Weed: Yellow Starthistle (Centaurea Solstitialis L.)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How to Manage Weeds in Maize for High Yields
7. Integrated weed management Two or more of the above methods are used in combination to manage weeds with resultant ecological as well as social -economic benefits. REMEMBER How to manage weeds To achieve high and good quality yields, timeliness and cost effectiveness are crucial for every weed control in maize for high yields option. Kenya Agricultural Research Institute P.O. Box 57811-00200, NAIROBI. Tel: 254-20-4183301-20, FAX 254-20-4183344 Email: [email protected] Website: www. kari.org Compiled by: Mwangi, H.W. For more information contact: Good maize yields Centre Director, KARI Kabete P.O Box 14733-00800, Nairobi. Tel: (020) 4444144 KARI information brochure series / 8 /2008 Ksh. 20 Introduction 2. Hand weeding 5. Plant residue mulches Competition between maize and weeds can cause total This is done using various tools like hoes, knives and These are crop residues that are used to cover the crop loss depending on several weed factors. ploughs. Two weedings between the 2nd and 7th spaces between the growing crops. week after germination are often adequate for maize These factors include: depending on the agro eco zone. This method is not common due to a shortage of crop residues and destruction by termites. i) Type of weeds which may be This should be:- • Grass or broad leafed • First weeding at 2-3 weeks • Free living or parasitic 6. Chemical weed control (Herbicides) • Second one at 6-7 weeks after emergence. • Weed life cycle (Annual (1yr), Biennial (2yrs) These are chemicals that kill weeds. They exist in form perennial (>2yrs)) weed. -
Principles of Sustainable Weed Able Weed
PRINCIPLES OF SUSTAINABLE WEED MANAGEMENT FOR CROPLANDS AGRONOMY SYSTEMS SERIES Abstract: To some extent, weeds are a result of crop production, but to a larger extent they are a consequence of management decisions. Managing croplands according to nature’s principles will reduce weed problems. And while these principles apply to most crops, this publication focuses on agronomic crops such as corn, soybeans, milo, and small grains. The opportunities to address the root causes of weeds are not always readily apparent, and often require some imagination to recognize. Creativity is key to taking advantage of these opportunities and devising sustainable cropping systems that prevent weed problems, rather than using quick-fix approaches. Annual monoculture crop production generally involves tillage that creates conditions hospitable to many weeds. This publication discusses several alternatives to conventional tillage systems, including allelopathy, intercropping, crop rotations, and a weed- free cropping design. A Resources list provides sources of further information. By Preston Sullivan boundaries within which we operate and the NCAT Agriculture Specialist rules for success within those boundaries. September 2003 The “weed control” paradigm is reactive— it addresses weed First, Free Your Brain problems by using As Iowa farmer Tom Frantzen poetically states: various tools and tech- “Free your brain and your behind will follow.” nologies. “How am I What Tom is referring to is discovering new para- gonna get rid of this vel- digms. Joel Barker, author of Paradigms—The vet-leaf?” and “How do Business of Discovering the Future (1), defines a I control foxtail?” are re- paradigm as a set of standards that establish the active statements. -
Squarrose Knapweed EXOTIC Centaurea Virgata Ssp
southwestlearning.org AME R ICAN SOUTHWEST SPECIES FACT SHEET Asteraceae (Sunflower family) Squarrose Knapweed EXOTIC Centaurea virgata ssp. squarrosa At a Glance • Perennial • Highly branched stems that grow one to three feet tall. SITY • Lower leaves are deeply dissected, but the upper leaves R are entire and linear. • Flowers are pink to pale-purple. • Flowerheads have four to eight florets and appear more slender than the flowerheads of other knapweeds. • The bracts underneath the flower have a central spine that curves backwards. • Fruit is a golden to dark-brown achene. UNIVE STATE UTAH / DEWEY STEVE The bracts underneath the flower of squarrose knapweed have Habitat and Ecology a central spine that curves backwards. Squarrose knapweed (Centaurea virgata ssp. squarrosa) is present in Utah, Nevada, California, Oregon, Wisconsin, spotted (Centaurea maculosa) or diffuse knapweed (Cen- and Michigan. How it was introduced to North America is taurea diffusa). Squarrose knapweed is not palatable to unknown. Squarrose knapweed often grows on degraded livestock and can form monocultures. Its taxonomic status rangeland soils and tolerates drought and cold better than is uncertain: it is also known as Centaurea squarrosa and Centaurea virgata. Description Squarrose knapweed is a long-lived perennial with highly branched stems that grow one to three feet tall. The stems grow above a woody crown and stout taproot. Under unfa- vorable conditions, the plants remain as basal rosettes be- fore developing flowering stems. Squarrose knapweed re- produces by seed. The seed head falls near the parent plant, but the backwards-curved spines under the seed head can cling to hair, wool, fur, and clothing, allowing the seeds to disperse over greater distances. -
Weed Risk Assessment: Centaurea Calcitrapa
Weed Risk Assessment: Centaurea calcitrapa 1. Plant Details Taxonomy: Centaurea calcitrapa L. Family Asteraceae. Common names: star thistle, purple star thistle, red star thistle. Origins: Native to Europe (Hungary, Switzerland, Czechoslovakia, Russian Federation, Ukraine, Albania, Greece, Italy, Romania, Yugoslavia, France, Portugal, Spain), Macaronesia (Canary Islands, Madeira Islands), temperate Asia (Cyprus, Lebanon, Syria, Turkey) and North Africa (Algeria, Egypt, Morocco, Tunisia) (GRIN database). Naturalised Distribution: Naturalised in New Zealand, South Africa, Central America, South America, the United States of America (eg. naturalised in 14 states, mostly in northwest including California, Idaho, Washington, Wyoming, New Mexico, Oregon, Arizona) (USDA plants database), and Australia (GRIN database). Description: C. calcitrapa is an erect, bushy and spiny biannual herb that is sometimes behaves as an annual or short-lived perennial. It grows to 1 m tall. Young stems and leaves have fine, cobweb-like hairs that fall off over time. Older stems are much-branched, straggly, woody, sparsely hairy, without wings or spines and whitish to pale green. Lower leaves are deeply divided while upper leaves are generally narrow and undivided. Rosette leaves are deeply divided and older rosettes have a circle of spines in the centre. This is the initial, infertile, flower head. Numerous flowers are produced on the true flowering stem and vary from lavender to a deep purple colour. Bracts end in a sharp, rigid white to yellow spines. Seed is straw coloured and blotched with dark brown spots. The pappus is reduced or absent. Bristles are absent. Seeds are 3-4mm long, smooth and ovoid. The root is a fleshy taproot (Parsons and Cuthbertson, 2001) (Moser, L. -
Yellow Starthistle Management with Grazing, Mowing, and Competitive Plantings
California Exotic Pest Plant Council 1996 Symposium Proceedings Yellow Starthistle Management with Grazing, Mowing, and Competitive Plantings Craig D. Thomsen, William A. Williams, and Marc P. Vayssieres Dept. of Agronomy and Range Science, University of California, Davis, CA 95616 1. Using livestock to manage yellow starthistle in annual grasslands Introduction Livestock grazing has been recognized as a major driving force for noxious weed invasions in pastures and on rangeland (Parker 1949). Livestock alter botanical composition and contribute to weed proliferation by reducing plant cover, dispersing seed, concentrating nutrients, compacting soil, and selective grazing (Burcham 1957). Many weeds that occur on grazing land possess anti-herbivore traits such as spines, stiff awns, high silica and lignin content, or secondary compounds such as alkaloids and glandular exudates. Because animals selectively graze some plants and avoid others, species that have grazing deterrents are favored on grazing lands and often increase relative to those eaten by livestock. Paradoxically, some noxious weeds that flourish on grazing lands have some stages of growth that are palatable to livestock, and with alterations in grazing management, can be suppressed by livestock. For example, medusahead (Taeniatherum caput-medusae) (Lusk et al. 1961), Klamath weed (Hypericum perforatum) (Murphy et al. 1954), spotted knapweed (Centaurea maculosa) (Kelsey and Mikalovich 1987), leafy spurge (Euphorbia esula) (Johnston and Peake 1960), tansy ragwort (Senecio jacobaea) (Mosher 1979) and yellow starthistle (Centaurea solstitialis) (Thomsen et al. 1993) have all been suppressed by livestock grazing. Some invasive species are absent from grazing land because they are highly palatable to livestock. In maritime areas, the palatable sweet fennel (Foeniculum vulgare) can reach dominant status in ungrazed grasslands, but is usually entirely absent from adjacent grazed land. -
Identifying & Managing Weeds in Gardens
Identifying & Managing Weeds in Gardens Todd Mervosh Valley Laboratory - Windsor The Connecticut Agricultural Experiment Station CAES- Spring Open House 2009 www.ct.gov/caes Definitions of WEED ‘Plant out of Place’ - any plant growing where it is not wanted. Plant with generally undesirable properties. Plant that spreads rapidly and competitively. “Plant that has mastered every survival skill except for learning how to grow in rows.” Doug Larson “A plant whose virtues have not yet been discovered.” Ralph Waldo Emerson “Is this a wildflower or a weed?” CAES- Spring Open House 2009 www.ct.gov/caes Field Violet / Field Pansy (Viola arvensis) CAES- Spring Open House 2009 www.ct.gov/caes CAES- Spring Open House 2009 www.ct.gov/caes WEEDS: NEGATIVES 1) Compete with crops / desirable plants for: • WATER, NUTRIENTS, SPACE, LIGHT 2) Reduce air flow in garden, keeping plants wetter & more prone to pathogens. 3) Can be alternate hosts for fungal diseases, or harbor insect pests. 4) Health Problems: Hay fever (ragweed), skin rashes (poison ivy). 5) Unattractive: Detract from beauty of garden or landscape planting. CAES- Spring Open House 2009 www.ct.gov/caes WEEDS: POSITIVES 1) Help protect soil from erosion. 2) Legumes (clovers, vetch) release nitrogen from root nodules into soil – add fertilizer. 3) Some weeds harbor beneficial insects. 4) Food sources for many animals. 5) Many weeds are edible for humans (purslane, lambsquarters, dandelion, etc.) 6) Some “weeds” are beautiful! CAES- Spring Open House 2009 www.ct.gov/caes Photo Credits Randy -
Invasive Plants in Your Backyard!
Invasive Plants In Your Backyard! A Guide to Their Identification and Control new expanded edition Do you know what plants are growing in your yard? Chances are very good that along with your favorite flowers and shrubs, there are non‐native invasives on your property. Non‐native invasives are aggressive exotic plants introduced intentionally for their ornamental value, or accidentally by hitchhiking with people or products. They thrive in our growing conditions, and with no natural enemies have nothing to check their rapid spread. The environmental costs of invasives are great – they crowd out native vegetation and reduce biological diversity, can change how entire ecosystems function, and pose a threat Invasive Morrow’s honeysuckle (S. Leicht, to endangered species. University of Connecticut, bugwood.org) Several organizations in Connecticut are hard at work preventing the spread of invasives, including the Invasive Plant Council, the Invasive Plant Working Group, and the Invasive Plant Atlas of New England. They maintain an official list of invasive and potentially invasive plants, promote invasives eradication, and have helped establish legislation restricting the sale of invasives. Should I be concerned about invasives on my property? Invasive plants can be a major nuisance right in your own backyard. They can kill your favorite trees, show up in your gardens, and overrun your lawn. And, because it can be costly to remove them, they can even lower the value of your property. What’s more, invasive plants can escape to nearby parks, open spaces and natural areas. What should I do if there are invasives on my property? If you find invasive plants on your property they should be removed before the infestation worsens. -
Definition of a Weed
Any “plant” can be a weed – it all depends entirely on a human’s opinion “A plant whose virtues have not yet been discovered” Some of these “plants” that humans call weeds are useful or desirable, others seem to have no real use ◦ Ralph Waldo Emerson Mixing the floss from milkweed Reduce wind and water erosion pods with down Provide food and habitat for wildlife produces an extremely Provides a source of labor for some lightweight Many minor uses thermal filling. Human food source The milkweed Some are truly valuable or desirable plants-- plant also -it all depends on HUMANS provides a habitat for monarch butterflies. common pokeweed Devil’s-claw A poisonous plant, yet when prepared Highly competitive properly can be weed whose seed eaten like a green capsules are used in leafy vegetable decorations. The similar to collard seeds can be greens. roasted and eaten much like sunflower seeds. It is still considered to be a weed by most. 1 An African herb, has long been popular in Medicines Europe for relieving back pain. Phytoremediation Researchers in Germany treated patients Ornamentals with Vioxx and devil’s-claw extract for 6 Minor foods weeks. Minor fibers 42% of the patients using devil’s-claw Soil stabilization/erosion control claimed reduced pain. 33% of the patients using Vioxx made the same claim. a. Two major ways weeds cause losses Two major ways weeds cause losses 1. Directly– actually reduces the cash return of the crop; amount in field, amount harvested, and/or quality. Indirectly - impact on land owner or society, not i. -
Estimated Cost of Production for Legalized Cannabis
WORKING P A P E R Estimated Cost of Production for Legalized Cannabis JONATHAN P. CAULKINS WR-764-RC July 2010 This product is part of the RAND working paper series. RAND working papers are intended to share researchers’ latest findings and to solicit informal peer review. They have been approved for circulation by RAND but have not been formally edited or peer reviewed. Unless otherwise indicated, working papers can be quoted and cited without permission of the author, provided the source is clearly referred to as a working paper. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. is a registered trademark. Estimated Cost of Production for Legalized Cannabis Jonathan P. Caulkins H. Guyford Stever Professor of Operations Research Carnegie Mellon University Heinz College & Qatar Campus RAND, Drug Policy Research Center Abstract This paper tries to estimate post-legalization production costs for indoor and outdoor cannabis cultivation as well as parallel estimates for processing costs. Commercial production for general use is not legal anywhere. Hence, this is an exercise in inference based on imperfect analogs supplemented by spare and unsatisfactory data of uncertain provenance. While some parameters are well grounded, many come from the gray literature and/or conversations with others making similar estimates, marijuana growers, and farmers of conventional goods. Hence, this exercise should be taken with more than a few grains of salt. Nevertheless, to the extent that the results are even approximately correct, they suggest that wholesale prices after legalization could be dramatically lower than they are today, quite possibly a full order of magnitude lower than are current prices. -
A Structural Growth Model of the Invasive Weed Species Yellow Starthistle, Centaurea Solstitialis L
A Structural Growth Model of the Invasive Weed Species Yellow Starthistle, Centaurea solstitialis L. 1Thornby, D., 2J. Garren, 2R. Carruthers, 2D. Spencer and 2J.P. Weber 1Queensland Department of Primary Industries and Fisheries 2USDA Agricultural Research Service; Email: [email protected] Keywords: Centaurea solstitialis, yellow starthistle, structural model, LStudio, L-systems. EXTENDED ABSTRACT Yellow starthistle (Centaurea solstitialis L.) is a summer-flowering annual plant of the family Asteraceae, and a significant weed of roadsides, pasture and grasslands in California. It is also distributed, though with less economic and ecological significance, throughout the US and in other temperate parts of the world. Yellow starthistle grows vigorously during the dormant period for most native species in its grasslands habitat, is able to access deep soil moisture reserves, and being particularly spiny, reduces land value for both animal fodder and human recreation. It is a prolific seed producer and seed spreads readily through contact with animals, people, and vehicles. As with many weeds, yellow starthistle's structure and growth patterns have been relatively little- Figure 1. Virtual yellow starthistle studied. It is hoped that studying the ontogenesis and morphogenesis of yellow starthistle will help Stochasticity was added to the model, so that it uncover information that can assist in improving reproduces a range of plants of different sizes and control strategies, as well as providing a morphologies, within the range of likely sizes visualisation tool for disseminating detailed observed in the data for each field site. knowledge about this plant's growth and development to stakeholders in a readily understood way. -
Weed Targeting Herbicide Management
EXTENSION EC708 Weed Targeting Herbicide Management Viacheslav I. Adamchuk, Extension Precision Agriculture Engineer Mark L. Bernards, Extension Irrigated Weed Specialist a major problem in summer annual crops like corn or George E. Meyer, Machine Vision Specialist sugarbeet may not even emerge when a winter annual Jerry A. Mulliken, Independent Crop Consultant crop like wheat is growing. RESOURCES ost producers use herbicides to manage weed Weeds exploit space not taken by the crop (inter- Minfestations. Generally, herbicides are applied row areas) and not disturbed by control methods such For more informa- at a uniform rate to the entire field. However, a as tillage or herbicides. Weeds vary in their response tion about precision uniform application may not be appropriate for all to different environmental cues and conditions that areas of a field. As precision agriculture technologies favor growth of one weed species over another. A few agriculture research, have developed, site-specific management of most studies have correlated landscape features and manage- education and dem- agricultural inputs, including herbicides, has become ment factors to the presence of weed patches. These onstration programs feasible. Differentiated application of herbicides is an characteristics include topography (or elevation), soil effective way to minimize herbicide costs, maximize pH, soil organic carbon (OC), fertility (nitrogen and at the University of weed control and prevent unnecessary environmental phosphorous), soil texture, field history, and herbicide Nebraska–Lincoln, waste. This circular provides basic guidance on site- use patterns. For example, topography, soil texture, specific weed management. and organic carbon can have a significant effect on visit the Web site at available moisture, which affects the ability of weeds http://precisionagriculture. -
Thistle Identification Referee 2017
Thistle Identification Referee 2017 Welcome to the Thistle Identification Referee. The purpose of the referee is to review morphological characters that are useful for identification of thistle and knapweed fruits, as well as review useful resources for making decisions on identification and classification of species as noxious weed seeds. Using the Identification Guide for Some Common and Noxious Thistle and Knapweed Fruits (Meyer 2017) and other references of your choosing, please answer the questions below (most are multiple choice). Use the last page of this document as your answer sheet for the questions. Please send your answer sheet to Deborah Meyer via email ([email protected]) by May 26, 2017. Be sure to fill in your name, lab name, and email address on the answer sheet to receive CE credit. 1. In the Asteraceae, the pappus represents this floral structure: a. Modified stigma b. Modified corolla c. Modified calyx d. Modified perianth 2. Which of the following species has an epappose fruit? a. Centaurea calcitrapa b. Cirsium vulgare c. Onopordum acaulon d. Cynara cardunculus 3. Which of the following genera has a pappus comprised of plumose bristles? a. Centaurea b. Carduus c. Silybum d. Cirsium 4. Which of the following species has the largest fruits? a. Cirsium arvense b. Cirsium japonicum c. Cirsium undulatum d. Cirsium vulgare 5. Which of the following species has a pappus that hides the style base? a. Volutaria muricata b. Mantisalca salmantica c. Centaurea solstitialis d. Crupina vulgaris 6. Which of the following species is classified as a noxious weed seed somewhere in the United States? a.