Download The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pyrophoric Materials
Appendix A PYROPHORIC MATERIALS Pyrophoric materials react with air, or with moisture in air. Typical reactions which occur are oxidation and hydrolysis, and the heat generated by the reactions may ignite the chemical. In some cases, these reactions liberate flammable gases which makes ignition a certainty and explosion a real possibility. Examples of pyrophoric materials are shown below. (List may not be complete) (a) Pyrophoric alkyl metals and derivatives Groups Dodecacarbonyltetracobalt Silver sulphide Dialkytzincs Dodecacarbonyltriiron Sodium disulphide Diplumbanes Hexacarbonylchromium Sodium polysulphide Trialkylaluminiums Hexacarbonylmolybdenum Sodium sulphide Trialkylbismuths Hexacarbonyltungsten Tin (II) sulphide Nonacarbonyldiiron Tin (IV) sulphide Compounds Octacarbonyldicobalt Titanium (IV) sulphide Bis-dimethylstibinyl oxide Pentacarbonyliron Uranium (IV) sulphide Bis(dimethylthallium) acetylide Tetracarbonylnickel Butyllithium (e) Pyrophoric alkyl non-metals Diethylberyllium (c) Pyrophoric metals (finely divided state) Bis-(dibutylborino) acetylene Bis-dimethylarsinyl oxide Diethylcadmium Caesium Rubidium Bis-dimethylarsinyl sulphide Diethylmagnesium Calcium Sodium Bis-trimethylsilyl oxide Diethylzinc Cerium Tantalum Dibutyl-3-methyl-3-buten-1-Yniborane Diisopropylberyllium Chromium Thorium Diethoxydimethylsilane Dimethylberyllium Cobalt Titanium Diethylmethylphosphine Dimethylbismuth chloride Hafnium Uranium Ethyldimthylphosphine Dimethylcadmium Iridium Zirconium Tetraethyldiarsine Dimethylmagnesium Iron Tetramethyldiarsine -
Guidelines for Pyrophoric Materials
Guidelines for Pyrophoric Materials Definition and Hazards Pyrophoric materials are substances that ignite instantly upon exposure to air, moisture in the air, oxygen or water. Other common hazards include corrosivity, teratogenicity, and organic peroxide formation, along with damage to the liver, kidneys, and central nervous system. Examples include metal hydrides, finely divided metal powders, nonmetal hydride and alkyl compounds, white phosphorus, alloys of reactive materials and organometallic compounds, including alkylithiums. Additional pyrophoric materials are listed in Appendix A. Failure to follow proper handling techniques could result in serious injury or death. Controlling the Hazards . If possible, use safer chemical alternatives. A “dry run” of the experiment should be performed using low-hazard materials, such as water or solvent, as appropriate. Limit the amount purchased and the amount stored. Do not accumulate unneeded pyrophoric materials. BEFORE working with pyrophoric materials, read the MSDS sheets. The MSDS must be reviewed before using an unfamiliar chemical and periodically as a reminder. A Standard Operating Procedure (SOP) should be prepared and reviewed for each process involving pyrophoric materials. In lab training should be completed and documented. If possible, use the “buddy system”. Working alone with pyrophorics is strongly discouraged. All glassware used for pyrophorics should be oven-dried and free of moisture. Review the location of the safety shower, eyewash, telephone, and fire extinguisher. Keep an appropriate fire extinguisher or extinguishing material close at hand. Additional controls when handling liquid pyrophoric materials . Secure pyrophoric reagent bottle to stand. Secure the syringe so if the plunger blows out of the body of the syringe the contents will not splash anyone. -
The Digallane Molecule, Ga2h6: Experimental Update Giving an Improved Structure and Estimate of the Enthalpy Change for the Reaction Ga2h6(G) 2Gah3(G)
Edinburgh Research Explorer The digallane molecule, Ga2H6: experimental update giving an improved structure and estimate of the enthalpy change for the reaction Ga2H6(g) 2GaH3(g) Citation for published version: Downs, AJ, Greene, TM, Johnsen, E, Pulham, CR, Robertson, HE & Wann, DA 2010, 'The digallane molecule, Ga H : experimental update giving an improved structure and estimate of the enthalpy change for the reaction2 Ga6 H (g) 2GaH (g)', Dalton Transactions, vol. 39, no. 24, pp. 5637-5642. https://doi.org/10.1039/c000694g2 6 3 Digital Object Identifier (DOI): 10.1039/c000694g Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Dalton Transactions General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 PAPER www.rsc.org/dalton | Dalton Transactions The digallane molecule, Ga2H6: experimental update giving an improved structure and estimate of the enthalpy change for the reaction Ga2H6(g) → 2GaH3(g)†‡ Anthony J. Downs,*a Tim M. Greene,a Emma Johnsen,a Colin R. -
Transition Metal Complexes of Ambiphilic Ligands
TRANSITION METAL COMPLEXES OF AMBIPHILIC LIGANDS Ph.D. Thesis Bradley E. Cowie Department of Chemistry and Chemical Biology McMaster University LATE TRANSITION METAL COMPLEXES OF GROUP 13 LEWIS ACID- CONTAINING AMBIPHILIC LIGANDS By BRADLEY E. COWIE, H.B.Sc A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Bradley E. Cowie, October, 2015. Ph.D. Thesis Bradley E. Cowie Department of Chemistry and Chemical Biology McMaster University McMaster University DOCTOR OF PHILOSOPHY (2015) Hamilton, Ontario (CHEMISTRY) TITLE: Late transition Metal Complexes of Group 13 Lewis Acid-Containing Ambiphilic Ligands AUTHOR: Bradley E. Cowie SUPERVISOR: Prof. David J. H. Emslie NUMBER OF PAGES: lii, 380 ii Ph.D. Thesis Bradley E. Cowie Department of Chemistry and Chemical Biology McMaster University Lay Abstract Ambiphilic ligands are defined as ligands which contain both conventional Lewis basic donors and unconventional Lewis acidic moieties, and the focus of this thesis is to expand the transition metal chemistry of Group 13 Lewis acid-containing ambiphilic ligands. This work expands the knowledge base of fundamental coordination and organometallic chemistry by exploring the effects of ambiphilic ligands on the structures, stability and reactivity of the resulting late transition metal complexes. Three different ambiphilic ligand systems have been employed in this research (TXPB, FcPPB and FcPPAl), which vary either by the structural rigidity of the ligand backbone (TXPB = thioxanthene; FcPPB and FcPPAl = ferrocene), the donor groups available to bind to the metal centre (TXPB = phosphine/thioether; FcPPB and FcPPAl = phosphine/phosphine), or the identity of the appended Lewis acid (TXPB and FcPPB = aryldiphenylborane; FcPPAl = aryldimethylalane). -
The Preparation of Organomagnesium Fluorides
THE PREPARATION OF ORGANOMAGNESIUM FLUORIDES BY ORGANOMETALLIC EXCHANGE REACTIONS AND THE COMPOSITION IN SOLUTION OF ALKOXY(METHYL)MAGNESIUM AND DIALKYLAMINO(METHYL)MAGNESIUM COMPOUNDS A THESIS Presented To The Faculty of the Graduate Division by John A. Nackashi In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the School of Chemistry Georgia Institute of Technology May, 1974 THE PREPARATION OF ORGANOMAGNESIUM FLUORIDES BY ORGANOMETALLIC EXCHANGE REACTIONS AND THE COMPOSITION IN SOLUTION OF ALKOXY(METHYL)MAGNESIUM AND DIALKYLAMINO(METHYL)MAGNESIUM COMPOUNDS Approved: E. C. Ashby, Chairman A. Bertrand C. L. Liotta Date approved by Chairman: ii ACKNOWLEDGMENTS The author is grateful to Dr. E. C. Ashby for his guidance, direction and patience during this research. The reading of this thesis by Dr. A. Bertrand and Dr. C. Liotta is greatly appreciated. The author is also indebted to John P. Oliver for his assistance and friendship, and to the mem bers of the research group who made the successes of this research a joy and the failures acceptable. The warm friend ship expressed by the research group will always be cherished. Financial assistance by the Georgia Institute of Tech nology and the National Science Foundation is gratefully ack nowledged. The author acknowledges a special appreciation to his parents and particularly his wife, Bryan. Their gentle en couragement and patient understanding throughout the entire period of study has made this thesis possible. iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ii LIST OF TABLES vi LIST OF ASSOCIATION PLOTS iii LIST OF SPECTRA ix SUMMARY x PART I THE PREPARATION OF ORGANOMAGNESIUM FLUORIDES BY ORGANOMETALLIC EXCHANGE REACTIONS CHAPTER I. -
The Synthesis of Kinetically Stabilised Heavy Group 13 Hydride Complexes
The Synthesis of Kinetically Stabilised Heavy Group 13 Hydride Complexes Thesis as partial fulfilment of the requirements of Doctor of Philosophy (Chemistry) by Alasdair Iain McKay (Student Number: 3188803) Supervisor: Assoc. Prof. Marcus L. Cole School of Chemistry The University of New South Wales Sydney, Australia 16th April 2015 Certificate of Originality ‘I, Alasdair Iain McKay, hereby declare that this submission is my own work and to the best of my knowledge it contains no materials, previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the projects’ design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed........................................................... Date.............................................................. ii Table of Contents Acknowledgements ix Abstract x Abbreviations xi Chapter One: General Introduction 1 1.1 Group 13 Element Structure 1 1.2 Group 13 Metal Hydrides 3 1.2.1 Bonding and Structure in Group 13 Trihydrides 4 1.2.2 The Thermodynamics of Group 13 Hydrides 5 1.2.3 Lewis Base -
3Ga.NH3 + KOH = (CH3)2Gaok + CH4 + NH3. 1 DUPONT FELLOW in Chemistry
298 CHEMISTRY: KRA US AND TOONDER PROC. N. A. S. were treated with 7.5 N potassium hydroxide. The gases produced in the reaction were carried through standard sulphuric acid to absorb the ammonia and the remaining gas was collected over mercury by means of a Toepler pump. The residue remaining in the reaction tube was ana- lyzed for gallium. (4) Analysis for Nitrogen: substance, 0.1619, 0.2141; cc. 0.09367 N H2SO4, 13.15, 17.38; % N found, 10.66, 10.65, mean 10.65; % N required for (CH3)3Ga.NH3, 10.63. (5). Analysis for Gallium: substance, 0.1619, 0.2141; Ga203, 0.1152, 0.1525; % Ga found: 52.93, 52.98, mean 52.95; % Ga required for (CH3)3- Ga NH3, 52.89. (6) Methane Determination: m. mols (CH3)3Ga-NH3, 1.23, 1.63; cc. of gas, 27.4, 56.9; mol. wt., 16.3, 16.3; m. mols. CH4, 1.22, 1.64. Hydrolysis evidently occurs according to the equation: (CH3)3Ga.NH3 + KOH = (CH3)2GaOK + CH4 + NH3. 1 DUPONT FELLOW in Chemistry. 2 Dennis and Patnode, Jour. Amer. Chem. Soc., 54, 182 (1932). 3 Renwanz, Ber., 65, 1308 (1932). 4 Hein, Z. anorg. aligem. Chem., 141, 212 (1924). CHLORINA TION PRODUCTS OF TRIMETHYL GALLIUM By CHARLES A. KRAUS AND FRANK E. TOONDER' CHEMICAL LABORATORY, BROWN UNIVERSITY Communicated January 31, 1933 The fact that trimethyl gallium hydrolyzes in an aqueous solution of potassium hydroxide with the formation of one molecule of methane at ordinary temperatures and two molecules at higher temperatures2 indi- cates that the methyl groups are readily replaceable by more electronega- tive elements or groups. -
Biography Biography Qualifications Employment Research Outputs
Professor. George Koutsantonis School of Molecular Sciences Postal address: The University of Western Australia (M313), 35 Stirling Highway, Room 311, Bayliss Building, Perth campus 6009 Perth Western Australia Australia Email: [email protected] Phone: +61 8 6488 3177 Biography George Koutsantonis is a synthetic chemist with an interest in functional materials that contain metals. He is a graduate of the University of Adelaide where he obtained his BSc(Hons) and PhD degree, the latter, under the supervision of Michael Bruce. He began his scientific life studying the coordination properties and reactions of alkynes and often returns to this fascinating area. He undertook a postdoctoral position at the University of Kentucky. In Lexington, he continued his work with alkynes, more specifically investigating metathesis reactions with metalloalkynes. After a fruitful period in the USA, he returned to Australia on an inaugural ARC Postdoctoral Fellowship at Griffith University in 1991. In Brisbane, still essentially an inorganic chemist, worked with Main Group hydrides of Group 13. He was appointed to the staff at the University of Western Australia in 1995 where he remains. In Perth, he established an independent research programme in organometallic and inorganic chemistry. His work in this area was recognised by the joint award of the RACI Organometallic award in 2004 Biography 2010-2016 Professor (Level D) University of Western Australia 2009-2010 Associate Professor University of Western Australia 2002-2008 Senior Lecturer University -
The Use of Ga(C6F5)3 in Frustrated Lewis Pair Chemistry
The Use of Ga(C6F5)3 in Frustrated Lewis Pair Chemistry by Julie Roy A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Chemistry University of Toronto © Copyright by Julie Roy 2015 The Use of Ga(C6F5)3 in Frustrated Lewis Pair Chemistry Julie Roy Master of Science Department of Chemistry University of Toronto 2015 Abstract Although numerous publications have investigated the use of boron-based and aluminum-based Lewis acids in frustrated Lewis pair (FLP) chemistry, the exploration of Lewis acids of the next heaviest group 13 element, gallium, has remained limited in this context. In this work, the reactivity of Ga(C6F5)3 in FLP chemistry is probed. In combination with phosphine bases, Ga(C6F5)3 was shown to activate CO2, H2, and diphenyl disulfide, as well as give addition products with alkynes. Moreover, the potential for synthesizing gallium arsenide using Ga(C6F5)3 as a source of gallium was investigated. In an effort to synthesize GaAs from a safe precursor, adduct formation of Ga(C6F5)3 with a primary arsine as well as with a tertiary arsine was examined. ii Acknowledgments First and foremost, I would like to thank my supervisor, Prof. Doug Stephan for all of the support and advice that he has given me. Thank you Doug for your patience and for giving me the freedom to explore different avenues for my project. I would like to thank the entire Stephan group for all of their help and encouragement, and for making the graduate experience so memorable. -
Electronic Transmutation: an Aid for the Rational Design of New Chemical Materials Using the Knowledge of Bonding and Structure of Neighboring Elements
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2019 Electronic Transmutation: An Aid for the Rational Design of New Chemical Materials Using the Knowledge of Bonding and Structure of Neighboring Elements Katie A. Lundell Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Chemistry Commons Recommended Citation Lundell, Katie A., "Electronic Transmutation: An Aid for the Rational Design of New Chemical Materials Using the Knowledge of Bonding and Structure of Neighboring Elements" (2019). All Graduate Theses and Dissertations. 7525. https://digitalcommons.usu.edu/etd/7525 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ELECTRONIC TRANSMUTATION: AN AID FOR THE RATIONAL DESIGN OF NEW CHEMICAL MATERIALS USING THE KNOWLEDGE OF BONDING AND STRUCTURE OF NEIGHBORING ELEMENTS by Katie A. Lundell A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry Approved: Alexander I. Boldyrev, D.Sc. David Farrelly, Ph.D. Major Professor Committee Member Tianbiao Liu, Ph.D. JR Dennison, Ph.D. Committee Member Committee Member Kimberly J. Hageman, Ph.D. Richard S. Inouye, Ph.D. Committee Member Vice Provost for Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2019 ii Copyright c Katie A. Lundell 2019 All Rights Reserved iii ABSTRACT Electronic Transmutation: An aid for the rational design of new chemical materials using the knowledge of bonding and structure of neighboring elements by Katie A. -
NHC-Supported Mixed Halohydrides of Aluminium and Related Studies
NHC-supported mixed halohydrides of aluminium and related studies A thesis submitted towards the degree of Doctor of Philosophy Sean Geoffrey Alexander November 2011 Table of Contents Abstract .........................................................................................................................................iv Declaration .....................................................................................................................................v Acknowledgements .......................................................................................................................vi Chapter 1: General Introduction .................................................................................................1 1.1 Group 13 chemistry ........................................................................................................ 1 1.2 Trihydrides of aluminium and gallium........................................................................... 3 1.2.1 Background............................................................................................................. 3 1.2.2 The thermodynamics of alane and gallane ............................................................. 4 1.2.3 Structural trends in aluminium and gallium hydride complexes............................ 5 1.3 Lewis base adducts of alane and gallane........................................................................ 6 1.4 Aluminium and gallium trihalides................................................................................. -
Pyrophoric Handling Procedure
Pyrophoric Handling Procedure Carnegie Mellon Environmental Health & Safety 5000 Forbes Avenue FMS Building, 3rd Floor Pittsburgh, PA 15213 412-268‐8182 www.cmu.edu.ehs October 2019 TABLE OF CONTENTS Introduction ........................................................................................................................................3 Examples of Pyrophoric/Water Reactive Materials ...........................................................................3 Hazards ..............................................................................................................................................3 Controlling the Hazards .....................................................................................................................3 Personal Protective Equipment (PPE) ...............................................................................................4 Eye Protection ........................................................................................................................4 Skin Protection .......................................................................................................................4 Eyewash/Safety Showers .......................................................................................................4 Fume Hood.............................................................................................................................4 Glove (dry) box ......................................................................................................................5