BIOLOGICAL PROPERTIES of SELECTED FLAVONOIDS of ROOIBOS (Aspalathus Linearis)

Total Page:16

File Type:pdf, Size:1020Kb

BIOLOGICAL PROPERTIES of SELECTED FLAVONOIDS of ROOIBOS (Aspalathus Linearis) BIOLOGICAL PROPERTIES OF SELECTED FLAVONOIDS OF ROOIBOS (Aspalathus linearis) Petra W Snijman Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at the University of the Western Cape Study Leader: Prof IR Green Co-study Leaders: Prof E Joubert Prof WCA Gelderblom June 2007 ii DECLARATION I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. _______________________________ ____________ Petra Wilhelmina Snijman Date Copyright © 2007 University of the Western Cape All rights reserved iii ABSTRACT Bioactivity-guided fractionation was used to identify the most potent antioxidant and antimutagenic fractions contained in the methanol extract of unfermented rooibos (Aspalathus linearis), as well as the bioactive principles for the most potent antioxidant fractions. The different extracts and fractions were screened using Salmonella typhimurium tester strain TA98 and metabolically activated 2- acetoaminofluorene (2-AAF) to evaluate antimutagenic potential, while the antioxidant potency was assessed by two different in vitro assays, i.e. the inhibition of Fe(II) induced microsomal lipid peroxidation and the scavenging of the 2,2'- azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation. The most polar XAD fraction displayed the most protection against 2-AAF induced mutagenesis in TA98. Successive fractionation of the two XAD fractions most active in the ABTS•+ assay led to both aspalathin and nothofagin being isolated for the first time to a purity of >95%. Thirteen flavonoids of rooibos were also compared in the two antioxidant assays in addition to a metal chelating assay in order to derive a possible comparative structure-activity profile between the dihydrochalcones aspalathin and nothofagin, their flavone analogues orientin and isoorientin (from the precursor aspalathin) and vitexin and isovitexin from nothofagin, the flavone aglycones luteolin and chrysoeriol as well as four flavonols from rooibos, i.e. quercetin, isoquercitrin (quercetin-3-O-glucoside), hyperoside (quercetin-3-O-galactoside) and rutin (quercetin-3-O-rutinoside). The flavanol (+)-catechin was also included while iv epigallocatechin gallate (EGCG), the major active principle from Camellia sinensis was used as benchmark. Aspalathin, the dihydrochalcone unique to rooibos, was a very efficient inhibitor of lipid peroxidation and scavenger of ABTS•+, while nothofagin was equipotent to aspalathin in the ABTS•+ assay, but had the lowest inhibitory effect of all the flavonoids tested in the lipid peroxidation assay. Aspalathin was shown to be the major contributor to the antioxidant activity of unfermented rooibos in quantity and potency. The same thirteen flavonoids of rooibos were also investigated in the Salmonella typhimurium mutagenicity assay, again using EGCG as benchmark. Strains TA98 and TA100 utilizing 2-AAF and aflatoxin B1 (AFB1) respectively, were used. Neither aspalathin nor nothofagin displayed potent antimutagenic properties against both the mutagens evaluated while luteolin was the most effective antimutagen. The antimutagenic behaviour of rooibos could not be solely attributed to any of these monomeric flavonoid constituents. No clear and direct link between the antioxidant and antimutagenic properties of the major rooibos flavonoids could be conclusively be established in the present studies. v AIMS AND OBJECTIVES 1. To investigate whether the same flavonoids are responsible for both the potent antioxidant and antimutagenic properties of unfermented rooibos. 2. To compare the activity of thirteen of the major flavonoids of unfermented rooibos in two antioxidant assays. 3. To compare the antimutagenic activity of the same thirteen flavonoids of unfermented rooibos in two different Salmonella typhimurium strains using two different metabolically activated mutagens. vi ACKNOWLEDGEMENTS This thesis is the result of many years of work and it realized thanks to the support of, amongst others, the following people and institutions: I would first-off like to express my deep and sincere gratitude towards Prof Ivan Green, my study leader, for being a true mentor to me. Thank you for your encouragement, understanding and personal guidance, always given in a positive, gentle and friendly manner. I have learnt so much from you. I would like to thank Dr Wentzel Gelderblom of the Medical Research Council, my former project leader, for defining this project and allocating me to this fascinating work. Thank you for the technical skills you taught me. Thank you for your patience with me and teaching me to have patience with columns and other laboratory routines. I owe a sincere thanks to Dr Lizette Joubert, not only for the weeks of training I spent at ARC Infruitec-Nietvoorbij and sharing her insights and expertise with me throughout this project, but also for always being ready to enthusiastically think up a new angle to an argument or another possible solution to a problem. I benefited much from her about rooibos, its flavonoids and analytical chemistry. I am also endebted to the following people: Prof Kayoko Shimoi of the University of Shizuoka, Japan, for her valuable contribution in optimising the lipid peroxidation assay; Ms Sonja Swanevelder of the Medical Research Council and Dr Martin Kidd of the Department of Statistics at the University of Stellenbosch for statistical analyses; Dalene de Beer of ARC Infruitec-Nietvoorbij for training and assistance in HPLC analysis and the ABTS•+ assay; Shamiel Joseph and Dr Jeanine Marnewick for their assistance in the Salmonella typhimurium assay; vii Dr BN Ames and colleagues of the University of California in Berkeley for kindly supplying the Salmonella typhimurium tester strains; Dr Ann Louw and her students Ciko Mfenyana and Steven Robertson of the Biochemistry Department at the University of Stellenbosch for valuable assistance with the Prism computer programme; Dr Thinus van der Merwe (then of the University of Stellenbosch) for LC-MS spectra of aspalathin and nothofagin; Dr Robert Vleggaar of the University of Pretoria for NMR-spectra of aspalathin; The Medical Research Council, Rooibos Tea Forum and THRIP for financial support; Mercia Mottie, Faculty Officer at the University of the Western Cape for always being friendly and helpful with registration and any administrative enquiry or problem; My former colleagues at the Medical Research Council where the experimental work was done, for their support, advice and inputs, and John for always having clean glassware. To my present colleagues at the University of Stellenbosch I have such appreciation and gratefulness: Prof Jan Dillen and Dr Catharine Esterhuysen: thank you for your support and flexibility in granting me leave from work; Japie, Glen and Jessie: thank you for your interest shown and for being prepared to fill in for me; Moebarick and Johannes for your assistance and support; Maryna, thank you for your encouragement and perspectives, and for reminding me about the Bigger Picture! And last but by no means least: I want to thank my mother, sisters and friends for their interest and support throughout this time. Yes, it is finally done! viii CONTENTS Chapter Page Abstract iii Aims and Objectives v Acknowledgements vi Key to abbreviations used in thesis ix List of Tables x List of Figures xii List of Addenda iv 1. Introduction 1 2. Literature Review 6 3. Bioguided fractionation and isolation of the two major 94 dihydrochalcones from unfermented rooibos (Aspalathus linearis) 4. Antioxidant activity of the major flavonoids of rooibos 134 (Aspalathus linearis) 5. Antimutagenic activity of the major flavonoids of 165 rooibos (Aspalathus linearis) 6. General discussion and conclusions 193 Addenda 198 Every chapter of this thesis has been written as an individual entity that could form the basis of a journal manuscript. Repetition between chapters has therefore been unavoidable. ix Key to abbreviations used in thesis • OH : hydroxyl radical 2-AAF : 2-acetylaminofluorene ABTS• : 2,2΄-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical AFB1 : aflatoxin B1 BHP : tert-butylhydroperoxide BHT : butylated hydroxytoluene CHP : cumene hydrogen peroxide COMT : catechol-O-methyl transferase DMSO : dimethyl sulfoxide DPPH• : 2,2’-diphenyl-1-picrylhydrazyl radical EDTA : ethylenediaminetetraacetic acid EGCG : epigallocatechin gallate, a green tea flavonoid used as reference in this study Fl-OH : flavonoid Fl-O• : aroxyl radical HPLC : High Performance Liquid Chromatography IQ : 2-amino-3-methylimidazo[4,5-ƒ]quinoline L• : alkyl radical LH : polyunsaturated fatty acid LO• : lipid alkoxyl radical LOO• : lipid peroxyl radical LOOH : lipid hydroperoxide PhIP : 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine • RO2 : peroxyl radical S9-mix : Aroclor-induced rat liver homogenate fraction used to metabolic activate mutagens in Salmonella mutagenicity assay •- O2 : superoxide radical TBA : thiobarbituric acid TBARS : thiobarbituric acid reactive substances TCA : trichloroacetic acid TLC : Thin Layer Chromatography x LIST OF TABLES Number Page 2.1 Some of the most popular Salmonella typhimurium strains 68 with their reversion event, tar gets, number of spontaneous revertants and a possible diagnostic mutagen for antimutagenicity purposes 2.2 Summary of general structural requirements for in vitro 78 biological activity of flavonoids 3.1 Composition of mobile
Recommended publications
  • Protective Properties of Rooibos (Aspalathus Linearis) Flavonoids on the Prevention of Skin Cancer
    Protective properties of rooibos (Aspalathus linearis) flavonoids on the prevention of skin cancer by Asanda Gwashu Thesis presented in fulfilment of the requirements for the degreeof Master of Science in the Faculty of Science at Stellenbosch University Supervisor: Prof W.C.A. Gelderblom Co-supervisor: Prof A. Louw March 2016 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise state), that reproduction and publication thereof by Stellenbosch university will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature Date Copyright © 2016 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract Ultraviolet-B (UV-B) radiation is a major cause of skin cancer resulting in an array of events including oxidative damage, DNA damage and inflammation. The keratinocytes and skin macrophages play a pivotal role in inflammation and are known to release a wide range of cytokines in response to UV-B and/or other toxicants such as lipopolysaccharide (LPS). The chronic release of the cytokines, if not controlled, may be detrimental leading to a variety of skin diseases including cancer. Rooibos is well known for its health benefits which include anti-inflammatory effects that are attributed to the anti-oxidant properties of the flavonoids. In the current study the aqueous and methanol extracts of unfermented and fermented rooibos were compared in terms of their polyphenol and flavanol content, while their antioxidant properties were assessed in the FRAP and ABTS assays.
    [Show full text]
  • Dynamics of Even-Aged Nothofagus Truncata and N. Fusca Stands in North Westland, New Zealand
    12 DYNAMICS OF EVEN-AGED NOTHOFAGUS TRUNCATA AND N. FUSCA STANDS IN NORTH WESTLAND, NEW ZEALAND M. C SMALE Forest Research Institute, Private Bag, Rotorua, New Zealand H. VAN OEVEREN Agricultural University, Salverdaplein 11, P.O. Box 9101, 6700 HB, Wageningen, The Netherlands C D. GLEASON* New Zealand Forest Service, P.O. Box 138, Hokitika, New Zealand and M. O. KIMBERLEY Forest Research Institute, Private Bag, Rotorua, New Zealand (Received for publication 30 August, 1985; revision 12 January 1987) ABSTRACT Untended, fully stocked, even-aged stands of Nothofagus truncata (Col.) Ckn. (hard beech) or N. fusca (Hook, f.) Oerst. (red beech) of natural and cultural origin and ranging in age from 20 to 100 years, were sampled using temporary and permanent plots on a range of sites in North Westland, South Island, New Zealand. Changes in stand parameters with age were quantified in order to assess growth of these stands, and thus gain some insight into their silvicultural potential. Stands of each species followed a similar pattern of growth, with rapid early height and basal area increment. Mean top height reached a maximum of c. 27 m by age 100 years. Basal area reached an equilibrium of c. 41 m2/ha in N. truncata and 46 m2/ha in N. fusca as early as age 30 years. Nothofagus truncata stands had, on average, a somewhat lower mean diameter at any given age than N. fusca stands, and maintained higher stockings. Both species attained similar maximum volume of c. 460 m3/ha at age 100 years. Keywords: even-aged stands; stand dynamics; growth; Nothofagus truncata; Nothofagus fusca.
    [Show full text]
  • (Hordeum Vulgare L.) Seedlings Via Their
    Ra et al. Appl Biol Chem (2020) 63:38 https://doi.org/10.1186/s13765-020-00519-9 NOTE Open Access Evaluation of antihypertensive polyphenols of barley (Hordeum vulgare L.) seedlings via their efects on angiotensin-converting enzyme (ACE) inhibition Ji‑Eun Ra1, So‑Yeun Woo2, Hui Jin3, Mi Ja Lee2, Hyun Young Kim2, Hyeonmi Ham2, Ill‑Min Chung1 and Woo Duck Seo2* Abstract Angiotensin‑converting enzyme (ACE) is an important therapeutic target in the regulation of high blood pressure. This study was conducted to investigate the alterations in blood pressure associated with ACE inhibition activity of the polyphenols (1–10), including 3‑O‑feruloylquinic acid (1), lutonarin (2), saponarin (3), isoorientin (4), orientin (5), isovitexin (6), isoorientin‑7‑O‑[6‑sinapoyl]‑glucoside (7), isoorientin‑7‑O‑[6‑feruloyl]‑glucoside (8), isovitexin‑7‑O‑ [6‑sinapoyl]‑glucoside (9), and isovitexin‑7‑O‑[6‑feruloyl]‑glucoside (10), isolated from barley seedlings (BS). All the isolated polyphenols exhibited comparable IC50 values of ACE inhibition activity (7.3–43.8 µM) with quercetin (25.2 0.2 µM) as a positive control, and their inhibition kinetic models were identifed as noncompetitive inhibition. ± Especially, compound 4 was revealed to be an outstanding ACE inhibitor (IC50 7.3 0.1 µM, Ki 6.6 0.1 µM). Based on the compound structure–activity relationships, the free hydroxyl groups of =favone± ‑moieties =and glucose± connec‑ tions at the A ring of the favone moieties were important factors for inhibition of ACE. The alcohol extract of BS also 1 demonstrated potent ACE inhibition activity (66.5% 2.2% at 5000 µg mL− ).
    [Show full text]
  • A Cytotoxic C-Glycosylated Derivative of Apigenin from the Leaves Of
    Revista Brasileira de Farmacognosia 26 (2016) 763–766 ww w.elsevier.com/locate/bjp Short communication A cytotoxic C-glycosylated derivative of apigenin from the leaves of Ocimum basilicum var. thyrsiflorum a,b,∗ c,d Mohamed I.S. Abdelhady , Amira Abdel Motaal a Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt b Pharmacognosy Department, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia c Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt d Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt a b s t r a c t a r t i c l e i n f o Article history: The standardized 80% ethanolic extract of the leaves of Ocimum basilicum var. thyrsiflorum (L.) Benth., Received 12 February 2016 Lamiaceae, growing in KSA, exhibited a significant antioxidant activity compared to the ethyl acetate and Accepted 7 June 2016 butanol extracts, which was correlated to its higher phenolic and flavonoid contents. Chromatographic Available online 20 July 2016 separation of the 80% ethanol extract resulted in the isolation of ten known compounds; cinnamic acid, gallic acid, methylgallate, ellagic acid, methyl ellagic acid, apigenin, luteolin, vitexin, isovitexin, and 3 -O- Keywords: acetylvitexin. Compound 3 -O-acetylvitexin, a C-glycosylated derivative of apigenin, was isolated for the Ocimum basilicum first time from genus Ocimum. The 80% ethanolic extract and 3 -O-acetylvitexin showed significant cyto- HCT116 toxic activities against the HCT human colon cancer cell line [IC values 22.3 ± 1.1 and 16.8 ± 2.0 ␮g/ml Cytotoxic 116 50 ␮ Antioxidant (35.4 M), respectively].
    [Show full text]
  • Characterization of C-Glycosidic Flavonoids from Brazilian Passiflora Species Using Lc/Ms Exact Mass Measurement
    CHARACTERIZATION OF C-GLYCOSIDIC FLAVONOIDS FROM BRAZILIAN PASSIFLORA SPECIES USING LC/MS EXACT MASS MEASUREMENT 1 2 2 NOTE M. McCullagh , C.A.M. Pereira , J.H. Yariwake 1Waters Corporation, Floats Road, Wythenshawe, Manchester, M23 9LZ, UK 2Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil OVERVIEW This application note describes the analysis of extracts Recently issues have arisen with Kava Kava, a natural from Passiflora species using real time centroid exact health product, which is used for its anti-depressant and mass measurement. The system used comprised of an anti-anxiety properties. Investigations into the safety of LCT™ orthogonal acceleration (oa-TOF) time of flight Kava have taken place within several European mass spectrometer with LockSpray™ source, Waters® countries, including Germany, U.K., Switzerland, 2996 PDA and Waters Alliance® HT 2795 France, Spain and parts of Scandinavia. In Switzerland Separations Module. and Germany cases of liver damage were reported. In Application the US the FDA has investigated Kava's safety, where INTRODUCTION as in Canada the public were advised not to take the EU Directive 2001/83/EC will regulate and produce a supplement until product safety could be assured. The set of harmonized assessment criteria for the efficacy Kava market in Germany alone is $25m. Proving the and safety "Herbal Medicinal Products for traditional efficacy of such a product is economically viable. use". The current and future E.U. member states will Such issues illustrate how regulation currently affects produce and abide by this directive, making 28 states the natural health product market and also why new in total.
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Skeletal Muscle As a Therapeutic Target for Natural Products to Reverse Metabolic Syndrome
    Chapter 10 Skeletal Muscle as a Therapeutic Target for Natural Products to Reverse Metabolic Syndrome Sithandiwe Eunice Mazibuko-Mbeje, Phiwayinkosi V. Dludla, Bongani B. Nkambule, Nnini Obonye and Johan Louw Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.78687 Abstract Natural compounds, especially polyphenols have become a popular area of research mainly due to their apparent health benefits. Increasing the phenolic content of a diet, apart from its antioxidant benefit, has a beneficial effect on signaling molecules involved in carbohydrate and lipid metabolism. These effects could potentially protect against metabolic syndrome, a cluster of metabolic complications such as obesity, insulin resistance and type 2 diabetes that is characterized by a dysregulated carbohydrate, and lipid metabolism. Research continues to investigate various natural compounds for their amelioration of impaired signaling mech- anisms that may lead to dysregulated metabolism to find means to improve the life expec- tancy of patients with metabolic syndrome. In this chapter, a systematic search through major databases such as MEDLINE/PubMed, EMBASE, and Google Scholar of literature reporting on the ameliorative potential of commonly investigated natural products that target skeletal muscle to ameliorate metabolic syndrome associated complications was conducted. The selected natural products that are discussed include apigenin, aspalathin, berberine, curcumin, epigallocatechin gallate, hesperidin, luteolin, naringenin, quercetin, resveratrol, rutin, and sulforaphane. Keywords: skeletal muscle, metabolic syndrome, insulin resistance, type 2 diabetes, natural products 1. Introduction A considerable amount of interest has been placed on the discovery of novel naturally occur- ring plant-derived compounds for the treatment and prevention of various diseases.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Shilin Yang Doctor of Philosophy
    PHYTOCHEMICAL STUDIES OF ARTEMISIA ANNUA L. THESIS Presented by SHILIN YANG For the Degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON DEPARTMENT OF PHARMACOGNOSY THE SCHOOL OF PHARMACY THE UNIVERSITY OF LONDON BRUNSWICK SQUARE, LONDON WC1N 1AX ProQuest Number: U063742 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U063742 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENT I wish to express my sincere gratitude to Professor J.D. Phillipson and Dr. M.J.O’Neill for their supervision throughout the course of studies. I would especially like to thank Dr. M.F.Roberts for her great help. I like to thank Dr. K.C.S.C.Liu and B.C.Homeyer for their great help. My sincere thanks to Mrs.J.B.Hallsworth for her help. I am very grateful to the staff of the MS Spectroscopy Unit and NMR Unit of the School of Pharmacy, and the staff of the NMR Unit, King’s College, University of London, for running the MS and NMR spectra.
    [Show full text]
  • Metabolic Engineering of Saccharomyces Cerevisiae for De Novo Production of Dihydrochalcones with Known Antioxidant, Antidiabetic, and Sweet Tasting Properties
    Metabolic Engineering xx (xxxx) xxxx–xxxx Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/ymben Original Research Article Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties Michael Eichenbergera,b, Beata Joanna Lehkac,d, Christophe Follya, David Fischera, ⁎ Stefan Martense, Ernesto Simóna, Michael Naesbya, a Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland b Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany c Evolva Biotech A/S, Lersø Parkallé 42, 2100 Copenhagen, Denmark d Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark e Department of Food Quality and Nutrition, Fondazione Edmund Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy ARTICLE INFO ABSTRACT Chemical compounds studied in this article: Dihydrochalcones are plant secondary metabolites comprising molecules of significant commercial interest as Phloretin (PubChem CID: 4788) antioxidants, antidiabetics, or sweeteners. To date, their heterologous biosynthesis in microorganisms has been Naringenin (PubChem CID: 932) achieved only by precursor feeding or as minor by-products in strains engineered for flavonoid production. Pinocembrin (PubChem CID: 68071) Here, the native ScTSC13 was overexpressed in Saccharomyces cerevisiae to increase its side activity in Phlorizin (PubChem CID: 6072) reducing p-coumaroyl-CoA to p-dihydrocoumaroyl-CoA. De novo production of phloretin, the first committed Nothofagin (PubChem CID: 42607691) dihydrochalcone, was achieved by co-expression of additional relevant pathway enzymes. Naringenin, a major Trilobatin (PubChem CID: 6451798) Naringin dihydrochalcone (PubChem CID: by-product of the initial pathway, was practically eliminated by using a chalcone synthase from barley with 9894584) unexpected substrate specificity.
    [Show full text]
  • Phenolic Profiling of Veronica Spp. Grown in Mountain, Urban and Sand Soil Environments
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Biblioteca Digital do IPB Phenolic profiling of Veronica spp. grown in mountain, urban and sand soil environments João C.M. Barreiraa,b,c, Maria Inês Diasa,c, Jelena Živkovićd, Dejan Stojkoviće, Marina Sokoviće, Celestino Santos-Buelgab,*, Isabel C.F.R. Ferreiraa,* aCIMO/Escola Superior Agrária, Instituto Politécnico de Bragança, Apartado 1172, 5301-855 Bragança, Portugal. bGIP-USAL, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain. cREQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. dInstitute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia. eDepartment of Plant Physiology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia. * Authors to whom correspondence should be addressed (Isabel C.F.R. Ferreira; e-mail: [email protected], telephone +351273303219, fax +351273325405; e-mail: Celestino Santos- Buelga: [email protected]; telephone +34923294537; fax +34923294515). 1 Abstract Veronica (Plantaginaceae) genus is widely distributed in different habitats. Phytochemistry studies are increasing because most metabolites with pharmacological interest are obtained from plants. The phenolic compounds of V. montana, V. polita and V. spuria were tentatively identified by HPLC-DAD-ESI/MS. The phenolic profiles showed that flavones were the major compounds (V. montana: 7 phenolic acids, 5 flavones, 4 phenylethanoids and 1 isoflavone; V. polita: 10 flavones, 5 phenolic acids, 2 phenylethanoids, 1 flavonol and 1 isoflavone; V. spuria: 10 phenolic acids, 5 flavones, 2 flavonols, 2 phenylethanoids and 1 isoflavone), despite the overall predominance of flavones.
    [Show full text]
  • In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora Incarnata L
    International Journal of Molecular Sciences Article In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora incarnata L. Martina Tremmel 1, Josef Kiermaier 2 and Jörg Heilmann 1,* 1 Department of Pharmaceutical Biology, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany; [email protected] 2 Department of Central Analytics, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany; [email protected] * Correspondence: [email protected] Abstract: Several medical plants, such as Passiflora incarnata L., contain C-glycosylated flavonoids, which may contribute to their efficacy. Information regarding the bioavailability and metabolism of these compounds is essential, but not sufficiently available. Therefore, the metabolism of the C-glycosylated flavones orientin, isoorientin, schaftoside, isoschaftoside, vitexin, and isovitexin was investigated using the Caco-2 cell line as an in vitro intestinal and epithelial metabolism model. Isovitexin, orientin, and isoorientin showed broad ranges of phase I and II metabolites containing hy- droxylated, methoxylated, and sulfated compounds, whereas schaftoside, isoschaftoside, and vitexin underwent poor metabolism. All metabolites were identified via UHPLC-MS or UHPLC-MS/MS using compound libraries containing all conceivable metabolites. Some structures were confirmed via UHPLC-MS experiments with reference compounds after a cleavage reaction using glucuronidase and sulfatase. Of particular interest is the observed cleavage of the C–C bonds between sugar and aglycone residues in isovitexin, orientin, and isoorientin, resulting in unexpected glucuronidated or sulfated luteolin and apigenin derivatives. These findings indicate that C-glycosidic flavones can be Citation: Tremmel, M.; Kiermaier, J.; highly metabolized in the intestine.
    [Show full text]