Interfaces of Ionic Liquids and of Liquid Metals Studied by X-Ray Photoelectron Spectroscopy
Total Page:16
File Type:pdf, Size:1020Kb
Interfaces of Ionic Liquids and of Liquid Metals Studied by X-Ray Photoelectron Spectroscopy Grenzflächen ionischer Flüssigkeiten und flüssiger Metalle untersucht mit Röntgenphotoelektronenspektroskopie Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Florian Rietzler aus Illertissen Als Dissertation genehmigt von der naturwissenschaftlichen Fakultät der Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 24.6.2016 Vorsitzender des Promotionsorgans: Prof. Dr. Jörn Wilms Gutachter: Prof. Dr. Hans-Peter Steinrück Prof. Dr. Jörg Libuda Contents Contents 1. Introduction and Motivation ........................................................................ 1 2. Fundamentals and Techniques ..................................................................... 5 2.1. Ionic Liquids .................................................................................................... 5 2.2. Angle-Resolved X-Ray Photoelectron Spectroscopy .................................... 10 2.3. Experimental Setup ........................................................................................ 15 2.4. Sample Preparation ........................................................................................ 17 2.5. Data Acquisition and Analysis ....................................................................... 21 3. The Ionic Liquid / Carbon Interface ................................................................. 25 3.1. The Ionic Liquid / HOPG Interface ............................................................... 28 3.1.1. Growth Behavior ..................................................................................... 28 3.1.2. Initial Adsorption Behavior .................................................................... 31 3.2. The Ionic Liquid / Graphene Interface ........................................................... 34 3.2.1. Graphene Growth .................................................................................... 34 3.2.2. Adsorption and Growth on Nickel-Supported Graphene ....................... 35 3.3. Summary and Conclusions ............................................................................. 38 4. The Ionic Liquid / Metal Interface ............................................................. 41 4.1. Introducing Electrospray Ionization Deposition of Ionic Liquids ................. 42 4.1.1. Proof of Principle: [C8C1Im][Tf2N] on Au(111) .................................... 44 4.1.2. Thin Films of [C8C1Im]Cl on Au(111) ................................................... 49 4.1.3. Atomic Force Microscopy Investigations ............................................... 54 4.1.4. Optical Microscopy Investigations ......................................................... 55 4.1.5. Conclusions ............................................................................................. 56 4.1.6. Summary ................................................................................................. 57 4.2. [C2C1Im][EtOSO3] and [C2C1Im][OTf] on Pristine and Modified Au Surfaces .......................................................................................................... 59 4.2.1. Thermal Decomposition of [C2C1Im][EtOSO3] ..................................... 59 Contents 4.2.2. PVD vs. ESID [C2C1Im][EtOSO3] Thin Films ....................................... 66 4.2.3. Initial Adsorption Behavior .................................................................... 68 4.2.4. Growth Mode .......................................................................................... 70 4.2.5. Influence of Surface Carbon on [C2C1Im][EtOSO3] Thin Films on Au(111) ................................................................................................... 71 4.2.6. Growth and Adsorption of [C2C1Im][OTf] Thin Films on Pristine Au(111) ................................................................................................... 74 4.2.7. Influence of Pd Deposition on [C2C1Im][OTf] Thin Films .................... 76 4.2.8. Summary and Conclusions ..................................................................... 81 5. Surface Properties of Pd-Ga and Pt-Ga Alloys ......................................... 85 5.1. Pd Deposition onto Ga2O3 / Ga ...................................................................... 89 5.2. Surface Composition of a Low Pd Content Pd-Ga Alloy .............................. 93 5.3. Surface Composition of Pd-Ga-Based Catalysts............................................ 95 5.4. Oxidation of Pt-Ga Alloys ........................................................................... 100 5.5. Summary and Conclusions ........................................................................... 103 6. Summary and Outlook .............................................................................. 107 7. Zusammenfassung und Ausblick .............................................................. 113 8. Appendix ..................................................................................................... 119 8.1. [C1C1Im][Tf2N] on 1.7 L Graphene ............................................................. 119 8.2. Au 4f Data – Pd / [C2C1Im][OTf] / Au(111) ............................................... 123 9. Bibliography ............................................................................................... 124 List of Abbreviations ............................................................................................ 138 Acknowledgements ............................................................................................... 141 Contents 1. Introduction and Motivation 1 1. Introduction and Motivation According to the common definition, ionic liquids (ILs) are entirely ionic compounds with a melting point (MP) below 100 °C. Therefore, aqueous solutions of salts do not match this definition as they do not consist entirely of ions.1 Ethylammonium nitrate, the first compound which nowadays would be called an IL was first synthesized by Walden as soon as 1914,2 but it took nearly a century for ILs to gain wider interest in the scientific community. However, since the turn of the millennium, the number of publications involving ILs is strongly increasing, as visualized in Figure 1.1. 12,000 10,000 8,000 publications related 6,000 IL IL of 4,000 Number 2,000 0 2000 2003 2006 2009 2012 2015 Year Figure 1.1: Annual number of publications related to ionic liquids. Numbers from Web of Science.3 ILs with desired properties can be designed by the selected combination of certain anions and cations. Hence, ILs have drawn the attention of scientists in many research fields. They can be used to replace conventional solvents in synthesis which leads in many cases to an increase of reactivity and selectivity.4, 5 With their broad electrochemical window, ILs have also been proven as perfect electrolytes for 2 1. Introduction and Motivation many electrochemical applications, such as fuel cells,6, 7 electrodeposition,8-10 electrochemical double layer capacitors,11-16 and solar cells.17-20 Last but not least, ILs led to the development of completely new approaches to catalysis, namely, solid catalyst with ionic liquid layer (SCILL) and supported ionic liquid phase (SILP) (cf. Figure 1.2).21-23 Figure 1.2: Schematic drawing of the SILP and SCILL concepts, taken from reference 24. The SILP concept (cf. Figure 1.2, top right) is based on a porous inert support material coated with a thin IL layer. Therein, the actual catalyst is homogeneously dissolved. SILP combines the advantages of homogenous catalysis (highly product- and stereo-selective) and heterogeneous catalysis (stationary catalyst phase of a continuous flow reactor). In SCILL systems (cf. Figure 1.2, bottom right), where the catalyst material or catalytically active species immobilized on a solid support material is impregnated with an IL layer, enhanced selectivity, product distribution and yields may be observed. This is achieved by specific interactions of the IL with reactive sites of the heterogeneous catalyst particles or by solubility and mass transport changes when reactants and products diffuse through the IL to/from the catalyst surface.24 The low vapor pressure of ILs allows for the investigation of IL surfaces with UHV techniques, such as X-ray photoelectron spectroscopy (XPS),25-27 ultraviolet photoelectron spectroscopy (UPS),28-31 near edge X-ray absorption fine structure (NEXAFS),30, 32 33 metastable impact electron spectroscopy (MIES),28, 29 low energy ion scattering (LEIS),34 time-of-flight secondary ion mass spectrometry 1. Introduction and Motivation 3 (ToF-SIMS)35-37 or high resolution electron energy loss spectroscopy (HREELS),29 which are traditionally restricted to solid samples. For thin IL films applied in the context of SILP and SCILL catalysis, besides the outer IL surface, structure and composition of the IL/solid (IL/metal and IL/oxide) interface are of particular interest. Also for applications in the field of electrochemistry, profound knowledge about the IL/solid (IL/metal and IL/carbon) interface is indispensable for further advancements. Thus, during the last years, the IL/solid interface is drawing increasing attention and has been studied with numerous techniques including sum frequency generation (SFG),38, 39 scanning tunneling microscopy (STM),40-42 atomic force microscopy (AFM),41, 43 neutron reflectometry,44 and XPS40, 45-48. In this work, angle-resolved