Mobilization of Peripheral Blood Stem Cells Following Myelosuppressive Chemotherapy: a Randomized Comparison of Filgrastim, Sarg

Total Page:16

File Type:pdf, Size:1020Kb

Mobilization of Peripheral Blood Stem Cells Following Myelosuppressive Chemotherapy: a Randomized Comparison of Filgrastim, Sarg Bone Marrow Transplantation (2001) 27, Suppl. 2, S23–S29 2001 Nature Publishing Group All rights reserved 0268–3369/01 $15.00 www.nature.com/bmt Mobilization of peripheral blood stem cells following myelosuppressive chemotherapy: a randomized comparison of filgrastim, sargramostim, or sequential sargramostim and filgrastim CH Weaver, KA Schulman and CD Buckner CancerConsultants.com Inc., Ketchum, ID; and Clinical Economics Research Unit, Duke University Medical Center, Durham, NC, USA Summary: the sequential regimen received higher numbers of CD34 cells and had faster platelet recovery with fewer Myelosuppressive chemotherapy is frequently used for patients requiring platelet transfusions than patients mobilization of autologous CD34+ progenitor cells into receiving peripheral blood stem cells mobilized by GM- the peripheral blood for subsequent collection and sup- CSF. In summary, G-CSF alone is superior to GM-CSF port of high-dose chemotherapy. The administration of alone for the mobilization of CD34+ cells and reduction myelosuppressive chemotherapy is typically followed by of toxicities following myelosuppressive chemotherapy. a myeloid growth factor and is associated with variable An economic analysis evaluating the cost-effectiveness CD34 cell yields and morbidity. The two most com- of these three effective schedules is ongoing at the time monly used myeloid growth factors for facilitation of of this writing. Bone Marrow Transplantation (2001) 27, CD34 cell harvests are granulocyte colony-stimulating Suppl. 2, S23–S29. factor (G-CSF) and granulocyte–macrophage colony- Keywords: filgrastim; sargramostim; stem cell mobiliz- stimulating factor (GM-CSF). We performed a ran- ation domized phase III clinical trial comparing G-CSF, GM- CSF, and sequential administration of GM-CSF and G- CSF following administration of myelosuppressive chemotherapy. We evaluated CD34 yields, morbidity, The two most commonly used myeloid growth factors for and cost-effectiveness of the three cytokine schedules. facilitation of peripheral blood stem cell (PBSC) harvests One hundred and fifty-six patients with multiple myel- in the USA are recombinant human granulocyte colony- 1–11 oma, breast cancer, or lymphoma received cyclophos- stimulating factor (rHuG-CSF; filgrastim) and recombi- phamide with either paclitaxel or etoposide and were nant human granulocyte–macrophage colony-stimulating randomized to receive G-CSF 6 ␮g/kg/day s.c., GM- factor (rHuGM-CSF; sargramostim). Sargramostim is a CSF 250 ␮g/m2/day s.c., or GM-CSF for 6 days followed glycosylated form of rHuGM-CSF derived from yeast and 12–15 by G-CSF until completion of the stem cell harvest. marketed in the USA and molgramostim is an unglyco- Compared with patients who received GM-CSF, sylated form of rHuGM-CSF derived from Escherichia coli 16–24 patients who received G-CSF had faster recovery of and only available for experimental use in the USA. absolute neutrophil count to 0.5 × 109 per liter (median It has not been determined in randomized prospective = trials whether there are major differences between myeloid of 11 vs 14 days, P 0.0001) with fewer patients requir- + ing red blood cell transfusions (P = 0.008); fewer growth factor regimens and CD34 cell yields and mor- patients with fever (18% vs 52%, P = 0.001); fewer hos- bidity following myelosuppressive chemotherapy (MC). pital admissions (20% vs 42%, P = 0.13); and less intra- There are reports of harvesting PBSC with MC followed 4–11,25 14,15,26 venous antibiotic therapy (24% vs 59%, P = 0.001). by filgrastim, sargramostim or the combination 12 Patients who received G-CSF also yielded more CD34 of sargramostim and filgrastim, but there have been no cells (median 7.1 vs 2.0 × 106 kg per apheresis, P = prospective, randomized studies comparing relative effec- 0.0001) and a higher percentage achieved 2.5 × 106 tiveness. A prospective randomized trial was performed to CD34 cells per kilogram (94% vs 78%, P = 0.21) and 5 compare the effects of filgrastim alone, sargramostim alone, × 6 = or the sequential administration of sargramostim and fil- 10 CD34 cells per kilogram (88% vs 53%, P 0.01) + or more CD34 cells per kilogram with fewer aphereses grastim on CD34 cell yields, hematological recovery, mor- (median 2 vs 3, P = 0.002) and fewer days of growth bidity, and resource utilization after the administration of factor treatment (median 12 vs 14, P = 0.0001). There MC. were no significant differences in outcomes between groups receiving G-CSF alone and the sequential regi- men. After high-dose chemotherapy, patients who had Patients and methods peripheral blood stem cells mobilized with G-CSF or This was a randomized, open-label trial of three schedules of myeloid growth factors administered after MC for the + Correspondence: Dr CH Weaver, CancerConsultants.com collection of CD34 PBSC. The MC regimen – cyclophos- Filgrastim and sargramostim for stem cell mobilization CH Weaver et al S24 phamide and etoposide (CE) or paclitaxel and cyclophos- Hematopoietic recovery and resource utilization phamide (PC) – was determined by the primary treatment protocol. The following three groups of patients were The effects of growth factor regimen on hematopoietic evaluated: (1) filgrastim alone: daily administration until recovery and resource utilization after MC are shown in PBSC harvests were completed; (2) sargramostim alone: Table 2. Four patients died of treatment-related causes 9 to 15 days after the first dose of MC without recovery of neutro- daily administration until PBSC harvests were completed; = = (3) sargramostim followed by filgrastim: daily adminis- phils or platelets (infection 2, multi-organ failure 2). tration of sargramostim for 5 days followed by daily filgra- stim until PBSC harvests were completed. CD34+ cell harvests and growth factor administration One hundred and fifty-six patients were evaluable for + toxicity of MC, 150 were evaluable for efficiency of PBSC The median number of CD34 cells collected for all 150 × 6 harvests, and 126 were evaluable for engraftment para- patients was 8.5 10 /kg (range, 0.02 to 96) in a median meters after a single course of high-dose chemotherapy of two aphereses (range, 1 to 9), with a median of 13 days of growth factor administration (range, 9 to 22). The results (HDC) and PBSC infusion. + Patients were treated in one of 39 medical centers in the of CD34 cell yields for the three groups of patients are USA under the care of 88 medical oncologists affiliated shown in Table 3. with the Clinical Trials Division of Response Oncology, Inc. (ROI), Memphis, TN.27 Chemotherapy for all phases CD34+ cell yields following PC or CE of treatment was administered and PBSC harvested in an Tables 4 and 5 summarize the differences observed in outpatient facility. Patients who required admission were + admitted to hospitals meeting the criteria of the American CD34 cell harvests between patients receiving MC Society of Clinical Oncology/American Society of Hema- consisting of PC or CE. tology Guidelines for Stem Cell Transplantation.28 2 MC consisted of cyclophosphamide (4 g/m ) on day 1 Hematological recovery following HDC and etoposide (200 mg/m2) on days 1 to 3 (CE, n = 75),29 or paclitaxel (200 mg/m2) on day 1 and cyclophosphamide Treatment regimens, hematological recovery, and resource (3 g/m2) on day 2 (PC, n = 81).29 utilization after HDC are shown in Table 6. Myeloid growth factor administration was begun on the day after the completion of MC. The regimens evaluated were: filgrastim 6 ␮g/kg/day (Amgen, Thousand Oaks, CA, Discussion USA), sargramostim 250 ␮g/m2/day (Immunex, Seattle, WA, USA), or sargramostim 250 ␮g/m2/day for 5 days A major finding in this study was that patients receiving followed by filgrastim 6 ␮g/kg/day. All myeloid growth filgrastim after MC yielded more CD34+ cells than patients factors were administered daily until the final day of receiving sargramostim. There were differences in CD34+ apheresis.29 cell yields between the two MC regimens as shown in The following HDC regimens were administered to 126 Tables 4 and 5. Twice as many CD34+ cells were collected patients: cyclophosphamide, thiotepa, and carboplatin following CE as following PC. For patients receiving CE, (CTCb, n = 87),27 carmustine, etoposide, cytarabine, and more CD34+ cells were collected following filgrastim alone cyclophosphamide (BEAC, n = 25),30 busulfan, melphalan, or sequential sargramostim and filgrastim than following and thiotepa (BuMelTT, n = 13),31 or a single high dose sargramostim alone. However, 82% of patients receiving of melphalan (n = 1).32 All patients received filgrastim 6 sargramostim yielded у2.5 ϫ 106 CD34+ cells/kg and 77% ␮g/kg/day beginning on day 1 after PBSC infusion and yielded у5.0 ϫ 106 CD34+ cells/kg, which was not sig- continuing until the absolute neutrophil count (ANC) was nificantly different than patients receiving filgrastim alone Ͼ0.5 ϫ 109/l for 3 consecutive days. or sequential sargramostim and filgrastim (Table 4). Thus, The optimal dose for support of HDC was considered to sargramostim and filgrastim following CE were equally be у5.0 ϫ 106 CD34+ cells/kg and the minimal dose to effective for achieving target CD34+ cell numbers. The proceed with HDC was 1.0 ϫ 106 CD34+ cells/kg.33 major differences in achieving target CD34+ cell yields Patients who yielded Ͻ2.5 but Ͼ1.0 ϫ 106 CD34+ cells/kg were observed in patients receiving PC (Table 5). In gen- could elect to have HDC supported by less than optimal eral, PC was associated with less toxicities and more rapid CD34+ cell numbers or undergo a second mobilization hematological recovery than CE. It has been previously procedure.34 observed that more intensive chemotherapy regimens are Patients received MC and HDC in an outpatient treat- associated with a better CD34+ cell yield than less intensive ment facility with daily surveillance for complications war- regimens; this would probably explain the current obser- ranting hospital admission.35 vations.1,5,36 There have been no previous randomized trials compar- ing the prophylactic administration of filgrastim to sargra- Results mostim after MC.
Recommended publications
  • Therapeutic Class Overview Colony Stimulating Factors
    Therapeutic Class Overview Colony Stimulating Factors Therapeutic Class Overview/Summary: This review will focus on the granulocyte colony stimulating factors (G-CSFs) and granulocyte- macrophage colony stimulating factors (GM-CSFs).1-5 Colony-stimulating factors (CSFs) fall under the naturally occurring glycoprotein cytokines, one of the main groups of immunomodulators.6 In general, these proteins are vital to the proliferation and differentiation of hematopoietic progenitor cells.6-8 The G- CSFs commercially available in the United States include pegfilgrastim (Neulasta®), filgrastim (Neupogen®), filgrastim-sndz (Zarxio®), and tbo-filgrastim (Granix®). While filgrastim-sndz and tbo- filgrastim are the same recombinant human G-CSF as filgrastim, only filgrastim-sndz is considered a biosimilar drug as it was approved through the biosimilar pathway. At the time tbo-filgrastim was approved, a regulatory pathway for biosimilar drugs had not yet been established in the United States and tbo-filgrastim was filed under its own Biologic License Application.9 Only one GM-CSF is currently available, sargramostim (Leukine). These agents are Food and Drug Administration (FDA)-approved for a variety of conditions relating to neutropenia or for the collection of hematopoietic progenitor cells for collection by leukapheresis.1-5 Due to the pathway taken, tbo-filgrastim does not share all of the same indications as filgrastim and these two products are not interchangeable. It is important to note that although filgrastim-sndz is a biosimilar product, and it was approved with all the same indications as filgrastim at the time, filgrastim has since received FDA-approval for an additional indication that filgrastim-sndz does not have, to increase survival in patients with acute exposure to myelosuppressive doses of radiation.1-3A complete list of indications for each agent can be found in Table 1.
    [Show full text]
  • Sargramostim (Leukine®)
    Policy Medical Policy Manual Approved Revision: Do Not Implement until 8/31/21 Sargramostim (Leukine®) NDC CODE(S) 71837-5843-XX LEUKINE 250MCG Solution Reconstituted (PARTNER THERAPEUTICS) DESCRIPTION Sargramostim is a recombinant human granulocyte-macrophage colony stimulating factor (rGM-CSF) produced by recombinant DNA technology in a yeast (S. cerevisiae) expression system. Like endogenous GM-CSF, rGM-CSF is a hematopoietic growth factor which stimulates proliferation and differentiation of hematopoietic progenitor cells in the granulocyte-macrophage pathways which include neutrophils, monocytes/macrophages and myeloid-derived dendritic cells. It is also capable of activating mature granulocytes and macrophages. Various cellular responses such as division, maturation and activation are induced by GM-CSF binding to specific receptors expressed on the cell surface of target cells. POLICY Sargramostim for the treatment of the following is considered medically necessary: o Acute myelogenous leukemia following induction or consolidation chemotherapy o Bone Marrow Transplantation (BMT) failure or Engraftment Delay o Individuals acutely exposed to myelosuppressive doses of radiation (Hematopoietic Subsyndrome of Acute Radiation Syndrome [H-ARS]) o Myeloid reconstitution after autologous or allogeneic bone marrow transplant (BMT) o Peripheral Blood Progenitor Cell (PBPC) mobilization and transplant Sargramostim for the treatment of chemotherapy-induced febrile neutropenia is considered medically necessary if the medical appropriateness
    [Show full text]
  • Regenerative Mechanisms and Novel Therapeutic Approaches
    brain sciences Review Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches Rashad Hussain 1,*, Hira Zubair 2, Sarah Pursell 1 and Muhammad Shahab 2,* 1 Center for Translational Neuromedicine, University of Rochester, NY 14642, USA; [email protected] 2 Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; [email protected] * Correspondence: [email protected] (R.H.); [email protected] (M.S.); Tel.: +1-585-276-6390 (R.H.); +92-51-9064-3014 (M.S.) Received: 13 July 2018; Accepted: 12 September 2018; Published: 15 September 2018 Abstract: Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches. Keywords: neuroregeneration; mechanisms; therapeutics; neurogenesis; intra-cellular signaling 1. Introduction Regeneration processes within the nervous system are referred to as neuroregeneration. It includes, but is not limited to, the generation of new neurons, axons, glia, and synapses. It was not considered possible until a couple of decades ago, when the discovery of neural precursor cells in the sub-ventricular zone (SVZ) and other regions shattered the dogma [1–4].
    [Show full text]
  • The Impact of Biosimilar Competition in Europe December 2020
    White Paper The Impact of Biosimilar Competition in Europe December 2020 PER TROEIN, Vice President, Strategic Partners, IQVIA MAX NEWTON, Senior Consultant, Global Supplier & Association Relations, IQVIA KIRSTIE SCOTT, Analyst, Global Supplier & Association Relations, IQVIA Table of contents Introduction 1 Key observations 2 Methodology 11 Country and therapy area KPIs 14 Human growth hormone (HGH) 14 Epoetin (EPO) 16 Granulocyte-colony stimulating factor (GCSF) 18 Anti-tumour necrosis factor (ANTI-TNF) 20 Fertility (FOLLITROPIN ALFA) 22 Insulins 24 Oncology 26 Low-molecular-weight heparin (LMWH) 28 Appendix 30 EMA list of approved biosimilars 30 List of Biosimilars under review by EMA 32 Introduction ‘The Impact of Biosimilar Competition in Europe’ report describes the effects on price, volume, and market share following the arrival of biosimilar competition in Europe. The report consists of: observations on competitive markets, and a set of Key Performance Indicators (KPIs) to monitor the impact of biosimilars in 23 European markets. The report has been a long-standing source of information on the status of the biosimilars market. This iteration has been delayed due to the COVID-19 pandemic across the globe and has provided an opportunity to provide full-year 2019 data, and an additional data point (June 2020 MAT) which incorporates the impact on patients in Europe across major therapeutic areas to 30th June 2020. The direct impact of which is visible in the Low Molecular Weight Heparin (LMWH), and Fertility (somatropin) markets. This report has been prepared by IQVIA at the The European Medicines Agency (EMA) has a central request of the European Commission services with role in setting the rules for biosimilar submissions, initial contributions on defining the KPIs from EFPIA, approving applications, establishing approved Medicines for Europe, and EuropaBio.
    [Show full text]
  • Sargramostim (Leukine) Reference Number: CP.PHAR.295 Effective Date: 12/16 Coding Implications Last Review Date: 10/16 Revision Log
    Clinical Policy: Sargramostim (Leukine) Reference Number: CP.PHAR.295 Effective Date: 12/16 Coding Implications Last Review Date: 10/16 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description The intent of the criteria is to ensure that patients follow selection elements established by Centene® clinical policy for sargramostim (Leukine® injection, for subcutaneous or intravenous use). Policy/Criteria It is the policy of health plans affiliated with Centene Corporation® that Leukine is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Acute Myeloid Leukemia (must meet all): 1. Leukine is prescribed for use following induction therapy for acute myeloid leukemia (AML); 2. Member has none of the following contraindications: a. Excessive leukemic myeloid blasts in the bone marrow/peripheral blood (≥ 10%); b. Known hypersensitivity to granulocyte-macrophage colony stimulating factor (GM-CSF), yeast-derived products or any component of the product; c. Concomitant use with chemotherapy/radiotherapy. Approval duration: 6 months B. Peripheral Blood Progenitor Cell Collection and Transplantation (must meet all): 1. Leukine is prescribed for either of the following: a. Mobilization of autologous hematopoietic progenitor cells into the peripheral blood for collection by leukapheresis in anticipation of transplantation after myeloablative chemotherapy; b. Following myeloablative chemotherapy and transplantation of autologous hematopoietic progenitor cells; 2. Member has none of the following contraindications: a. Excessive leukemic myeloid blasts in the bone marrow/ peripheral blood (≥ 10%); b. Known hypersensitivity to GM-CSF, yeast-derived products or any component of the product; c. Concomitant use with chemotherapy/radiotherapy. Approval duration: 6 months C.
    [Show full text]
  • Autoimmune Pulmonary Alveolar Proteinosis in an Adolescent Successfully Treated with Inhaled Rhgm-CSF
    Respiratory Medicine Case Reports 23 (2018) 167–169 Contents lists available at ScienceDirect Respiratory Medicine Case Reports journal homepage: www.elsevier.com/locate/rmcr Case report Autoimmune pulmonary alveolar proteinosis in an adolescent successfully T treated with inhaled rhGM-CSF (molgramostim) ∗ Marta E. Gajewskaa, , Sajitha S. Sritharana, Eric Santoni-Rugiub, Elisabeth M. Bendstrupa a Department of Respiratory Diseases and Allergology, Aarhus University Hospital, Denmark b Department of Pathology, Copenhagen University Hospital, Denmark ARTICLE INFO ABSTRACT Keywords: Autoimmune pulmonary alveolar proteinosis (aPAP) is a rare parenchymal lung disease characterized by ac- Pulmonary alveolar proteinosis cumulation of surfactant in the airways with high levels of granulocyte-macrophage colony stimulating factor Granulocyte-macrophage colony-stimulating (GM-CSF) antibodies in blood. Disease leads to hypoxemic respiratory failure. Whole lung lavage (WLL) is factor considered the first line therapy, but procedure can be quite demanding, specifically for children. Recently GM-SCF alternative treatment options with inhaled GM-CSF have been described but no consensus about the standard Molgramostim treatment exists. We here describe a unique case of a 14-year-old patient who was successfully treated with WLL Inhalation therapy and subsequent inhalations with molgramostim – new recombinant human GM-CSF (rhGM-CSF). 1. Introduction eosinophilic on hematoxylin-and eosin staining (HE) and positive with the periodic acid-Schiff stain and diastase-resistant (PAS + D), which is Pulmonary alveolar proteinosis (PAP) is a rare parenchymal lung considered characteristic for PAP (Fig. 2). Blood assays showed ele- disease characterized by accumulation of surfactant in the airways that vated high levels of GM-CSF antibodies. There was no suspicion of leads to hypoxemic respiratory failure [1–3].
    [Show full text]
  • Leukine® (Sargramostim)
    Leukine® (sargramostim) (Subcutaneous/Intravenous) Document Number: MODA-0237 Last Review Date: 04/06/2021 Date of Origin: 10/17/2008 Dates Reviewed: 06/2009, 12/2009, 06/2010, 07/2010, 09/2010, 12/2010, 03/2011, 06/2011, 09/2011, 12/2011, 03/2012, 06/2012, 09/2012, 12/2012, 03/2013, 06/2013, 09/2013, 12/2013, 03/2014, 06/2014, 09/2014, 12/2014, 03/2015, 05/2015, 08/2015, 11/2015, 02/2016, 05/2016, 08/2016, 11/2016, 02/2017, 05/2017, 08/2017, 11/2017, 02/2018, 05/2018, 04/2019, 04/2020, 04/2021 I. Length of Authorization High Risk Neuroblastoma: − When used in combination with dinutuximab, coverage will be provided for five months and may not be renewed. − When used in combination with naxitamab, coverage will be provided for six months and may be renewed. All other indications: Coverage will be provided for four months and may be renewed. II. Dosing Limits A. Quantity Limit (max daily dose) [NDC Unit]: − Leukine 250 mcg vial: 28 vials per 14 days − Leukine 500 mcg vial: 14 vials per 14 days B. Max Units (per dose and over time) [HCPCS Unit]: • 15 billable units per day (acute radiation syndrome) • 10 billable units per day on days 1 through 14 of cycles 1, 3 and 5 (cycle length is 24 days) for a maximum of 5 cycles only (high-risk neuroblastoma in combination with dinutuximab) • 10 billable units per day for 10 days of each 28-day cycle for six cycles followed by subsequent cycles every 8 weeks thereafter (high-risk neuroblastoma in combination with naxitamab) • 10 billable units per day (all other indications) 1-11 III.
    [Show full text]
  • Colony Stimulating Factors Medical Policy
    Medical benefit drug policies are a source for BCBSM and BCN medical policy information only. These documents are not to be used to determine benefits or reimbursement. Please reference the appropriate certificate or contract for benefit information. This policy may be updated and therefore subject to change. Effective Date: 08/12/2021 Colony Stimulating Factors (CSFs) Fulphila™ (pegfilgrastim-jmbd) Granix® (tbo-filgrastim) Leukine® (sargramostim) Neulasta® (pegfilgrastim) Neulasta On-Pro® (pegfilgrastim) Neupogen® (filgrastim) Nivestym™ (filgrastim-aafi) Nyvepria™ (pegfilgrastim-apgf) Udenyca™ (pegfilgrastim-cbqv) Zarxio® (filgrastim-sndz) ZiextenzoTM (pegfilgrastim-bmez) FDA approval: Various HCPCS: Fulphila – J3490, Granix – J1447, Leukine – J2820, Neupogen – J1442, Neulasta – J2505, Nivestym J3490, Nyvepria - Q5122, Udenyca – Q5111, Zarxio – J3490, Zietxenzo – Q5120, C9058 Benefit: Both Policy: Requests must be supported by submission of chart notes and patient specific documentation. A. Coverage of the requested drug is provided for FDA approved indications and when all the following are met: a. Primary prophylaxis of chemotherapy-induced febrile neutropenia is considered clinically appropriate when ALL of the following are met: i. The individual has a non-myeloid malignancy ii. Chemotherapy intent must include one of the following: 1. Curative intent (adjuvant treatment for early stage disease, for example) OR 2. Intent is survival prolongation, and the use of a different regimen or dose reduction would reduce the likelihood of
    [Show full text]
  • Lenograstim and Filgrastim in the Febrile Neutropenia Prophylaxis Open Access to Scientific and Medical Research DOI
    Journal name: Journal of Blood Medicine Article Designation: Original Research Year: 2019 Volume: 10 Journal of Blood Medicine Dovepress Running head verso: Innocenti et al Running head recto: Lenograstim and filgrastim in the febrile neutropenia prophylaxis open access to scientific and medical research DOI: http://dx.doi.org/10.2147/JBM.S186786 Open Access Full Text Article ORIGINAL RESEARCH Lenograstim and filgrastim in the febrile neutropenia prophylaxis of hospitalized patients: efficacy and cost of the prophylaxis in a retrospective survey Rolando Innocenti,1 Purpose: We conducted a retrospective study to evaluate the efficacy and related costs of Luigi Rigacci,1,2 Umberto using two different molecules of granulocyte-colony stimulating factor (G-CSF) (lenograstim Restelli,3,4 Barbara – LENO or filgrastim – FIL) as primary prophylaxis of chemotherapy-induced neutropenia in Scappini,1 Giacomo a hematological inpatient setting. Gianfaldoni,1 Rosa Fanci,1 Methods: The primary endpoints of the analysis were the efficacy of the two G-CSFs in terms of the level of white blood cells, hemoglobin and platelets at the end of the treatment and the Francesco Mannelli,1 per capita direct medical costs related to G-CSF prophylaxis. Francesca Scolari,3 For personal use only. Two hundred twelve patients (96 LENO, 116 FIL) have been evaluated. The follow- 3,4 Results: Davide Croce, Erminio ing statistically significant differences have been observed between FIL and LENO: the use of 5 6 Bonizzoni, Tania Perrone, a higher number of vials (11 vs 7; P<0.03) to fully recover bone marrow, a higher grade 3–4 1 Alberto Bosi neutropenia at the time of G-CSF discontinuation (29.3% vs 16.7%; P=0.031) and an increased 1Hematology Department, University number of days of hospitalization (8 vs 5; P<0.005).
    [Show full text]
  • Role of Cytokines As a Double-Edged Sword in Sepsis
    in vivo 27: 669-684 (2013) Review Role of Cytokines as a Double-edged Sword in Sepsis HINA CHAUDHRY1, JUHUA ZHOU2,3, YIN ZHONG2, MIR MUSTAFA ALI1, FRANKLIN MCGUIRE1, PRAKASH S. NAGARKATTI2 and MITZI NAGARKATTI2 1Division of Pulmonary and Critical Care Medicine, and 2Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, U.S.A.; 3Institute for Tumor Immunology, Ludong University School of Life Sciences, Yantai, Shandong, P.R. China Abstract. Background: Sepsis is a deadly immunological results from imbalances in the inflammatory network (1). disorder and its pathophysiology is still poorly understood. Sepsis is exhibited as a whole-body or a systemic We aimed to determine if specific pro-inflammatory and anti- inflammatory response syndrome (SIRS), in the presence of inflammatory cytokines can be used as diagnostic and a known or suspected infection. It becomes severe following therapeutic targets for sepsis. Materials and Methods: organ dysfunction, which results from low blood pressure, or Recent publications in the MEDLINE database were insufficient blood flow to one or more organs due to lactic searched for articles regarding the clinical significance of acidosis, reduced urine production and altered mental status. inflammatory cytokines in sepsis. Results: In response to Severe sepsis is defined as sepsis with organ dysfunction pathogen infection, pro-inflammatory cytokines [interleukin- including hypotension (<90 mmHg or a reduction of 6 (IL-6), IL-8, IL-18 and tumor necrosis factor-α (TNF-α)] ≥40 mmHg from baseline), hypoxemia, oliguria, metabolic and anti-inflammatory cytokine (IL-10) increased in patients acidosis, thrombocytopenia and obtundation (2).
    [Show full text]
  • Leukine (Sargramostim)
    US License 1752 Leukine (sargramostim) A Recombinant GM-CSF–Yeast-Expressed Rx only DESCRIPTION ® LEUKINE (sargramostim) is a recombinant human granulocyte-macrophage colony stimulating factor (rhu GM-CSF) produced by recombinant DNA technology in a yeast (S. cerevisiae) expression system. GM-CSF is a hematopoietic growth factor which stimulates proliferation and differentiation of hematopoietic progenitor cells. LEUKINE is a glycoprotein of 127 amino acids characterized by three primary molecular species having molecular masses of 19,500, 16,800 and 15,500 daltons. The amino acid sequence of LEUKINE differs from the natural human GM-CSF by a substitution of leucine at position 23, and the carbohydrate moiety may be different from the native protein. Sargramostim has been selected as the proper name for yeast-derived rhu GM-CSF. The liquid LEUKINE presentation is formulated as a sterile, preserved (1.1% benzyl alcohol), injectable solution (500 mcg/mL) in a vial. Lyophilized LEUKINE is a sterile, white, preservative-free powder (250 mcg) that requires reconstitution with 1 mL Sterile Water for Injection, USP or 1 mL Bacteriostatic Water for Injection, USP. Liquid LEUKINE has a pH range of 6.7 - 7.7 and lyophilized LEUKINE has a pH range of 7.1 ­ 7.7. Liquid LEUKINE and reconstituted lyophilized LEUKINE are clear, colorless liquids suitable for subcutaneous injection (SC) or intravenous infusion (IV). Liquid LEUKINE 6 contains 500 mcg (2.8 x 10 IU/mL) sargramostim and 1.1% benzyl alcohol in a 1 mL 6 solution. The vial of lyophilized LEUKINE contains 250 mcg (1.4 x 10 IU/vial) sargramostim.
    [Show full text]
  • New Therapeutic Options in the Medical Management of Advanced Melanoma Jose Lutzky, MD, FACP
    New Therapeutic Options in the Medical Management of Advanced Melanoma Jose Lutzky, MD, FACP During the past 3 decades, the incidence, morbidity, and mortality of malignant melanoma have increased dramatically. Advanced melanoma has remained a disease that is for the most part incurable and has challenged all therapeutic efforts to make a dent in its natural history. Recent advances in the understanding of the molecular alterations in melanoma and in the immunologic mechanisms playing a role in this malignancy have brought hope that significant progress can be achieved, as evidenced by early encouraging clinical data. This review will summarize these recent developments and their impact on current clinical practice. Semin Cutan Med Surg 29:249-257 © 2010 Elsevier Inc. All rights reserved. lthough current epidemiologic data suggest decreasing have demonstrated initial positive results, triggering renewed Aincidence trends for a variety of malignancies, the inci- excitement to pursue clinical investigations in melanoma. dence and mortality of malignant melanoma appear to be This concise review will focus on some of these new para- increasing. For 2009 the American Cancer Society estimated digms and their current application in the treatment of mel- 68,720 new cases in the United States, with 8650 deaths.1 anoma. Although surgery remains the primary treatment of Unless detected at an early stage in patients, melanoma re- early melanoma and an important modality in the manage- mains difficult to treat effectively. Approved treatment for ment of advanced melanoma, the many controversies in sur- patients with locally advanced disease and at high-risk of gical management are out of the scope of this article, which recurrence is toxic and of limited benefit.2,3 The treatment of will concentrate on nonsurgical treatment of advanced dis- distant metastatic disease has been similarly frustrating, with ease.
    [Show full text]