Lecture 24. Topics How Ovules Are Attached in Carpel

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 24. Topics How Ovules Are Attached in Carpel Anatomy of a Flower – most flowers have four types of structures, all of which are modified leaves Lecture 24. Flowers (cont’d) Topics Androecium = collection of stamens • 1. Male part: Androecium • stamen = anther + filament. • 2. Female part: Gynoecium • Anther produces Pollen • 3. Coalescence VS Adnation (Microgametophyte) • 4. Types of flowers – Insertion of floral structure • Superior: hypogynous and perigynous • Inferior: epigynous – Flower Symmetry Long section through a mature Ranunculus flower. – Complete/Perfect Flowers – Monoecious/Dioecious Flowers Gynoecium = collection of carpels How ovules are attached in • Carpel = stigma + style + ovary (containing ovules) carpel – concept of placentation •Ovule Æ seed •Carpel Æ fruit Ranunculus 1 Types of Placentation Marginal Placentation • The Placenta is the area of the Carpel • This Diagram is to which Ovules are attached. similar to the single Carpel of a Legume – Marginal Placentation Gynoecium. – Parietal Placentation • Transparent Model – Axile Placentation of a Legume Carpel – Central Placentation with Marginal Placentation Marginal Marginal Placentation Placentation • Legume Fruits have • Cross Section of a their Ovules attached Legume Carpel showing along the area where the Ovule and Pericarp the Marginal Traces • Cross Section of a Legume Carpel showing occur. the Vascular Bundles • Cross Section of a Legume Carpel showing the location of the Placenta Parietal Placentation Parietal Placentation • Two or more • Cross Section through an Ovary with Parietal Carpels are fused at Placentation their Margins such • Wild Cucumber with Parietal Placentation: The Placental that a Single Locule areas have enlarged and is created, the create the illusion of a partitioned locule. Placentae are generally located at the Sutures. This is called Parietal. Model of A Syncarpous Gynoecium with Parietal Placentation. 2 Parietal Placentation Axile Placentation • Passion Flower Passiflora sp. • Axile Placentation occurs • Passion Fruit when the Ovules of a • Cross Section of an Immature Passion fruit Syncarpous Gynoecium • Cross Section of an older Passion fruit are attached to a Central Axial Structure and the Ovary is divided into two or more chambers (Locules). Cross Section of a Lily Ovary which has Axial Placentation with 3 Carpels & 3 Locules. Axile Placentation Central Placentation • Central Placentation is similar to Axile except that there is only One Locule. The Ovules are attached to a central pilar of tissue but there is only one Locule. Central Placentation Example - Magnolia • Cross Sections of an Ovary with Central • Species of Magnolia can have many Placentation Petals, Stamens & Carpels. The Gynoecium is Apocarpus like Ranunculus. 3 Mature Example – Magnolia Flower Example - Magnolia • Note the many Carpels at • Immature (Green) and Mature Carpels (Peach) in the apex of the Receptacle. Magnolia. • Immature Androecium & Gynoecium • Mature Androecium & Gynoecium Immature Example - Magnolia Carpel • 1. After Fertilization. Each Carpel contains a single Seed in its Ovary. •2. Magnolia Carpels: The Carpels become Fruits. •3. Magnolia Mature Carpels: The Fruit is a Dry Dehiscent Follicle. The Seeds have a red, fleshy outer Seed Coat. 1 23 Anatomy of Male/Female flowers Citrus Flowers Citrus • Long Section through the • Female: Syncarpous Base of a Citrus Flower. Gynoecium. • Long Section of a Citrus – Note the large, lobed Flower showing the Stigma, Style and Anthers appearance of the Stigma. This • Cross Section through a indicates that the Gynoecium Citrus Flower at the Level is probably Syncarpous. of the Style Can you find Coalescence in any other floral organs? Enlargement of style, see next slide 4 Citrus Citrus • Cross Section of the Ovary with • 1. Enlargement of the Style from the Lines defining the Carpels. previous slide. Count the Number of Note the 10-11 Vascular Bundles!!! Carpels!!!!! • 2. Cross Section of a Citrus Flower • Cross Section of a Citrus Fruit at the Level of the Ovary with the Carpels labeled. • 3. Cross Section of the Ovary 3 Count the Number of Carpels!! showing the Ovules and the locules • the number of Vascular Bundles (L). Count the Number of in the Style equalled Locules!!!! the number of Carpels in the Ovary which equalled the number of Carpels in the Fruit. • Consequently, the Gynoecium contained 10 Carpels and was Syncarpous!!!! 1 2 The number of Stigmatic Lobes can signify the Cross Sections from a lily flower which is Syncarpous number of Carpels. • The yellow lines • Note the number of indicate the Stigmas on this Hibiscus. boundries of each • The Stigmas are fused at carpel & a lower level. How many the numbers signify carpels are involved? the individual carpels. Seed Development • Seed: Mature ovule that contains an embryo, with stored food enclosed in a protective coat. • Seed development: Complete & Perfect Flowers – After double fertilization, endosperm nucleus begins to divide asymmetrically, forming endosperm tissue. – Zygote divides • Small cell is destined to become the embryo. • Larger cell divides repeatedly to become a suspensor. • Complete - Has all four floral Organs • Incomplete - One or more floral organs missing • Perfect - Flower with Androecium & Gynoecium • Imperfect - Missing Androecium or Gynoecium • Carpellate Flower - Imperfect flower that has only Carpels • Staminate Flower - Imperfect flower that has only Stamens 5 Begonia Flowers Monoecious vs. Dioecious • Begonia with • Monoecious (One Staminate Flowers House) -One plant has BOTH Cucurbit with Carpellate Flowers • Begonia with Carpellate & Carpellate Flowers Staminate Flowers. • Dioecious (Two Houses) -One plant has only Staminate Flowers & another plant has only Carpellate Flowers Cucurbit with Staminate Flowers 6.
Recommended publications
  • Auxin Regulation Involved in Gynoecium Morphogenesis of Papaya Flowers
    Zhou et al. Horticulture Research (2019) 6:119 Horticulture Research https://doi.org/10.1038/s41438-019-0205-8 www.nature.com/hortres ARTICLE Open Access Auxin regulation involved in gynoecium morphogenesis of papaya flowers Ping Zhou 1,2,MahparaFatima3,XinyiMa1,JuanLiu1 and Ray Ming 1,4 Abstract The morphogenesis of gynoecium is crucial for propagation and productivity of fruit crops. For trioecious papaya (Carica papaya), highly differentiated morphology of gynoecium in flowers of different sex types is controlled by gene networks and influenced by environmental factors, but the regulatory mechanism in gynoecium morphogenesis is unclear. Gynodioecious and dioecious papaya varieties were used for analysis of differentially expressed genes followed by experiments using auxin and an auxin transporter inhibitor. We first compared differential gene expression in functional and rudimentary gynoecium at early stage of their development and detected significant difference in phytohormone modulating and transduction processes, particularly auxin. Enhanced auxin signal transduction in rudimentary gynoecium was observed. To determine the role auxin plays in the papaya gynoecium, auxin transport inhibitor (N-1-Naphthylphthalamic acid, NPA) and synthetic auxin analogs with different concentrations gradient were sprayed to the trunk apex of male and female plants of dioecious papaya. Weakening of auxin transport by 10 mg/L NPA treatment resulted in female fertility restoration in male flowers, while female flowers did not show changes. NPA treatment with higher concentration (30 and 50 mg/L) caused deformed flowers in both male and female plants. We hypothesize that the occurrence of rudimentary gynoecium patterning might associate with auxin homeostasis alteration. Proper auxin concentration and auxin homeostasis might be crucial for functional gynoecium morphogenesis in papaya flowers.
    [Show full text]
  • Adirectionalcline in Mouriri Guianensis (Me Lastom at Ace Ae)
    ADIRECTIONALCLINE IN MOURIRI GUIANENSIS (ME LASTOM AT ACE AE) Thomas Morley ( ;t) Abstract of specialization of the most important variable, the ovary, can be clearly identi­ Morphological variation in Mouriri guia- fied. The overall pattern of distribution nensis is described and analyzed throughout its range in Brazil and adjacent regions. Featu­ was briefly described previously (Morley, res that vary are ovary size, locule and ovule 1975, 1976); the present paper is a detai­ number, shape and smoothness of the leaf blade led report. and petiole length. The largest ovaries with the most ovules occur in west central Amazonia; intermediate sizes and numbers are widespread MATERIAL AND METHODS but reach the coast only between Marajó and Ceará; and the smallest ovaries with the fewest The study was carried out with locules and ovules are coastal or nearcoastal from Delta Amacuro in Venezuela to Marajó. pressed specimens borrowed from many Small ovaries also occur in coastal Alagoas and herbaria, to whose curators I am grateful. at Rio de Janeiro. Ovaries with the fewest locu­ The most instructive characters are those les and ovules are believed to be the most of the unripened ovary, and therefoie specialized, the result of evolution toward only flowering material was of value in decreased waste of ovules, since the fruits of all members are few-seeded. Leaf characters most cases. It was necessary that speci­ correlate statistically with ovule numbers. mens have a considerable excess of flo­ Possible origen of the distribution pattern of wers for the dissections to be made wi­ the species is compared in terms of present thout harm but fortunately only a few rainfall patterns and in terms of Pleistocene climatic change with associated forest refuges.
    [Show full text]
  • Messages from the Placentae Across Multiple Species a 50 Years
    Placenta 84 (2019) 14–27 Contents lists available at ScienceDirect Placenta journal homepage: www.elsevier.com/locate/placenta Messages from the placentae across multiple species: A 50 years exploration T Hiroaki Soma Saitama Medical University, Japan ARTICLE INFO ABSTRACT Keywords: This review explores eight aspects of placentation in multiple mammalian. Gestational trophoblastic disease 1) Specialities of gestational trophoblastic disease. SUA(Single umbilical artery) 2) Clinical significance of single umbilical artery (SUA) syndrome. DIC(Disseminated intravascular coagulation) in 3) Pulmonary trophoblast embolism in pregnant chinchillas and DIC in pregnant giant panda. giant panda 4) Genetics status and placental behaviors during Japanese serow and related antelopes. Placentation in Japanese serow 5) Specific living style and placentation of the Sloth and Proboscis monkey. Hydatidiform mole in chimpanzee Placentation in different living elephant 6) Similarities of placental structures between human and great apes. Manatee and hyrax 7) Similarities of placental forms in elephants, manatees and rock hyrax with different living styles. Specific placental findings of Himalayan people 8) Specialities of placental pathology in Himalayan mountain people. Conclusions: It was taught that every mammalian species held on placental forms applied to different environ- mental life for their infants, even though their gestational lengths were different. 1. Introduction of effective chemotherapeutic agents. In 1959, I was fortunate tore- ceive an invitation from Prof. Kurt Benirschke at the Boston Lying-in Last October, Scientific American published a special issue about a Hospital. Before that, I had written to Prof. Arthur T. Hertig, Chairman baby's first organ, the placenta [1]. It is full of surprises and amazing of Pathology, Harvard Medical School, asking to study human tropho- science.
    [Show full text]
  • Prenatal Exposure to Nitrogen Oxides and Its Association with Birth Weight in a Cohort of Mexican Newborns from Morelos, Mexico
    Mendoza-Ramirez J, et al. Prenatal Exposure to Nitrogen Oxides and its Association with Birth Weight in a Cohort of Mexican Newborns from Morelos, Mexico. Annals of Global Health. 2018; 84(2), pp. 274–280. DOI: https://doi.org/10.29024/aogh.914 ORIGINAL RESEARCH Prenatal Exposure to Nitrogen Oxides and its Association with Birth Weight in a Cohort of Mexican Newborns from Morelos, Mexico Jessica Mendoza-Ramirez*, Albino Barraza-Villarreal*, Leticia Hernandez-Cadena*, Octavio Hinojosa de la Garza‡,§, José Luis Texcalac Sangrador*, Luisa Elvira Torres- Sanchez*, Marlene Cortez-Lugo*, Consuelo Escamilla-Nuñez*, Luz Helena Sanin-Aguirre† and Isabelle Romieu* Background: The Child-Mother binomial is potentially susceptible to the toxic effects of pollutants because some chemicals interfere with placental transfer of nutrients, thus affecting fetal development, and create an increased the risk of low birth weight, prematurity and intrauterine growth restriction. Objective: To evaluate the impact of prenatal exposure to nitrogen oxides (NOx) on birth weight in a cohort of Mexican newborns. Methodology: We included 745 mother-child pair participants of the POSGRAD cohort study. Information on socio-demographic characteristics, obstetric history, health history and environmental exposure dur- ing pregnancy were readily available and the newborns’ anthropometric measurements were obtained at delivery. Prenatal NOx exposure assessment was evaluated using a Land-Use Regression predictive models considering local monitoring from 60 sites on the State of Morelos. The association between prenatal exposure to NOx and birth weight was estimated using a multivariate linear regression models. Results: The average birth weight was 3217 ± 439 g and the mean of NOx concentration was 21 ppb (Interquartile range, IQR = 6.95 ppb).
    [Show full text]
  • Molecular Communication for Coordinated Seed and Fruit Development: What Can We Learn from Auxin and Sugars?
    International Journal of Molecular Sciences Review Molecular Communication for Coordinated Seed and Fruit Development: What Can We Learn from Auxin and Sugars? Hélène S. Robert Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; [email protected]; Tel.: +420-549-49-8421 Received: 30 January 2019; Accepted: 19 February 2019; Published: 21 February 2019 Abstract: Seed development in flowering plants is a critical part of plant life for successful reproduction. The formation of viable seeds requires the synchronous growth and development of the fruit and the three seed structures: the embryo, the endosperm, the seed coat. Molecular communication between these tissues is crucial to coordinate these developmental processes. The phytohormone auxin is a significant player in embryo, seed and fruit development. Its regulated local biosynthesis and its cell-to-cell transport capacity make of auxin the perfect candidate as a signaling molecule to coordinate the growth and development of the embryo, endosperm, seed and fruit. Moreover, newly formed seeds need nutrients and form new carbon sink, generating high sugar flow from vegetative tissues to the seeds. This review will discuss how auxin and sugars may be considered as signaling molecules to coordinate seed and fruit development. Keywords: auxin; sucrose; embryo; embryo; endosperm; seed; fruit; molecular communication 1. Auxin in Seed Development Plant hormones are instrumental players for many aspects of plant development. In flowering plants, every step leading to seed formation requires crosstalk between various hormones: flower primordium development, floral organ development, including stamens, gynoecium patterning, ovule formation, ovule number, fertilization, seed formation, fruit initiation [1–8].
    [Show full text]
  • The Species of Wurmbea
    J. Adelaide Bot. Gard. 16: 33-53 (1995) THE SPECIES OFWURMBEA(LILIACEAE) IN SOUTH AUSTRALIA Robert J. Bates Cl- State Herbarium, Botanic Gardens, North Terrace, Adelaide, South Australia 5000 Abstract Nine species of Wunnbea Thunb. are recognised in South Australia. W. biglandulosa (R. Br.)Macfarlane, W. deserticola Macfarlane and W. sinora Macfarlane are recorded for the first time; Wurmbea biglandulosa ssp. flindersica, W. centralis ssp. australis, W. decumbens, W. dioica ssp. citrina, W. dioica ssp. lacunaria, W. latifolia ssp. vanessae and W. stellata are described. A key, together with notes on each species is provided. Macfarlane (1980) revised the genus for Australia. He placed Anguillaria R. Br. under Wurmbea and recognised W. dioica (R. Br.)F. Muell., W. centralis Macfarlane, W. latifolia Macfarlane and W. uniflora (R. Br.)Macfarlane as occurring in South Australia. Before this only one species, W. dioica (as Anguillaria dioica) was listed for South Australia (J.M. Black 1922, 1943). Macfarlane stated that he had seen no live material of South Australian species. The present author has made extensive field studies of taxa discussed in this paper, has cultivated most and studied herbarium material. Several trips have been made to other states to allow further comparisons to be made. For information on the nomenclatural history, general morphology, biology and ecology of Wurmbea see Macfarlane 1980. Key to the South Australian species of Wurmbea 1 Lower leaves paired (almost opposite), basal, of same shape and size 2 1: Lower leaves well separated, often of different shape and size 4 2 Leaves with serrate margins, flowers unisexual, nectaries 1 per tepal, a single band of colour...
    [Show full text]
  • Liliaceae Lily Family
    Liliaceae lily family While there is much compelling evidence available to divide this polyphyletic family into as many as 25 families, the older classification sensu Cronquist is retained here. Page | 1222 Many are familiar as garden ornamentals and food plants such as onion, garlic, tulip and lily. The flowers are showy and mostly regular, three-merous and with a superior ovary. Key to genera A. Leaves mostly basal. B B. Flowers orange; 8–11cm long. Hemerocallis bb. Flowers not orange, much smaller. C C. Flowers solitary. Erythronium cc. Flowers several to many. D D. Leaves linear, or, absent at flowering time. E E. Flowers in an umbel, terminal, numerous; leaves Allium absent. ee. Flowers in an open cluster, or dense raceme. F F. Leaves with white stripe on midrib; flowers Ornithogalum white, 2–8 on long peduncles. ff. Leaves green; flowers greenish, in dense Triantha racemes on very short peduncles. dd. Leaves oval to elliptic, present at flowering. G G. Flowers in an umbel, 3–6, yellow. Clintonia gg. Flowers in a one-sided raceme, white. Convallaria aa. Leaves mostly cauline. H H. Leaves in one or more whorls. I I. Leaves in numerous whorls; flowers >4cm in diameter. Lilium ii. Leaves in 1–2 whorls; flowers much smaller. J J. Leaves 3 in a single whorl; flowers white or purple. Trillium jj. Leaves in 2 whorls, or 5–9 leaves; flowers yellow, small. Medeola hh. Leaves alternate. K K. Flowers numerous in a terminal inflorescence. L L. Plants delicate, glabrous; leaves 1–2 petiolate. Maianthemum ll. Plant coarse, robust; stems pubescent; leaves many, clasping Veratrum stem.
    [Show full text]
  • Systematic Reviews Ajog.Org
    Systematic Reviews ajog.org The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis Ste´phanie Roberge, PhD; Kypros Nicolaides, MD; Suzanne Demers, MD, MSc; Jon Hyett, MD; Nils Chaillet, PhD; Emmanuel Bujold, MD, MSc BACKGROUND: Preeclampsia and fetal growth restriction are major causes of perinatal death and handicap in survivors. Randomized clinical trials have reported that the risk of preeclampsia, severe preeclampsia, and fetal growth restriction can be reduced by the prophylactic use of aspirin in high-risk women, but the appropriate dose of the drug to achieve this objective is not certain. OBJECTIVE: We sought to estimate the impact of aspirin dosage on the prevention of preeclampsia, severe preeclampsia, and fetal growth restriction. STUDY DESIGN: We performed a systematic review and meta-analysis of randomized controlled trials comparing the effect of daily aspirin or placebo (or no treatment) during pregnancy. We searched MEDLINE, Embase, Web of Science, and Cochrane Central Register of Controlled Trials up to December 2015, and study bibliographies were reviewed. Authors were contacted to obtain additional data when needed. Relative risks for preeclampsia, severe preeclampsia, and fetal growth restriction were calculated with 95% confidence intervals using random-effect models. Dose-response effect was evaluated using meta-regression and reported as adjusted R2. Analyses were stratified according to gestational age at initiation of aspirin (16 and >16 weeks) and repeated after exclusion of studies at high risk of biases. RESULTS: In all, 45 randomized controlled trials included a total of 20,909 pregnant women randomized to between 50-150 mg of aspirin daily.
    [Show full text]
  • PLANT MORPHOLOGY: Vegetative & Reproductive
    PLANT MORPHOLOGY: Vegetative & Reproductive Study of form, shape or structure of a plant and its parts Vegetative vs. reproductive morphology http://commons.wikimedia.org/wiki/File:Peanut_plant_NSRW.jpg Vegetative morphology http://faculty.baruch.cuny.edu/jwahlert/bio1003/images/anthophyta/peanut_cotyledon.jpg Seed = starting point of plant after fertilization; a young plant in which development is arrested and the plant is dormant. Monocotyledon vs. dicotyledon cotyledon = leaf developed at 1st node of embryo (seed leaf). “Textbook” plant http://bio1903.nicerweb.com/Locked/media/ch35/35_02AngiospermStructure.jpg Stem variation Stem variation http://www2.mcdaniel.edu/Biology/botf99/stems&leaves/barrel.jpg http://www.puc.edu/Faculty/Gilbert_Muth/art0042.jpg http://www2.mcdaniel.edu/Biology/botf99/stems&leaves/xstawb.gif http://biology.uwsp.edu/courses/botlab/images/1854$.jpg Vegetative morphology Leaf variation Leaf variation Leaf variation Vegetative morphology If the primary root persists, it is called a “true root” and may take the following forms: taproot = single main root (descends vertically) with small lateral roots. fibrous roots = many divided roots of +/- equal size & thickness. http://oregonstate.edu/dept/nursery-weeds/weedspeciespage/OXALIS/oxalis_taproot.jpg adventitious roots = roots that originate from stem (or leaf tissue) rather than from the true root. All roots on monocots are adventitious. (e.g., corn and other grasses). http://plant-disease.ippc.orst.edu/plant_images/StrawberryRootLesion.JPG Root variation http://bio1903.nicerweb.com/Locked/media/ch35/35_04RootDiversity.jpg Flower variation http://130.54.82.4/members/Okuyama/yudai_e.htm Reproductive morphology: flower Yuan Yaowu Flower parts pedicel receptacle sepals petals Yuan Yaowu Flower parts Pedicel = (Latin: ped “foot”) stalk of a flower.
    [Show full text]
  • Vegetative Vs. Reproductive Morphology
    Today’s lecture: plant morphology Vegetative vs. reproductive morphology Vegetative morphology Growth, development, photosynthesis, support Not involved in sexual reproduction Reproductive morphology Sexual reproduction Vegetative morphology: seeds Seed = a dormant young plant in which development is arrested. Cotyledon (seed leaf) = leaf developed at the first node of the embryonic stem; present in the seed prior to germination. Vegetative morphology: roots Water and mineral uptake radicle primary roots stem secondary roots taproot fibrous roots adventitious roots Vegetative morphology: roots Modified roots Symbiosis/parasitism Food storage stem secondary roots Increase nutrient Allow dormancy adventitious roots availability Facilitate vegetative spread Vegetative morphology: stems plumule primary shoot Support, vertical elongation apical bud node internode leaf lateral (axillary) bud lateral shoot stipule Vegetative morphology: stems Vascular tissue = specialized cells transporting water and nutrients Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Modified stems Asexual (vegetative) reproduction Stolon: above ground Rhizome: below ground Stems elongating laterally, producing adventitious roots and lateral shoots Vegetative morphology: stems Modified stems Food storage Bulb: leaves are storage organs Corm: stem is storage organ Stems not elongating, packed with carbohydrates Vegetative
    [Show full text]
  • Ovary Structure of the Genus Gyrogyne (Gesneriaceae, Epithemateae)
    CSIRO PUBLISHING www.publish.csiro.au/journals/asb Australian Systematic Botany 16, 629–632 Ovary structure of the genus Gyrogyne (Gesneriaceae, Epithemateae) Yin-Zheng Wang Laboratory of Systematic & Evolutionary Botany and Herbarium, Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, People’s Republic of China. Email: [email protected] Abstract. The anatomical re-investigation of the ovary in the holotype of Gyrogyne subaequifolia W.T.Wang is carried out in order to clarify the ovarian structure of the genus Gyrogyne W.T.Wang (Gesneriaceae), a seemingly unusual ovarian structure according to its original description. The present anatomical re-investigation reveals that the ovary is, in fact, bilocular with a swollen axile placenta in the centre, that is, the median area of the membranous septum. The ovarian structure of G. subaequifolia shows, thus, a common feature frequently observed in the ovaries of Gesneriaceae rather than a unique ovarian characteristic that contributes to the family Gesneriaceae. The systematic placement of Gyrogyne and the relationship between Gyrogyne and allies are discussed. SB03004 NoY.- tesZ. onWang t he ovary structur e of Gy rogyne Introduction Results The monospecific genus Gyrogyne W. T. Wa n g The transections at the basal part of the ovary are not clear, (Gesneriaceae) endemic to China was established on the for the flower is very depressed (not shown). Upward from basis of the only species, G. subaequifolia W. T. Wa n g , the lower part, the structure of the ovary gradually becomes described at the same time (Wang 1981). In the original visible.
    [Show full text]
  • “First-Blood Circulation Stage”, a New Insight Into the Pathogenesis of Clinical Manifestations of Preeclampsia*
    Advances in Bioscience and Biotechnology, 2012, 3, 945-950 ABB http://dx.doi.org/10.4236/abb.2012.327116 Published Online November 2012 (http://www.SciRP.org/journal/abb/) The importance of “first-blood circulation stage”, a new insight into the pathogenesis of clinical manifestations of * preeclampsia Lucijan Mohorovic, Vladimir Micovic Department of Environmental Medicine, University of Rijeka School of Medicine, Rijeka, Croatia Email: [email protected] Received 6 August 2012; revised 10 September 2012; accepted 23 October 2012 ABSTRACT in the bloodstream of pregnant women correlate with the inhalation of substances generated from coal com- The tested hypothesis points out that exposure to bustion (SO , NO , NO, NO and others) and that is environmental toxic substances originating from coal 2 x 2 an early biomarker of the identification of women or other fossil fuels burning is the most decisive for with a pregnancy risk, and having an significant role the impacts of the metabolic synergy of nitrogen upon adverse effects on mother and fetus health. oxides as oxidants that cause hemoglobin oxidation to methemoglobin, and sulphur dioxide metabolites as Keywords: Methemoglobinemia; Mother and Fetal inhibitors of antioxidants, in the bloodstream through- Preeclampsia; Three-Stage Disorders; Environmental out the period of pregnancy. The main difference between the present three-stage hypothesis and other Oxidants; Biomarker; Nitrogen and Sulphur Synergy hypotheses is the assertion that, in the pathogenesis of early and late complicated pregnancy, methemog- 1. INTRODUCTION lobin takes on an important role. Methemoglobin by itself and from heme, redox-active ferric iron as a As a main aim we want to make a contribution to the product of methemoglobin catabolism, has prooxi- establishment of sources of oxidants as key factors in dant properties and causes important structural and understanding the role oxidants play in the pathogenesis functional changes in the vascular endothelium, such of cardiovascular endothelial dysfunction.
    [Show full text]