09/2014, 12/2014, 03/2015, 05/2015, 08/2015, 11/2015, 02/2016, 05/2016, 08/2016, 11/2016, 02/2017, 05/2017, 08/2017, 11/2017, 02/2018, 05/2018, 04/2019, 04/2020, 04/2021 I. Length of Authorization High Risk Neuroblastoma: − When used in combination with dinutuximab, coverage will be provided for five months and may not be renewed. − When used in combination with naxitamab, coverage will be provided for six months and may be renewed. All other indications: Coverage will be provided for four months and may be renewed. II. Dosing Limits A. Quantity Limit (max daily dose) [NDC Unit]: − Leukine 250 mcg vial: 28 vials per 14 days − Leukine 500 mcg vial: 14 vials per 14 days B. Max Units (per dose and over time) [HCPCS Unit]: • 15 billable units per day (acute radiation syndrome) • 10 billable units per day on days 1 through 14 of cycles 1, 3 and 5 (cycle length is 24 days) for a maximum of 5 cycles only (high-risk neuroblastoma in combination with dinutuximab) • 10 billable units per day for 10 days of each 28-day cycle for six cycles followed by subsequent cycles every 8 weeks thereafter (high-risk neuroblastoma in combination with naxitamab) • 10 billable units per day (all other indications) 1-11 III.
    [Show full text]
  • NIDA Drug Supply Program Catalog, 25Th Edition
    RESEARCH RESOURCES DRUG SUPPLY PROGRAM CATALOG 25TH EDITION MAY 2016 CHEMISTRY AND PHARMACEUTICS BRANCH DIVISION OF THERAPEUTICS AND MEDICAL CONSEQUENCES NATIONAL INSTITUTE ON DRUG ABUSE NATIONAL INSTITUTES OF HEALTH DEPARTMENT OF HEALTH AND HUMAN SERVICES 6001 EXECUTIVE BOULEVARD ROCKVILLE, MARYLAND 20852 160524 On the cover: CPK rendering of nalfurafine. TABLE OF CONTENTS A. Introduction ................................................................................................1 B. NIDA Drug Supply Program (DSP) Ordering Guidelines ..........................3 C. Drug Request Checklist .............................................................................8 D. Sample DEA Order Form 222 ....................................................................9 E. Supply & Analysis of Standard Solutions of Δ9-THC ..............................10 F. Alternate Sources for Peptides ...............................................................11 G. Instructions for Analytical Services .........................................................12 H. X-Ray Diffraction Analysis of Compounds .............................................13 I. Nicotine Research Cigarettes Drug Supply Program .............................16 J. Ordering Guidelines for Nicotine Research Cigarettes (NRCs)..............18 K. Ordering Guidelines for Marijuana and Marijuana Cigarettes ................21 L. Important Addresses, Telephone & Fax Numbers ..................................24 M. Available Drugs, Compounds, and Dosage Forms ..............................25
    [Show full text]
  • List of Narcotic Substances Circulation of Which Is Restricted in Uzbekistan
    List of narcotic substances circulation of which is restricted in Uzbekistan 1. 2C-B(4-bromo-2,5-dimethoxyphenethylamine) 2. 3-methylfentanyl 3. 3-methylthiofentanyl 4. 3-Monoacetylmorphine 5. 4-methylaminorex 6. 6- Monoacetylmorphine 7. Acetorphine 8. Acetyl Dihydrocodeine 9. Acetyl-alfametilfentanil 10. Acetylated opium 11. Acetylcodeine 12. Acetylmethadol 13. Alfametadol 14. Alfatsetilmetadol 15. all fungi that contain Psilocine and Psilocybine 16. Allylprodine 17. Alpha Methylfentanyl 18. Alpha Metiltiofentanil 19. Alphaprodine 20. Anileridin 21. Benzethidine 22. Benzylmorphine 23. Betacetylmethadol 24. Betahydroxyfentanyl 25. Betameprodine 26. Betamethadol 27. Betaprodine 28. Bezitramide 29. Cannabis oil (hashish oil) 30. Cannabis, marihuana 31. Cathine ((+)-norpseudoephedrine) 32. Cathinone (l-alpha-aminopropiofenon) 33. Clonitazene 34. Cocaine 35. Codoxime 36. d- Methadone 37. DB [L-(3,4 - methylenedioxyphenyl) -2 butanamine] 38. Desmethylprodine; MPPP (1-methyl-4-phenyl-4-propionoxypiperidine) 39. Desomorphine 40. DET (N,N-diethyltryptamine) 41. Dexamphetamine 42. Diampromide 43. Diethyl phosphate 44. Diethylthiambutene 45. Dihydromorphine 46. Dimenoxadol 47. Dimepheptanol 48. Dimethylthiambutene 49. Dioxaphetyl butyrate 50. Diphenoxine 51. Dipipanone 52. DMA (2,5-dimethoxyamphetamine) 53. DMGP (dimetilgeptilpiran) 54. DMT (dimethyltryptamine) 55. DOB (d, L-2,5-dimethoxy-4-bromo-amphetamine) 56. DOC (d, L-2,5-dimethoxy-4-chloro-amphetamine) 57. DOET (2,5-dimethoxy-4-ethylamphetamine) 58. Drotebanol 59. Ecgonine 60. Ephedrone 61. Ethylmethylthiambutene 62. Eticyclidine 63. Etonitazene 64. Etorphine 65. Etoxeridine 66. Etryptamine 67. Furethidine 68. Hashish (Anasha, cannabis resin) 69. Heroin (Diacetylmorphine) 70. Hydrocodone 71. Hydrocodone phosphate 72. Hydromorphinol 73. Hydromorphone 74. Isomethadone 75. Ketobemidone 76. Khat 77. L- Methadone 78. Levomethorphan 79. Levomoramide 80. Levophenacylmorphan 81. Levorphanol 82. Lysergic acid and its preparations, that include d-Lysergide (LSD, LSD-25) 83.
    [Show full text]
  • Colony Stimulating Factors Medical Policy
    Medical benefit drug policies are a source for BCBSM and BCN medical policy information only. These documents are not to be used to determine benefits or reimbursement. Please reference the appropriate certificate or contract for benefit information. This policy may be updated and therefore subject to change. Effective Date: 08/12/2021 Colony Stimulating Factors (CSFs) Fulphila™ (pegfilgrastim-jmbd) Granix® (tbo-filgrastim) Leukine® (sargramostim) Neulasta® (pegfilgrastim) Neulasta On-Pro® (pegfilgrastim) Neupogen® (filgrastim) Nivestym™ (filgrastim-aafi) Nyvepria™ (pegfilgrastim-apgf) Udenyca™ (pegfilgrastim-cbqv) Zarxio® (filgrastim-sndz) ZiextenzoTM (pegfilgrastim-bmez) FDA approval: Various HCPCS: Fulphila – J3490, Granix – J1447, Leukine – J2820, Neupogen – J1442, Neulasta – J2505, Nivestym J3490, Nyvepria - Q5122, Udenyca – Q5111, Zarxio – J3490, Zietxenzo – Q5120, C9058 Benefit: Both Policy: Requests must be supported by submission of chart notes and patient specific documentation. A. Coverage of the requested drug is provided for FDA approved indications and when all the following are met: a. Primary prophylaxis of chemotherapy-induced febrile neutropenia is considered clinically appropriate when ALL of the following are met: i. The individual has a non-myeloid malignancy ii. Chemotherapy intent must include one of the following: 1. Curative intent (adjuvant treatment for early stage disease, for example) OR 2. Intent is survival prolongation, and the use of a different regimen or dose reduction would reduce the likelihood of
    [Show full text]
  • WO 2017/066488 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/066488 A l 2 0 April 2017 (20.04.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/485 (2006.01) A61P 25/04 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/5415 (2006.01) A61P 1/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 16/0569 10 HN, HR, HU, ID, IL, EST, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 13 October 2016 (13.10.201 6) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/240,965 13 October 2015 (13. 10.2015) US (84) Designated States (unless otherwise indicated, for every 62/300,014 25 February 2016 (25.02.2016) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: CHARLESTON LABORATORIES, INC.
    [Show full text]
  • ATP, 489 Absolute Configuration Benzomotphans, 204 Levotphanol
    Index AIDA, 495 Affinity labeling, analogs of (Cont.) cAMP, 409, 489 motphine,448 ATP, 409, 489 naltrexone, 449 [3H] ATP, 489 norlevotphanol,449 Absolute configuration normetazocine, 181 benzomotphans, 204 norpethidine, 232 levotphanol, 115 oripavine, 453 methadone and analogs, 316 oxymotphone, 449 motphine, 86 K-Agonists, 179,405,434 phenoperidine, 234 Aid in Interactive Drug Analysis, 495 piperazine derivatives, 399 [L-Ala2] dermotphin, 363 prodines and analogs, 272 [D-Ala, D-Leu] enkephalin (DADL), 68, 344 sinomenine, 28, 115 [D-Ala2 , Bugs] enkephalinamide, 347, 447 viminol, 400 [D-Ala2, Met'] enkephalinamide, 337, 346, Ac 61-91,360 371,489 Acetylcholine, 5, 407 [D-Ala2]leu-enkephalin, 344, 346, 348 Acetylcholine analogs, 186, 191 [D-Ala2] met-enkephalin, 348 l-Acetylcodeine, 32 [D-Ala2] enkephalins, 347 Acetylmethadols (a and (3) Alfentanil, 296 maintenance of addicts by a-isomer, 304, 309 (±)-I1(3-Alkylbenzomotphans, 167, 170 metabolism, 309 11(3-Alkylbenzomotphans, 204 N-allyl and N-CPM analogs, 310, 431 7-Alkylisomotphinans, 146 stereochemistry, 323 N-Alkylnorketobemidones, 431 synthesis, 309 N-Alkylnorpethidines, 233 X-ray crystallography, 327 N-Allylnormetazocine, 420 6-Acetylmotphine, receptor binding, 27 N-Allylnormotphine, 405 Acetylnormethadol, 323 N-Allylnorpethidine, 233 8(3-Acyldihydrocodeinones, 52 3-Allylprodines (a and (3), 256 14-Acyl-4,5-epoxymotphinans, 58 'H-NMR and stereochemistry, 256 7-Acylhydromotphones, 128 X-ray crystallography, 256 Addiction, 4 N-Allylnormetazocine, 420 Adenylate cyclase, 6, 409, 413, 424,
    [Show full text]