Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times

Total Page:16

File Type:pdf, Size:1020Kb

Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times Traditional Herbal Medicines for Modern Times Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times Each volume in this series provides academia, health sciences, and the herbal medicines industry with in-depth coverage of the herbal remedies for infectious diseases, certain medical conditions, or the plant medicines of a particular country. Series Editor: Dr. Roland Hardman Volume 1 Shengmai San, edited by Kam-Ming Ko Volume 2 Rasayana: Ayurvedic Herbs for Rejuvenation and Longevity, by H.S. Puri Volume 3 Sho-Saiko-To: (Xiao-Chai-Hu-Tang) Scientific Evaluation and Clinical Applications, by Yukio Ogihara and Masaki Aburada Volume 4 Traditional Medicinal Plants and Malaria, edited by Merlin Willcox, Gerard Bodeker, and Philippe Rasoanaivo Volume 5 Juzen-taiho-to (Shi-Quan-Da-Bu-Tang): Scientific Evaluation and Clinical Applications, edited by Haruki Yamada and Ikuo Saiki Volume 6 Traditional Medicines for Modern Times: Antidiabetic Plants, edited by Amala Soumyanath Volume 7 Bupleurum Species: Scientific Evaluation and Clinical Applications, edited by Sheng-Li Pan Traditional Herbal Medicines for Modern Times Herbal Principles in Cosmetics Properties and Mechanisms of Action Bruno Burlando, Luisella Verotta, Laura Cornara, and Elisa Bottini-Massa Cover art design by Carlo Del Vecchio. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4398-1214-3 (Ebook-PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Series Preface .........................................................................................................xvii Foreword .................................................................................................................xxi Introduction .......................................................................................................... xxiii The Authors .........................................................................................................xxvii 1Chapter 1Chapter The Skin: Morphophysiological Traits and Disease ............................1 Epidermis .............................................................................................2 Dermal and Subdermal Tissue .............................................................3 Cutaneous Annexes ..............................................................................4 Skin Disorders ......................................................................................4 References ............................................................................................7 2Chapter 2Chapter Botanical Compounds and Their Dermatologic and Cosmetic Uses ......................................................................................9 Lipids ....................................................................................................9 Terpenoids .......................................................................................... 11 Phenols and Related Compounds ....................................................... 16 Flavonoids ..........................................................................................20 Alkaloids ............................................................................................22 Carbohydrates.....................................................................................23 Glycosides ..........................................................................................24 Hydroxy Acids ....................................................................................25 References ..........................................................................................26 3Chapter 3Chapter Herbal Cosmetic Formulations: A Fuzzy Line between Actives and Vehicles .......................................................................................29 Formulations and Skin Penetration ....................................................29 Vehicles ..............................................................................................30 Surfactants ..........................................................................................32 Thickening Agents ............................................................................. 33 Penetration Enhancers ........................................................................34 Preservatives ....................................................................................... 35 Noxious Side Effects of Topical Formulations ...................................36 Conclusive Remarks ...........................................................................38 References ..........................................................................................38 v vi Contents 4Chapter 4Chapter Monographs of Herbal Principles ...................................................... 41 References .......................................................................................... 41 Abyssinian Kale .................................................................................42 Features .........................................................................................42 Constituents ...................................................................................42 Properties .......................................................................................42 Dermatologic and Cosmetic Use ................................................... 43 Side Effects and Toxicity ............................................................... 43 References .......................................................................................... 43 Açai Palm ...........................................................................................45 Features .........................................................................................45 Constituents and Properties ...........................................................46 Dermatologic and Cosmetic Use ...................................................46 Side Effects and Toxicity ...............................................................46 References .......................................................................................... 47 Acerola ...............................................................................................48 Features .........................................................................................48 Constituents ...................................................................................48 Properties .......................................................................................49 Dermatologic and Cosmetic Use ...................................................49 Side Effects and Toxicity ...............................................................49 References ..........................................................................................50 Almond ............................................................................................... 52 Features ......................................................................................... 52 Constituents ................................................................................... 53 Properties ....................................................................................... 53 Dermatologic and Cosmetic Use ................................................... 53 Side Effects and Toxicity ...............................................................54 References ..........................................................................................54
Recommended publications
  • Substances That Target Tumor Metabolism
    Biomedical Research 2011; 22 (2): 132-166 1181_On the metabolic origin of cancer: substances that target tumor metabolism. Maurice Israël 1 and Laurent Schwartz 2 1Biorebus 38 rue de Bassano 75008 Paris ; and 2 Av Aristide Briand 91440 Bures sur Yvette. France. 2LIX : Ecole Polytechnique Palaiseau France ; and Hôpital Pitié- Salpêtrière, service de radiothérapie, 75013 Paris. Abstract. Work from our group and others clearly suggest the key role of altered metabolism in cancer. The goal of this review is to summarize current knowledge on cancer metabolism, draw hy- pothesis explaining metabolic alterations and associated gene changes. Most importantly, we indicate a list of possible pharmacological targets. In short, tumor metabolism displays mixed glycolysis and neoglucogenesis features; most glycolitic enzymes are activate, but the pyruvate kinase and the pyruvate deshydrogenase are inhibited. This would result from an activation of their specific kinases, or from the inactivation of phosphatases, such as PP2A, regulated by me- thylation. In parallel, the phosphatase failure would enhance “tyrosine kinase receptor” signals, as occurs with oncogenes. Such signaling pathways are similar to those activated by insuline, or IGF- Growth hormone; they control mitosis, cell survival, carbohydrate metabolism. If for some reason, their regulation fails (oncogenes, PP2A methylation deficit, enhanced kinases…) a typical tumor metabolism starts the carcinogenic process. We also describe changes in the citric acid- urea cycles, polyamines, and show how body stores feed tumor metabolic pathways above and below “bottlenecks” resulting from wrongly switched enzymes. Studying the available lit- erature, we list a number of medications that target enzymes that are essential for tumor cells.
    [Show full text]
  • Antioxidant Profile of Mono- and Dihydroxylated Flavone Derivatives in Free Radical Generating Systems María Carmen Montesinos, Amalia Ubeda
    Antioxidant Profile of Mono- and Dihydroxylated Flavone Derivatives in Free Radical Generating Systems María Carmen Montesinos, Amalia Ubeda. María Carmen Terencio. Miguel Payá and María José Alcaraz Departamento de Farmaeologia de la Universidad de Valencia. Facultad de Farmacia. Avda. Vicent Andres Estelies s/n. 46100 Burjassot. Valencia. Spain Z. Naturforsch. 50c, 552-560 (1995); received February 24/April 18. 1995 Flavone. Antioxidant. Free Radical. Fluman Neutrophil. Superoxide Generation A number of free radical generating systems were used to investigate the antioxidant properties and structure-activity relationships of a series of monohydroxylated and dihydrox­ ylated flavones. Ortho-dihydroxylated flavones showed the highest inhibitory activity on en­ zymic and non-enzymic microsomal lipid peroxidation as well as on peroxyl radical scaveng­ ing. Most flavones were weak scavengers of hydroxyl radical, while ortho-dihydroxylated flavones interacted with superoxide anion generated by an enzymic system or by human neutrophils. This series of compounds did not exert cytotoxic effects on these cells. Scaveng­ ing of superoxide and peroxyl radicals may determine the antioxidant properties of these active flavones. Introduction Laughton et al., 1989) . It is interesting to note that There is an increasing interest in the study of flavonoids are components of many vegetables antioxidant compounds and their role in human present in the human diet. In previous work we studied the antioxidant and health. Antioxidants may protect cells against free radical induced damage in diverse disorders in­ free radical scavenging properties of polyhy- cluding ischemic conditions, atherosclerosis, rheu­ droxylated and polymethoxylated flavonoids matoid disease, lung hyperreactivity or tumour de­ mainly of natural origin (Huguet et al., 1990; Mora et al., 1990; Cholbi et al., 1991; Rios et al., 1992; velopment (Sies, 1991: Bast et al., 1991; Halliwell Sanz 1994) .
    [Show full text]
  • Litter Production and Decomposition in Cacao (Theobroma Cacao) and Kolanut (Cola Nitida) Plantations
    ECOTROPICA 17: 79–90, 2011 © Society for Tropical Ecology LITTER PRODUCTION AND DECOMPOSITION IN CACAO (THEOBROMA CACAO) AND KOLANUT (COLA NITIDA) PLANTATIONS Joseph Ikechukwu Muoghalu & Anthony Ifechukwude Odiwe Department of Botany, Obafemi Awolowo University, O.A.U. P.O. Box 1992, Ile-Ife, Nigeria Abstract. Litter production and decomposition were studied at monthly intervals for two years in Cola nitida and Theo- broma cacao plantations at Ile-Ife, Nigeria. Three plantations of each economic tree crop were used for the study. Mean annual litter fall was 4.73±0.30 t ha-1 yr-1 (total): 3.13±0.16 t ha-1 yr-1 (leaf), 0.98±0.05 t ha-1 yr-1(wood), 0.46±0.12 t ha-1 yr-1 (reproductive: fruits and seeds), 0.17±0.03 t ha-1 yr-1 (finest litter) in T. cacao plantations and 7.34±0.64(total): 4.39±0.38 (leaf), 1.57±0.17 (wood), 1.16±0.13 (reproductive) and 0.22±0.01 (finest litter or trash) in C. nitida plantations. The annual mean litter standing crop was 7.22±0.26 t ha-1 yr-1 in T. cacao and 5.74±0.54 t ha-1 yr-1 in C. nitida plantations. Cola nitida leaf litter had higher decomposition rate quotient (2.00) than T. cacao leaf litter (1.03). Higher quantities of calcium, magnesium, potassium, nitrogen, phosphorus, sulfur, managenese, iron, zinc and copper were deposited on C. nitida than on T. cacao plantations. The low litter decomposition rates in these plantations implies accumulation of litter on the floor of these plantations especially T.
    [Show full text]
  • The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity
    applied sciences Article The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity Małgorzata Ziarno 1,* , Mariola Kozłowska 2 , Iwona Scibisz´ 3 , Mariusz Kowalczyk 4 , Sylwia Pawelec 4 , Anna Stochmal 4 and Bartłomiej Szleszy ´nski 5 1 Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland 2 Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland; [email protected] 3 Division of Fruit, Vegetable and Cereal Technology, Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland; [email protected] 4 Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; [email protected] (M.K.); [email protected] (S.P.); [email protected] (A.S.) 5 Institute of Horticultural Sciences, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-225-937-666 Abstract: This study aimed to investigate the effect of plant extracts (valerian Valeriana officinalis L., sage Salvia officinalis L., chamomile Matricaria chamomilla L., cistus Cistus L., linden blossom Tilia L., ribwort plantain Plantago lanceolata L., marshmallow Althaea L.) on the activity and growth of lactic acid bacteria (LAB) during the fermentation and passage of milk through a digestive system model. Citation: Ziarno, M.; Kozłowska, M.; The tested extracts were also characterized in terms of their content of polyphenolic compounds and Scibisz,´ I.; Kowalczyk, M.; Pawelec, S.; antioxidant activity.
    [Show full text]
  • Flavonoid Application in Treatment of Oral Cancer-A Review
    European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 01, 2020 FLAVONOID APPLICATION IN TREATMENT OF ORAL CANCER-A REVIEW Sudarsan R1, Lakshmi T2, Anjaneyulu K3 1Undergraduate student, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 77 2Associate Professor, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 77 3 Reader, Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 77 ABSTRACT A wide range of organic compounds that are naturally occurring called flavonoids are primarily found in a large variety of plants. Some of the sources include tea, wine, fruits, grains, nuts and vegetables. There are a number of studies that have proven that a strong association exists between intake of dietary flavonoid and its effects on mortality in the long run. Flavonoids at non-toxic concentrations are known to demonstrate a wide range of therapeutic biological activities in organisms. The contribution of flavonoids in prevention of cancer is an area of great interest in current research. A variety of studies, including in vitro experiments and human trials and even epidemiological investigations, provide compelling evidence which imply that flavonoids’ effects on cancer in terms of chemoprevention and chemotherapy is significant. As the current treatment methods possess a number of drawbacks, the anticancer potential demonstrated by flavonoids makes them a reliable alternative. Various studies have focussed on flavonoids’ anti-cancer potential and its possible application in the treatment of cancer as a chemopreventive agent.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.468,645 B2 Owoc (45) Date of Patent: Oct
    USOO9468645B2 (12) United States Patent (10) Patent No.: US 9.468,645 B2 OWOc (45) Date of Patent: Oct. 18, 2016 (54) HIGHLY SOLUBLE PURINE BOACTIVE (2013.01); A61K 9/0019 (2013.01); A61 K COMPOUNDS AND COMPOSITIONS 9/0095 (2013.01); A61K 9/4858 (2013.01); THEREOF A61 K3I/00 (2013.01); A61K 45/06 (2013.01); A23 V 2002/00 (2013.01) (71) Applicant: JHO Intellectual Property Holdings, (58) Field of Classification Search LLC, Davie, FL (US) CPC ..................... A23V 2002/00; A23V 2200/31; (72) Inventor: Jack Owoc, Weston, FL (US) A23V 2250/062: A23V 2250/21: A23V 2250/5108: A23V 2250/5118: A23V (*) Notice: Subject to any disclaimer, the term of this 2250/54246; A23V 2250/54252: A23V patent is extended or adjusted under 35 2250/704; A23V 2250/712: A61K 31/522; U.S.C. 154(b) by 3 days. A61K 2300/00; A61K 45/06; A61 K9/00 See application file for complete search history. (21) Appl. No.: 14/628,626 (56) References Cited (22) Filed: Feb. 23, 2015 U.S. PATENT DOCUMENTS (65) Prior Publication Data 837,282 A * 12/1906 Owoc ....................... EO1B 9/60 US 2015/O238494 A1 Aug. 27, 2015 238,292 5,973,005 A * 10/1999 D'Amelio, Sr. ... CO7C 277/08 514,565 Related U.S. Application Data 2006/0236421 A1* 10, 2006 Pennell ................ C12N 9/1007 800,278 (60) Provisional application No. 61/944,528, filed on Feb. 2009,0257997 A1* 10, 2009 Owoc .................. A61K9/0014 25, 2014. 424/94.1 (51) Int. C. * cited by examiner A6 IK3I/522 (2006.01) A6 IK 45/06 (2006.01) Primary Examiner – Debbie K Ware A2.3L 2/52 (2006.01) (74) Attorney, Agent, or Firm — David W.
    [Show full text]
  • Antioxidant and Inhibition of Elastase Effect of Scutellarein and Apigenin
    American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 © Global Society of Scientific Research and Researchers http://asrjetsjournal.org/ Antioxidant and Inhibition of Elastase Effect of Scutellarein and Apigenin Leo Tjermina*, I Nyoman Ehrich Listerb, Ali Napiah Nasutionc, Ermi Girsangd a,b,cFaculty of Medicine, University of Prima Indonesia, Medan, North Sumatera, Indonesia dFaculty of Public Health, University of Prima Indonesia, Medan, North Sumatera, Indonesia aEmail: [email protected] Abstract Aging process in the skin was begun from the time when one is born, especially skin. Cutaneous aging can be caused by intrinsic and/or extrinsic factors. Wrinkles, thinning, and roughening of skin are part of skin aging. It becomes important looking for natural sources to prevent aging process. Apigenin and Scutellarein are potential phytochemistry which have antioxidant and anti-elastase effects. The purpose of this study is investigate antioxidant and anti-elastase effects of Apigenin and Flavonoid. Determination of Antioxidant Activity of Apigenin and Scutellarien was using FRAP Methods while anti-elastase activity was determined by inhibition of Elastase from Porcine Pancreas. The result of this study was expressed by Mean ± SD and analyzed by One Way analysis of variance (ANOVA) and Turkey HSD Post Hoc Test as a Further Analysis. Both of Scutellarein or Apigenin had the most potent antioxidant activity at the highest concentration (50 µg/ml). The FRAP Activity of Scutellarein or Apigenin at Highest concentration are 250.22 ±2.3 and 29.05 ±5.88 µg Fe (II), respectively. Antioxidant activity of Scutellarein are more potent than apigenin at various concentration and was shown differences at P value < 0.05.
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • Identification and Characterization of N 9-Methyltransferase Involved In
    ARTICLE https://doi.org/10.1038/s41467-020-15324-7 OPEN Identification and characterization of N9- methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea Yue-Hong Zhang1,2,3,6, Yi-Fang Li1,2,3,6, Yongjin Wang1,3,6, Li Tan1,3, Zhi-Qin Cao1,2,3, Chao Xie1,2,3, Guo Xie4, Hai-Biao Gong1,2,3, Wan-Yang Sun1,2,3, Shu-Hua Ouyang1,2,3, Wen-Jun Duan1,2,3, Xiaoyun Lu1,3, Ke Ding 1,3, ✉ ✉ ✉ ✉ Hiroshi Kurihara1,2,3, Dan Hu 1,2,3 , Zhi-Min Zhang 1,3 , Ikuro Abe 5 & Rong-Rong He 1,2,3 1234567890():,; Caffeine is a major component of xanthine alkaloids and commonly consumed in many popular beverages. Due to its occasional side effects, reduction of caffeine in a natural way is of great importance and economic significance. Recent studies reveal that caffeine can be converted into non-stimulatory theacrine in the rare tea plant Camellia assamica var. kucha (Kucha), which involves oxidation at the C8 and methylation at the N9 positions of caffeine. However, the underlying molecular mechanism remains unclear. Here, we identify the theacrine synthase CkTcS from Kucha, which possesses novel N9-methyltransferase activity using 1,3,7-trimethyluric acid but not caffeine as a substrate, confirming that C8 oxidation takes place prior to N9-methylation. The crystal structure of the CkTcS complex reveals the key residues that are required for the N9-methylation, providing insights into how caffeine N-methyltransferases in tea plants have evolved to catalyze regioselective N-methylation through fine tuning of their active sites.
    [Show full text]
  • A Cytotoxic C-Glycosylated Derivative of Apigenin from the Leaves Of
    Revista Brasileira de Farmacognosia 26 (2016) 763–766 ww w.elsevier.com/locate/bjp Short communication A cytotoxic C-glycosylated derivative of apigenin from the leaves of Ocimum basilicum var. thyrsiflorum a,b,∗ c,d Mohamed I.S. Abdelhady , Amira Abdel Motaal a Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt b Pharmacognosy Department, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia c Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt d Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt a b s t r a c t a r t i c l e i n f o Article history: The standardized 80% ethanolic extract of the leaves of Ocimum basilicum var. thyrsiflorum (L.) Benth., Received 12 February 2016 Lamiaceae, growing in KSA, exhibited a significant antioxidant activity compared to the ethyl acetate and Accepted 7 June 2016 butanol extracts, which was correlated to its higher phenolic and flavonoid contents. Chromatographic Available online 20 July 2016 separation of the 80% ethanol extract resulted in the isolation of ten known compounds; cinnamic acid, gallic acid, methylgallate, ellagic acid, methyl ellagic acid, apigenin, luteolin, vitexin, isovitexin, and 3 -O- Keywords: acetylvitexin. Compound 3 -O-acetylvitexin, a C-glycosylated derivative of apigenin, was isolated for the Ocimum basilicum first time from genus Ocimum. The 80% ethanolic extract and 3 -O-acetylvitexin showed significant cyto- HCT116 toxic activities against the HCT human colon cancer cell line [IC values 22.3 ± 1.1 and 16.8 ± 2.0 ␮g/ml Cytotoxic 116 50 ␮ Antioxidant (35.4 M), respectively].
    [Show full text]
  • Characterization of C-Glycosidic Flavonoids from Brazilian Passiflora Species Using Lc/Ms Exact Mass Measurement
    CHARACTERIZATION OF C-GLYCOSIDIC FLAVONOIDS FROM BRAZILIAN PASSIFLORA SPECIES USING LC/MS EXACT MASS MEASUREMENT 1 2 2 NOTE M. McCullagh , C.A.M. Pereira , J.H. Yariwake 1Waters Corporation, Floats Road, Wythenshawe, Manchester, M23 9LZ, UK 2Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil OVERVIEW This application note describes the analysis of extracts Recently issues have arisen with Kava Kava, a natural from Passiflora species using real time centroid exact health product, which is used for its anti-depressant and mass measurement. The system used comprised of an anti-anxiety properties. Investigations into the safety of LCT™ orthogonal acceleration (oa-TOF) time of flight Kava have taken place within several European mass spectrometer with LockSpray™ source, Waters® countries, including Germany, U.K., Switzerland, 2996 PDA and Waters Alliance® HT 2795 France, Spain and parts of Scandinavia. In Switzerland Separations Module. and Germany cases of liver damage were reported. In Application the US the FDA has investigated Kava's safety, where INTRODUCTION as in Canada the public were advised not to take the EU Directive 2001/83/EC will regulate and produce a supplement until product safety could be assured. The set of harmonized assessment criteria for the efficacy Kava market in Germany alone is $25m. Proving the and safety "Herbal Medicinal Products for traditional efficacy of such a product is economically viable. use". The current and future E.U. member states will Such issues illustrate how regulation currently affects produce and abide by this directive, making 28 states the natural health product market and also why new in total.
    [Show full text]
  • Natural Products As Alternative Choices for P-Glycoprotein (P-Gp) Inhibition
    Review Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition Saikat Dewanjee 1,*, Tarun K. Dua 1, Niloy Bhattacharjee 1, Anup Das 2, Moumita Gangopadhyay 3, Ritu Khanra 1, Swarnalata Joardar 1, Muhammad Riaz 4, Vincenzo De Feo 5,* and Muhammad Zia-Ul-Haq 6,* 1 Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India; [email protected] (T.K.D.); [email protected] (N.B.); [email protected] (R.K.); [email protected] (S.J.) 2 Department of Pharmaceutical Technology, ADAMAS University, Barasat, Kolkata 700126, India; [email protected] 3 Department of Bioechnology, ADAMAS University, Barasat, Kolkata 700126, India; [email protected] 4 Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan; [email protected] 5 Department of Pharmacy, Salerno University, Fisciano 84084, Salerno, Italy 6 Environment Science Department, Lahore College for Women University, Jail Road, Lahore 54600, Pakistan * Correspondence: [email protected] (S.D.); [email protected] (V.D.F.); [email protected] (M.Z.-U.-H.) Academic Editor: Maria Emília de Sousa Received: 11 April 2017; Accepted: 15 May 2017; Published: 25 May 2017 Abstract: Multidrug resistance (MDR) is regarded as one of the bottlenecks of successful clinical treatment for numerous chemotherapeutic agents. Multiple key regulators are alleged to be responsible for MDR and making the treatment regimens ineffective. In this review, we discuss MDR in relation to P-glycoprotein (P-gp) and its down-regulation by natural bioactive molecules. P-gp, a unique ATP-dependent membrane transport protein, is one of those key regulators which are present in the lining of the colon, endothelial cells of the blood brain barrier (BBB), bile duct, adrenal gland, kidney tubules, small intestine, pancreatic ducts and in many other tissues like heart, lungs, spleen, skeletal muscles, etc.
    [Show full text]