In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora Incarnata L

Total Page:16

File Type:pdf, Size:1020Kb

In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora Incarnata L International Journal of Molecular Sciences Article In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora incarnata L. Martina Tremmel 1, Josef Kiermaier 2 and Jörg Heilmann 1,* 1 Department of Pharmaceutical Biology, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany; [email protected] 2 Department of Central Analytics, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany; [email protected] * Correspondence: [email protected] Abstract: Several medical plants, such as Passiflora incarnata L., contain C-glycosylated flavonoids, which may contribute to their efficacy. Information regarding the bioavailability and metabolism of these compounds is essential, but not sufficiently available. Therefore, the metabolism of the C-glycosylated flavones orientin, isoorientin, schaftoside, isoschaftoside, vitexin, and isovitexin was investigated using the Caco-2 cell line as an in vitro intestinal and epithelial metabolism model. Isovitexin, orientin, and isoorientin showed broad ranges of phase I and II metabolites containing hy- droxylated, methoxylated, and sulfated compounds, whereas schaftoside, isoschaftoside, and vitexin underwent poor metabolism. All metabolites were identified via UHPLC-MS or UHPLC-MS/MS using compound libraries containing all conceivable metabolites. Some structures were confirmed via UHPLC-MS experiments with reference compounds after a cleavage reaction using glucuronidase and sulfatase. Of particular interest is the observed cleavage of the C–C bonds between sugar and aglycone residues in isovitexin, orientin, and isoorientin, resulting in unexpected glucuronidated or sulfated luteolin and apigenin derivatives. These findings indicate that C-glycosidic flavones can be Citation: Tremmel, M.; Kiermaier, J.; highly metabolized in the intestine. In particular, flavonoids with ortho-dihydroxy groups showed Heilmann, J. In Vitro Metabolism of sulfated metabolites. The identified glucuronidated or sulfated aglycones demonstrate that enzymes Six C-Glycosidic Flavonoids from expressed by Caco-2 cells are able to potentially cleave C–C bonds in vitro. Passiflora incarnata L. Int. J. Mol. Sci. 2021, 22, 6566. https://doi.org/ Keywords: flavonoids; metabolism; C-glycosides; C–C cleavage; Caco-2 cells; Passiflora incarnata L. 10.3390/ijms22126566 Academic Editor: Marcello Iriti 1. Introduction Received: 28 May 2021 Passiflora incarnata L. is a medical plant used for the treatment of restlessness, insomnia, Accepted: 16 June 2021 Published: 18 June 2021 anxiety, and nervous stress [1]. Flavonoids are the most abundant class of secondary natural compounds in P. incarnata, representing up to 2.5% of the dried plant; they are potentially Publisher’s Note: MDPI stays neutral co-responsible for the plant’s pharmacological effects [2–4], and possibly have a prodrug with regard to jurisdictional claims in effect requiring metabolic activation [5]. Many naturally found flavonoids are glycosides, published maps and institutional affil- varying in sugar moiety and binding type. Most of them exist as O-glycosides, and the sugar iations. is linked to the aglycone via an O-glycosidic bond. In contrast, the predominant flavonoids found in the aerial parts of P. incarnata L. are C-glycosidic flavonoids, showing a C–C glycosidic bond between the sugar and the C-8 or C-6 positions of the aglycones apigenin and luteolin [6]. Despite the fact that they are less well investigated than O-glycosidic flavonoids, C-glycosidic flavonoids show anticancer [7], antiviral [8], antidiabetic [9], and Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. hepatoprotective activities [10]. Thus, positive effects on human health are expected, but This article is an open access article unexplored. distributed under the terms and Extensive investigations of the metabolism of O-glycosidic flavonoids have revealed conditions of the Creative Commons that they are usually absorbed as aglycones after deglycosidation, followed by rapid phase I Attribution (CC BY) license (https:// and II metabolism during passage through the intestinal epithelium and the liver. The initial creativecommons.org/licenses/by/ metabolism step proceeds via hydrolysation in the small intestine by lactase-phlorizin 4.0/). hydrolase to the corresponding aglycones, which are absorbed and metabolized in phase I Int. J. Mol. Sci. 2021, 22, 6566. https://doi.org/10.3390/ijms22126566 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, 6566 2 of 14 and II reactions to various O-glucuronides and O-sulfates. Specifically, enzymes such as cytochrome P450s (CYPs) [11,12], catechol-O-methyltransferases (COMTs) [13,14], uridine 50-diphospho glucuronosyltransferases (UGTs) [15], and sulfotransferases (SULTs) [16,17] are involved. In addition, disposal through efflux transporters has been described [18]. Alternatively, degradation of the aglycones to smaller phenolic metabolites and resorption or excretion with the feces is also possible [19]. Compared to O-glycosides, C-glycosides are hydrolytically more stable. Therefore, deglycosylation to their corresponding aglycones by intestinal hydrolytic enzymes, which easily cleave the C–O bonds of O-glycosides, is unlikely. Thus, O- and C-glycosides likely differ in their pharmacokinetic behavior; however, data on the metabolism of C-glycosides are scarce. Results on the metabolism of C-glycosides are still lacking, as the metabolic profiles of C-glycosides have not been published to date. Nevertheless, incubation of apigenin C-glycosides with human fecal samples has indicated that they can be deglycosylated in the colon by human intestinal bacteria to release the corresponding aglycones. This is followed by partial cleavage to smaller phenolic metabolites and excretion in the feces or absorption in the colon. Nevertheless, a significant amount of C-glycosides may remain intact in the small intestine, and can be absorbed, distributed, and eliminated [20]. Orientin (luteolin 8-C-glucoside), isoorientin (luteolin 6-C-glucoside), schaftoside (apigenin 6-C-glucoside-8-C-arabinoside), isoschaftoside (apigenin 8-C-glucoside-6-C- arabinoside), vitexin (apigenin 8-C-glucoside), and isovitexin (apigenin 6-C-glucoside) are six representative C-glycosidic flavonoids present in P. incarnata L. [21] (Figure1). Orientin and isoorientin have shown various pharmacological in vitro and in vivo properties [22], such as antioxidative [23], antiviral [24], anti-inflammatory [25–27], antidepressant-like [28], and antinociceptive effects [29]. While vitexin also exhibits antioxidative [30,31], antinoci- ceptive [32,33], anti-inflammatory [34,35], antimicrobial [36,37], and antiviral effects [38], isovitexin has been poorly studied, but seems to have a similar pharmacological profile [39]. However, the pharmacological effects of schaftoside and isoschaftoside have not yet been studied [40]. Although poor direct absorption of C-glycosidic flavonoids is expected [41], they could still show efficacy, as the metabolism of absorbed C-glycosides has rarely been explored. The aim of this study was to identify possible phase I and II metabolites of C-glycosidic flavonoids by investigating orientin (O), isoorientin (IO), schaftoside (S), isoschaftoside (IS), vitexin (V), and isovitexin (IV) (Figure1), using an in vitro Caco-2 cell monolayer model. The objective was to enhance our understanding of metabolism in vitro and in vivo, and to provide relevant information as a basis for further studies. Int.Int. J.J. Mol.Mol. Sci. 2021,, 22,, 65666566 33 ofof 1415 OHOH OH HO O OH OH HO O HO O OH OH OH O HO OH O HO OH OH O Orientin (O) Isoorientin (IO) OH OH OH OH OH HO HO OH OH O O OH HO O HO O O HO O HO HO OH OH O HO OH OH O Schaftoside (S) Isoschaftoside (IS) OHOH HO OH O OH OH HO O OH HO O O HO OH O HO OH OH O Isovitexin (IV) Vitexin (V) Figure 1. Structures of the C-glycosidic flavonoidsflavonoids orientinorientin (O), isoorientin (IO), schaftoside (S), isoschaftoside (IS), vitexinvitexin (V),(V), andand isovitexinisovitexin (IV).(IV). 2. Results 2.1. Stability Testing 2.1. Stability Testing To guarantee the stability of all test substances during the metabolism assay on Caco-2 To guarantee the stability of all test substances during the metabolism assay on Caco- cells, they were incubated in the test buffer under assay conditions. Test samples were 2 cells, they were incubated in the test buffer under assay conditions. Test samples were collected each hour for 5 h and were measured via HPLC-DAD. All tested substances showedcollected high each levels hour of for stability 5 h and under were assay measured conditions. via HPLC-DAD. After 3 h of incubation, All tested O,substances IO, S, IS, andshowed V showed high levels values of ofstability approximately under assay 100%, conditions. and only theAfter content 3 h of ofincubation, IV was reduced O, IO, toS, 96%.IS, and Nearly V showed identical values results of approximately were detected 100 after%, a and 5 h incubationonly the content time, whereof IV was a content reduced of 95%to 96%. could Nearly be demonstrated identical results for IV.were Statistically, detected after stability a 5 h values incubation did not time, differ where from a the content 100% valueof 95% ( pcould< 0.05). be demonstrated Considering the for standardIV. Statistically, deviations, stability all measured values did substances not differ from showed the sufficient100% value stability (p < 0.05).
Recommended publications
  • (Hordeum Vulgare L.) Seedlings Via Their
    Ra et al. Appl Biol Chem (2020) 63:38 https://doi.org/10.1186/s13765-020-00519-9 NOTE Open Access Evaluation of antihypertensive polyphenols of barley (Hordeum vulgare L.) seedlings via their efects on angiotensin-converting enzyme (ACE) inhibition Ji‑Eun Ra1, So‑Yeun Woo2, Hui Jin3, Mi Ja Lee2, Hyun Young Kim2, Hyeonmi Ham2, Ill‑Min Chung1 and Woo Duck Seo2* Abstract Angiotensin‑converting enzyme (ACE) is an important therapeutic target in the regulation of high blood pressure. This study was conducted to investigate the alterations in blood pressure associated with ACE inhibition activity of the polyphenols (1–10), including 3‑O‑feruloylquinic acid (1), lutonarin (2), saponarin (3), isoorientin (4), orientin (5), isovitexin (6), isoorientin‑7‑O‑[6‑sinapoyl]‑glucoside (7), isoorientin‑7‑O‑[6‑feruloyl]‑glucoside (8), isovitexin‑7‑O‑ [6‑sinapoyl]‑glucoside (9), and isovitexin‑7‑O‑[6‑feruloyl]‑glucoside (10), isolated from barley seedlings (BS). All the isolated polyphenols exhibited comparable IC50 values of ACE inhibition activity (7.3–43.8 µM) with quercetin (25.2 0.2 µM) as a positive control, and their inhibition kinetic models were identifed as noncompetitive inhibition. ± Especially, compound 4 was revealed to be an outstanding ACE inhibitor (IC50 7.3 0.1 µM, Ki 6.6 0.1 µM). Based on the compound structure–activity relationships, the free hydroxyl groups of =favone± ‑moieties =and glucose± connec‑ tions at the A ring of the favone moieties were important factors for inhibition of ACE. The alcohol extract of BS also 1 demonstrated potent ACE inhibition activity (66.5% 2.2% at 5000 µg mL− ).
    [Show full text]
  • Antioxidant and Inhibition of Elastase Effect of Scutellarein and Apigenin
    American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 © Global Society of Scientific Research and Researchers http://asrjetsjournal.org/ Antioxidant and Inhibition of Elastase Effect of Scutellarein and Apigenin Leo Tjermina*, I Nyoman Ehrich Listerb, Ali Napiah Nasutionc, Ermi Girsangd a,b,cFaculty of Medicine, University of Prima Indonesia, Medan, North Sumatera, Indonesia dFaculty of Public Health, University of Prima Indonesia, Medan, North Sumatera, Indonesia aEmail: [email protected] Abstract Aging process in the skin was begun from the time when one is born, especially skin. Cutaneous aging can be caused by intrinsic and/or extrinsic factors. Wrinkles, thinning, and roughening of skin are part of skin aging. It becomes important looking for natural sources to prevent aging process. Apigenin and Scutellarein are potential phytochemistry which have antioxidant and anti-elastase effects. The purpose of this study is investigate antioxidant and anti-elastase effects of Apigenin and Flavonoid. Determination of Antioxidant Activity of Apigenin and Scutellarien was using FRAP Methods while anti-elastase activity was determined by inhibition of Elastase from Porcine Pancreas. The result of this study was expressed by Mean ± SD and analyzed by One Way analysis of variance (ANOVA) and Turkey HSD Post Hoc Test as a Further Analysis. Both of Scutellarein or Apigenin had the most potent antioxidant activity at the highest concentration (50 µg/ml). The FRAP Activity of Scutellarein or Apigenin at Highest concentration are 250.22 ±2.3 and 29.05 ±5.88 µg Fe (II), respectively. Antioxidant activity of Scutellarein are more potent than apigenin at various concentration and was shown differences at P value < 0.05.
    [Show full text]
  • A Cytotoxic C-Glycosylated Derivative of Apigenin from the Leaves Of
    Revista Brasileira de Farmacognosia 26 (2016) 763–766 ww w.elsevier.com/locate/bjp Short communication A cytotoxic C-glycosylated derivative of apigenin from the leaves of Ocimum basilicum var. thyrsiflorum a,b,∗ c,d Mohamed I.S. Abdelhady , Amira Abdel Motaal a Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt b Pharmacognosy Department, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia c Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt d Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt a b s t r a c t a r t i c l e i n f o Article history: The standardized 80% ethanolic extract of the leaves of Ocimum basilicum var. thyrsiflorum (L.) Benth., Received 12 February 2016 Lamiaceae, growing in KSA, exhibited a significant antioxidant activity compared to the ethyl acetate and Accepted 7 June 2016 butanol extracts, which was correlated to its higher phenolic and flavonoid contents. Chromatographic Available online 20 July 2016 separation of the 80% ethanol extract resulted in the isolation of ten known compounds; cinnamic acid, gallic acid, methylgallate, ellagic acid, methyl ellagic acid, apigenin, luteolin, vitexin, isovitexin, and 3 -O- Keywords: acetylvitexin. Compound 3 -O-acetylvitexin, a C-glycosylated derivative of apigenin, was isolated for the Ocimum basilicum first time from genus Ocimum. The 80% ethanolic extract and 3 -O-acetylvitexin showed significant cyto- HCT116 toxic activities against the HCT human colon cancer cell line [IC values 22.3 ± 1.1 and 16.8 ± 2.0 ␮g/ml Cytotoxic 116 50 ␮ Antioxidant (35.4 M), respectively].
    [Show full text]
  • Characterization of C-Glycosidic Flavonoids from Brazilian Passiflora Species Using Lc/Ms Exact Mass Measurement
    CHARACTERIZATION OF C-GLYCOSIDIC FLAVONOIDS FROM BRAZILIAN PASSIFLORA SPECIES USING LC/MS EXACT MASS MEASUREMENT 1 2 2 NOTE M. McCullagh , C.A.M. Pereira , J.H. Yariwake 1Waters Corporation, Floats Road, Wythenshawe, Manchester, M23 9LZ, UK 2Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil OVERVIEW This application note describes the analysis of extracts Recently issues have arisen with Kava Kava, a natural from Passiflora species using real time centroid exact health product, which is used for its anti-depressant and mass measurement. The system used comprised of an anti-anxiety properties. Investigations into the safety of LCT™ orthogonal acceleration (oa-TOF) time of flight Kava have taken place within several European mass spectrometer with LockSpray™ source, Waters® countries, including Germany, U.K., Switzerland, 2996 PDA and Waters Alliance® HT 2795 France, Spain and parts of Scandinavia. In Switzerland Separations Module. and Germany cases of liver damage were reported. In Application the US the FDA has investigated Kava's safety, where INTRODUCTION as in Canada the public were advised not to take the EU Directive 2001/83/EC will regulate and produce a supplement until product safety could be assured. The set of harmonized assessment criteria for the efficacy Kava market in Germany alone is $25m. Proving the and safety "Herbal Medicinal Products for traditional efficacy of such a product is economically viable. use". The current and future E.U. member states will Such issues illustrate how regulation currently affects produce and abide by this directive, making 28 states the natural health product market and also why new in total.
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times
    Traditional Herbal Medicines for Modern Times Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times Each volume in this series provides academia, health sciences, and the herbal medicines industry with in-depth coverage of the herbal remedies for infectious diseases, certain medical conditions, or the plant medicines of a particular country. Series Editor: Dr. Roland Hardman Volume 1 Shengmai San, edited by Kam-Ming Ko Volume 2 Rasayana: Ayurvedic Herbs for Rejuvenation and Longevity, by H.S. Puri Volume 3 Sho-Saiko-To: (Xiao-Chai-Hu-Tang) Scientific Evaluation and Clinical Applications, by Yukio Ogihara and Masaki Aburada Volume 4 Traditional Medicinal Plants and Malaria, edited by Merlin Willcox, Gerard Bodeker, and Philippe Rasoanaivo Volume 5 Juzen-taiho-to (Shi-Quan-Da-Bu-Tang): Scientific Evaluation and Clinical Applications, edited by Haruki Yamada and Ikuo Saiki Volume 6 Traditional Medicines for Modern Times: Antidiabetic Plants, edited by Amala Soumyanath Volume 7 Bupleurum Species: Scientific Evaluation and Clinical Applications, edited by Sheng-Li Pan Traditional Herbal Medicines for Modern Times Herbal Principles in Cosmetics Properties and Mechanisms of Action Bruno Burlando, Luisella Verotta, Laura Cornara, and Elisa Bottini-Massa Cover art design by Carlo Del Vecchio. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4398-1214-3 (Ebook-PDF) This book contains information obtained from authentic and highly regarded sources.
    [Show full text]
  • WO 2012/159639 Al 29 November 2012 (29.11.2012)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/159639 Al 29 November 2012 (29.11.2012) (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A23L 1/30 (2006.01) A61K 36/48 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A61K 36/185 (2006.01) A61K 36/8962 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 36/63 (2006.01) A61K 36/54 (2006.01) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, A61K 36/23 (2006.01) A61K 36/71 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, A61K 36/9066 (2006.01) A61K 36/886 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, A61K 36/28 (2006.01) A61K 36/53 (2006.01) OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, A61K 36/82 (2006.01) A61K 36/64 (2006.01) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, A61K 36/67 (2006.01) TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (21) International Application Number: (84) Designated States (unless otherwise indicated, for every PCT/EG20 12/0000 18 kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (22) International Filing Date: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 22 May 2012 (22.05.2012) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (25) Filing Language: English EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (26) Publication Language: English TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (30) Priority Data: ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Important Flavonoids and Their Role As a Therapeutic Agent
    molecules Review Important Flavonoids and Their Role as a Therapeutic Agent Asad Ullah 1 , Sidra Munir 1 , Syed Lal Badshah 1,* , Noreen Khan 1, Lubna Ghani 2, Benjamin Gabriel Poulson 3 , Abdul-Hamid Emwas 4 and Mariusz Jaremko 3,* 1 Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; [email protected] (A.U.); [email protected] (S.M.); [email protected] (N.K.) 2 Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan; [email protected] 3 Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 4 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] * Correspondence: [email protected] (S.L.B.); [email protected] (M.J.) Received: 20 September 2020; Accepted: 1 November 2020; Published: 11 November 2020 Abstract: Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models.
    [Show full text]
  • Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns
    molecules Review Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns Johra Khan 1,†, Prashanta Kumar Deb 2,3,†, Somi Priya 4 , Karla Damián Medina 5, Rajlakshmi Devi 2, Sanjay G. Walode 6 and Mithun Rudrapal 6,*,† 1 Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; [email protected] 2 Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India; [email protected] (P.K.D.); [email protected] (R.D.) 3 Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India 4 University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; [email protected] 5 Food Technology Unit, Centre for Research and Assistance in Technology and Design of Jalisco State A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico; [email protected] 6 Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Chinchwad, Pune 411019, Maharashtra, India; [email protected] * Correspondence: [email protected]; Tel.: +91-8638724949 † These authors contributed equally to this work. Citation: Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Abstract: Flavonoids comprise a large group of structurally diverse polyphenolic compounds of Rudrapal, M. Dietary Flavonoids: plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy Cardioprotective Potential with products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols, Antioxidant Effects and Their anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal Pharmacokinetic, Toxicological and significance, flavonoids are now considered as an indispensable component in a variety of medicinal, Therapeutic Concerns.
    [Show full text]
  • Distribution of Flavonoids Among Malvaceae Family Members – a Review
    Distribution of flavonoids among Malvaceae family members – A review Vellingiri Vadivel, Sridharan Sriram, Pemaiah Brindha Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, Tamil Nadu, India Abstract Since ancient times, Malvaceae family plant members are distributed worldwide and have been used as a folk remedy for the treatment of skin diseases, as an antifertility agent, antiseptic, and carminative. Some compounds isolated from Malvaceae members such as flavonoids, phenolic acids, and polysaccharides are considered responsible for these activities. Although the flavonoid profiles of several Malvaceae family members are REVIEW REVIEW ARTICLE investigated, the information is scattered. To understand the chemical variability and chemotaxonomic relationship among Malvaceae family members summation of their phytochemical nature is essential. Hence, this review aims to summarize the distribution of flavonoids in species of genera namely Abelmoschus, Abroma, Abutilon, Bombax, Duboscia, Gossypium, Hibiscus, Helicteres, Herissantia, Kitaibelia, Lavatera, Malva, Pavonia, Sida, Theobroma, and Thespesia, Urena, In general, flavonols are represented by glycosides of quercetin, kaempferol, myricetin, herbacetin, gossypetin, and hibiscetin. However, flavonols and flavones with additional OH groups at the C-8 A ring and/or the C-5′ B ring positions are characteristic of this family, demonstrating chemotaxonomic significance. Key words: Flavones, flavonoids, flavonols, glycosides, Malvaceae, phytochemicals INTRODUCTION connate at least at their bases, but often forming a tube around the pistils. The pistils are composed of two to many connate he Malvaceae is a family of flowering carpels. The ovary is superior, with axial placentation, with plants estimated to contain 243 genera capitate or lobed stigma. The flowers have nectaries made with more than 4225 species.
    [Show full text]
  • BIOLOGICAL PROPERTIES of SELECTED FLAVONOIDS of ROOIBOS (Aspalathus Linearis)
    BIOLOGICAL PROPERTIES OF SELECTED FLAVONOIDS OF ROOIBOS (Aspalathus linearis) Petra W Snijman Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at the University of the Western Cape Study Leader: Prof IR Green Co-study Leaders: Prof E Joubert Prof WCA Gelderblom June 2007 ii DECLARATION I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. _______________________________ ____________ Petra Wilhelmina Snijman Date Copyright © 2007 University of the Western Cape All rights reserved iii ABSTRACT Bioactivity-guided fractionation was used to identify the most potent antioxidant and antimutagenic fractions contained in the methanol extract of unfermented rooibos (Aspalathus linearis), as well as the bioactive principles for the most potent antioxidant fractions. The different extracts and fractions were screened using Salmonella typhimurium tester strain TA98 and metabolically activated 2- acetoaminofluorene (2-AAF) to evaluate antimutagenic potential, while the antioxidant potency was assessed by two different in vitro assays, i.e. the inhibition of Fe(II) induced microsomal lipid peroxidation and the scavenging of the 2,2'- azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation. The most polar XAD fraction displayed the most protection against 2-AAF induced mutagenesis in TA98. Successive fractionation of the two XAD fractions
    [Show full text]