Isovitexin Exerts Anti-Inflammatory and Anti-Oxidant Activities on Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting MA

Total Page:16

File Type:pdf, Size:1020Kb

Isovitexin Exerts Anti-Inflammatory and Anti-Oxidant Activities on Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting MA Int. J. Biol. Sci. 2016, Vol. 12 72 Ivyspring International Publisher International Journal of Biological Sciences 2016; 12(1): 72-86. doi: 10.7150/ijbs.13188 Research Paper Isovitexin Exerts Anti-Inflammatory and Anti-Oxidant Activities on Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting MAPK and NF-κB and Activating HO-1/Nrf2 Pathways Hongming Lv1#, Zhenxiang Yu2#, Yuwei Zheng1, Lidong Wang1, Xiaofeng Qin1, Genhong Cheng1, Xinxin Ci1 1. Institute of Translational Medicine, The First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China 2. Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China. # These authors contributed equally to this work. Corresponding author: X.-X.Ci, Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130001, China. Tel.: +86 431 88783044; E-mail addresses: [email protected] (X.-X.Ci.) © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. Received: 2015.07.08; Accepted: 2015.11.02; Published: 2016.01.01 Abstract Oxidative damage and inflammation are closely associated with the pathogenesis of acute lung injury (ALI). Thus, we explored the protective effect of isovitexin (IV), a glycosylflavonoid, in the context of ALI. To accomplish this, we created in vitro and in vivo models by respectively exposing macrophages to lipopolysaccharide (LPS) and using LPS to induce ALI in mice. In vitro, our results showed that IV treatment reduced LPS-induced pro-inflammatory cytokine secretion, iNOS and COX-2 expression and decreased the generation of ROS. Consistent findings were obtained in vivo. Additionally, IV inhibited H2O2-induced cytotoxicity and apoptosis. However, these effects were partially reversed following the use of an HO-1 inhibitor in vitro. Further studies revealed that IV significantly inhibited MAPK phosphorylation, reduced NF-κB nuclear translocation, and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression in RAW 264.7 cells. In vivo, pretreatment with IV attenuated histopathological changes, infiltration of polymorphonuclear granulocytes and endothelial activation, decreased the expres- sion of ICAM-1 and VCAM-1, reduced the levels of MPO and MDA, and increased the content of GSH and SOD in ALI. Furthermore, IV treatment effectively increased Nrf2 and HO-1 expression in lung tissues. Therefore, IV may offer a protective role against LPS-induced ALI by inhibiting MAPK and NF-κB and activating HO-1/Nrf2 pathways. Key words: Isovitexin; LPS; inflammation; oxidative stress; ALI Introduction Oxidative damage and inflammation are associ- patients themselves, plays an essential role in regu- ated with the pathogenesis of various diseases, in- lating lung injury. For example, the antioxidant cluding acute lung injury (ALI) [1, 2]. Both ALI and its N-acetylcysteine attenuates pulmonary function in more serious form, acute respiratory distress syn- ARDS patients [5, 6]. Lipopolysaccharide (LPS), a drome (ARDS), are severe and acute respiratory dys- pathogenic endotoxin present in the outer membranes functions. Both conditions present with overwhelm- of Gram-negative bacteria, enhances the formation of ing lung inflammation and cause high mortality rates reactive oxygen species (ROS) and inflammatory me- worldwide [3, 4]. Furthermore, oxidative stress, which diators and is commonly used to induce pharmaco- is present in many animal models of ALI and in ALI logical research models of ALI [7, 8]. http://www.ijbs.com Int. J. Biol. Sci. 2016, Vol. 12 73 Accumulating evidence suggests that LPS can tivities, including anti-inflammatory and antioxidant activate nuclear factor-kappa B (NF-κB) and three activities, which may play a key role in the prevention mitogen-activated protein kinase (MAPK) pathways, of various diseases, including AMD, cancer and dia- inculding the c-Jun NH2-terminal kinase (JNK), ex- betes [22, 23]. The glycosylflavonoid isovitexin (IV) tracellular signal-regulated kinase (ERK), and p38 (Fig. 1A), extracted from rice hulls of Oryza sativa, pathways, which result in the overexpression of in- possesses various biological activities, including an- flammatory mediators such as tumor necrosis factor-α ti-inflammatory and antioxidant activities [24]. (TNF-α), interleukin-6 (IL-6), NO and prostaglandin However, the protective effect of IV against (PG) E2. Cyclooxygenase-2 (COX-2) and inducible LPS-induced damage has not yet been demonstrated nitric oxide synthase (iNOS) are responsible for the in vitro or in vivo. In the present study, we evaluated production of PGE2 and NO, respectively [9, 10]. On the protective effect of IV and the mechanisms related one hand, activation of inflammatory signaling re- to inflammation and oxidative stress in RAW 264.7 sulted in increasing adhesion molecules expressions, cells exposed to LPS and in an LPS-induced ALI including intercellular adhesion molecule (ICAM)-1 mouse model. and vascular cell adhesion molecule (VCAM)-1, which play significant roles in cell adhesion and mi- Materials and Methods gration [11, 12]. On the other hand, these Reagents and chemicals pro-inflammatory cytokines lead to further damage of epithelial and endothelial cells in the lung. This Isovitexin (IV) with a purity >98% was pur- damage leads to the activation of peripheral poly- chased from the National Institute for the Control of morphonuclear neutrophils (PMNs). Subsequently, Pharmaceutical and Biological Products (Jilin, China). over-activation of PMNs can regulate inflammatory LPS (Escherichia coli 055:B5) and dimethyl sulfoxide responses and induce tissue damage through oxida- (DMSO) were purchased from Sigma-Aldrich (St. tive stress [13], the primary source of which is respir- Louis, MO, USA). Antibodies against p-(ERK1/2), atory burst and degranulation. Oxidative stress can ERK1/2, p-(JNK1/2), JNK1/2, p-p38, p38, p65, IκB, increase the production of ROS, myeloperoxidase p-IκB, Nrf2, HO-1, Lamin B and β-actin were pur- (MPO) and malondialdehyde (MDA) and decrease chased from Cell Signaling (Boston, MA, USA). the production of anti-oxidative enzymes, including SP600125, SB203580, and U0126 (specific inhibitors of reduced glutathione (GSH), superoxide dismutase the JNK1/2, p38, and ERK1/2, respectively) were (SOD), and heme oxygenase (HO)-1, which collec- purchased from Sigma-Aldrich (St. Louis, MO). tively protect lung tissues against oxidative damage ICAM-1 and VCAM-1 polyclonal antibody were in vivo [14]. These anti-oxidative enzymes are medi- purchased from ABclonal (MA, USA). The tin proto- ated by nuclear factor-erythroid 2-related factor 2 porphyrin IX (SnPP IX, HO-1 inhibitor) was pur- (Nrf2) [15, 16]. Nrf2 plays an essential role in protect- chased from Calbiochem (La Jolla, CA, USA). Control ing cells against various inflammatory- and oxidative siRNA and Nrf2 siRNA were purchased from Santa stress-induced diseases, including age-related macu- Cruz Biotechnology (Santa Cruz, CA, USA). A lar degeneration (AMD), chronic obstructive pulmo- Prime-Script RT-PCR kit was purchased from Takara nary disease (COPD) and asthma [17, 18]. Under un- (Dalian, China). In addition, GSH, MDA, SOD and stressed conditions, Nrf2 is located in the cytoplasm MPO test kits were obtained from Nanjing Jiancheng in association with its repressor protein, Kelch-like Bioengineering Institute (Nanjing, China). Total ECH-associated protein 1 (Keap1). Under stress con- ROS/Superoxide Detection Kit was purchased from ditions, Nrf2 dissociates from Keap1, translocates into Enzo Life Sciences Inc (Farmingdale, NY, USA). All the nucleus and binds to the antioxidant response other chemicals, unless specifically stated elsewhere, element (ARE). This interaction leads to the induction were purchased from Sigma-Aldrich (St. Louis, MO, of phase II detoxifying enzymes and cytoprotective USA). genes, such as HO-1 [19]. HO-1 is the major an- Animals ti-inflammatory and anti-oxidative enzyme among Male BALB/c mice, 6-8 weeks old and weighing the genes that are mediated by Nrf2 activation [20]. approximately 18-20 g, were obtained from Liaoning Several reports have suggested that the activation of Changsheng Technology Industrial Co., LTD (Certif- HO-1 counteracts the inflammatory and oxidative icate SCXK2010-0001; Liaoning, China). All animals damage that occurs in LPS-induced ALI [21]. There- were housed in a room kept at a temperature of 24 ± 1 fore, suppressing inflammation and oxidative stress °C under a 12 h light-dark cycle with a relative hu- may be an effective method of preventing and treating midity of approximately 40-80%. The animals were ALI. allowed free access to tap water and normal food after Flavonoids exhibit a series of pharmaceutical ac- feeding for several days. All studies were performed http://www.ijbs.com Int. J. Biol. Sci. 2016, Vol. 12 74 in accordance with the International Guiding Princi- 1 h, after which LPS (2 μg/ml) was added to the ples for Biomedical Research Involving Animals, treatment group of plates for an additional 24 h. Next, which was published by the Council for the Interna- the cells were stained with 100 μl of ROS/Superoxide tional Organizations of Medical Sciences. detection reagent for 1 h to detect ROS generation. Absorbance was measured in a multi-detection reader Cell culture and MTT assay (Bio-Tek Instruments Inc.)
Recommended publications
  • Flavonoid Application in Treatment of Oral Cancer-A Review
    European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 01, 2020 FLAVONOID APPLICATION IN TREATMENT OF ORAL CANCER-A REVIEW Sudarsan R1, Lakshmi T2, Anjaneyulu K3 1Undergraduate student, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 77 2Associate Professor, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 77 3 Reader, Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 77 ABSTRACT A wide range of organic compounds that are naturally occurring called flavonoids are primarily found in a large variety of plants. Some of the sources include tea, wine, fruits, grains, nuts and vegetables. There are a number of studies that have proven that a strong association exists between intake of dietary flavonoid and its effects on mortality in the long run. Flavonoids at non-toxic concentrations are known to demonstrate a wide range of therapeutic biological activities in organisms. The contribution of flavonoids in prevention of cancer is an area of great interest in current research. A variety of studies, including in vitro experiments and human trials and even epidemiological investigations, provide compelling evidence which imply that flavonoids’ effects on cancer in terms of chemoprevention and chemotherapy is significant. As the current treatment methods possess a number of drawbacks, the anticancer potential demonstrated by flavonoids makes them a reliable alternative. Various studies have focussed on flavonoids’ anti-cancer potential and its possible application in the treatment of cancer as a chemopreventive agent.
    [Show full text]
  • Characterization of C-Glycosidic Flavonoids from Brazilian Passiflora Species Using Lc/Ms Exact Mass Measurement
    CHARACTERIZATION OF C-GLYCOSIDIC FLAVONOIDS FROM BRAZILIAN PASSIFLORA SPECIES USING LC/MS EXACT MASS MEASUREMENT 1 2 2 NOTE M. McCullagh , C.A.M. Pereira , J.H. Yariwake 1Waters Corporation, Floats Road, Wythenshawe, Manchester, M23 9LZ, UK 2Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil OVERVIEW This application note describes the analysis of extracts Recently issues have arisen with Kava Kava, a natural from Passiflora species using real time centroid exact health product, which is used for its anti-depressant and mass measurement. The system used comprised of an anti-anxiety properties. Investigations into the safety of LCT™ orthogonal acceleration (oa-TOF) time of flight Kava have taken place within several European mass spectrometer with LockSpray™ source, Waters® countries, including Germany, U.K., Switzerland, 2996 PDA and Waters Alliance® HT 2795 France, Spain and parts of Scandinavia. In Switzerland Separations Module. and Germany cases of liver damage were reported. In Application the US the FDA has investigated Kava's safety, where INTRODUCTION as in Canada the public were advised not to take the EU Directive 2001/83/EC will regulate and produce a supplement until product safety could be assured. The set of harmonized assessment criteria for the efficacy Kava market in Germany alone is $25m. Proving the and safety "Herbal Medicinal Products for traditional efficacy of such a product is economically viable. use". The current and future E.U. member states will Such issues illustrate how regulation currently affects produce and abide by this directive, making 28 states the natural health product market and also why new in total.
    [Show full text]
  • Identification of Apigenin and Luteolin in Artemisia Annua L. for the Quality
    Phadungrakwittaya et al. Identification of Apigenin and Luteolin inArtemisia annua L. for the Quality Control Rattana Phadungrakwittaya*, Sirikul Chotewuttakorn*, Manoon Piwtong**, Onusa Thamsermsang**, Tawee Laohapand**, Pravit Akarasereenont*,** *Department of Pharmacology, **Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. ABSTRACT Objective: To identify active compounds and establish the chemical fingerprint ofArtemisia annua L. for the quality control. Methods: Thin-layer chromatography (TLC) conditions were developed to screen for 2 common flavonoids (apigenin and luteolin). Three mobile phases were used to isolate these flavonoids in 80% ethanolic extract of A. annua. Hexane : ethyl acetate : acetic acid (31:14:5, v/v) and toluene : 1,4-dioxane : acetic acid (90:25:4, v/v) were used in normal phase TLC (NP-TLC), and 5.5% formic acid in water : methanol (50:50, v/v) were used in reverse phase TLC (RP-TLC). Chromatograms were visualized under visible light after spraying with Fast Blue B Salt. Apigenin and luteolin bands were checked by comparing their Rf values and UV-Vis absorption spectra with reference markers. Results: Apigenin and luteolin were simultaneously detected with good specificity in RP-TLC condition, while only apigenin was detected in NP-TLC condition. Apigenin band intensity was higher than luteolin band intensity in both conditions. Conclusion: This knowledge can be applied to the development of quality control assessments to ensure product efficacy and consistency. Keywords: Artemisia annua L.; TLC fingerprint; apigenin; luteolin (Siriraj Med J 2019;71: 240-245) INTRODUCTION Thai herbal recipes that are published in The National Artemisia annua L., commonly known as sweet List of Essential Medicines.2 Several previous studies wormwood, is an annual plant in the Asteraceae (Compositae) reported that A.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora Incarnata L
    International Journal of Molecular Sciences Article In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora incarnata L. Martina Tremmel 1, Josef Kiermaier 2 and Jörg Heilmann 1,* 1 Department of Pharmaceutical Biology, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany; [email protected] 2 Department of Central Analytics, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany; [email protected] * Correspondence: [email protected] Abstract: Several medical plants, such as Passiflora incarnata L., contain C-glycosylated flavonoids, which may contribute to their efficacy. Information regarding the bioavailability and metabolism of these compounds is essential, but not sufficiently available. Therefore, the metabolism of the C-glycosylated flavones orientin, isoorientin, schaftoside, isoschaftoside, vitexin, and isovitexin was investigated using the Caco-2 cell line as an in vitro intestinal and epithelial metabolism model. Isovitexin, orientin, and isoorientin showed broad ranges of phase I and II metabolites containing hy- droxylated, methoxylated, and sulfated compounds, whereas schaftoside, isoschaftoside, and vitexin underwent poor metabolism. All metabolites were identified via UHPLC-MS or UHPLC-MS/MS using compound libraries containing all conceivable metabolites. Some structures were confirmed via UHPLC-MS experiments with reference compounds after a cleavage reaction using glucuronidase and sulfatase. Of particular interest is the observed cleavage of the C–C bonds between sugar and aglycone residues in isovitexin, orientin, and isoorientin, resulting in unexpected glucuronidated or sulfated luteolin and apigenin derivatives. These findings indicate that C-glycosidic flavones can be Citation: Tremmel, M.; Kiermaier, J.; highly metabolized in the intestine.
    [Show full text]
  • Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times
    Traditional Herbal Medicines for Modern Times Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times Each volume in this series provides academia, health sciences, and the herbal medicines industry with in-depth coverage of the herbal remedies for infectious diseases, certain medical conditions, or the plant medicines of a particular country. Series Editor: Dr. Roland Hardman Volume 1 Shengmai San, edited by Kam-Ming Ko Volume 2 Rasayana: Ayurvedic Herbs for Rejuvenation and Longevity, by H.S. Puri Volume 3 Sho-Saiko-To: (Xiao-Chai-Hu-Tang) Scientific Evaluation and Clinical Applications, by Yukio Ogihara and Masaki Aburada Volume 4 Traditional Medicinal Plants and Malaria, edited by Merlin Willcox, Gerard Bodeker, and Philippe Rasoanaivo Volume 5 Juzen-taiho-to (Shi-Quan-Da-Bu-Tang): Scientific Evaluation and Clinical Applications, edited by Haruki Yamada and Ikuo Saiki Volume 6 Traditional Medicines for Modern Times: Antidiabetic Plants, edited by Amala Soumyanath Volume 7 Bupleurum Species: Scientific Evaluation and Clinical Applications, edited by Sheng-Li Pan Traditional Herbal Medicines for Modern Times Herbal Principles in Cosmetics Properties and Mechanisms of Action Bruno Burlando, Luisella Verotta, Laura Cornara, and Elisa Bottini-Massa Cover art design by Carlo Del Vecchio. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4398-1214-3 (Ebook-PDF) This book contains information obtained from authentic and highly regarded sources.
    [Show full text]
  • WO 2012/159639 Al 29 November 2012 (29.11.2012)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/159639 Al 29 November 2012 (29.11.2012) (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A23L 1/30 (2006.01) A61K 36/48 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A61K 36/185 (2006.01) A61K 36/8962 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 36/63 (2006.01) A61K 36/54 (2006.01) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, A61K 36/23 (2006.01) A61K 36/71 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, A61K 36/9066 (2006.01) A61K 36/886 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, A61K 36/28 (2006.01) A61K 36/53 (2006.01) OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, A61K 36/82 (2006.01) A61K 36/64 (2006.01) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, A61K 36/67 (2006.01) TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (21) International Application Number: (84) Designated States (unless otherwise indicated, for every PCT/EG20 12/0000 18 kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (22) International Filing Date: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 22 May 2012 (22.05.2012) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (25) Filing Language: English EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (26) Publication Language: English TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (30) Priority Data: ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Distribution of Flavonoids Among Malvaceae Family Members – a Review
    Distribution of flavonoids among Malvaceae family members – A review Vellingiri Vadivel, Sridharan Sriram, Pemaiah Brindha Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, Tamil Nadu, India Abstract Since ancient times, Malvaceae family plant members are distributed worldwide and have been used as a folk remedy for the treatment of skin diseases, as an antifertility agent, antiseptic, and carminative. Some compounds isolated from Malvaceae members such as flavonoids, phenolic acids, and polysaccharides are considered responsible for these activities. Although the flavonoid profiles of several Malvaceae family members are REVIEW REVIEW ARTICLE investigated, the information is scattered. To understand the chemical variability and chemotaxonomic relationship among Malvaceae family members summation of their phytochemical nature is essential. Hence, this review aims to summarize the distribution of flavonoids in species of genera namely Abelmoschus, Abroma, Abutilon, Bombax, Duboscia, Gossypium, Hibiscus, Helicteres, Herissantia, Kitaibelia, Lavatera, Malva, Pavonia, Sida, Theobroma, and Thespesia, Urena, In general, flavonols are represented by glycosides of quercetin, kaempferol, myricetin, herbacetin, gossypetin, and hibiscetin. However, flavonols and flavones with additional OH groups at the C-8 A ring and/or the C-5′ B ring positions are characteristic of this family, demonstrating chemotaxonomic significance. Key words: Flavones, flavonoids, flavonols, glycosides, Malvaceae, phytochemicals INTRODUCTION connate at least at their bases, but often forming a tube around the pistils. The pistils are composed of two to many connate he Malvaceae is a family of flowering carpels. The ovary is superior, with axial placentation, with plants estimated to contain 243 genera capitate or lobed stigma. The flowers have nectaries made with more than 4225 species.
    [Show full text]
  • BIOLOGICAL PROPERTIES of SELECTED FLAVONOIDS of ROOIBOS (Aspalathus Linearis)
    BIOLOGICAL PROPERTIES OF SELECTED FLAVONOIDS OF ROOIBOS (Aspalathus linearis) Petra W Snijman Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at the University of the Western Cape Study Leader: Prof IR Green Co-study Leaders: Prof E Joubert Prof WCA Gelderblom June 2007 ii DECLARATION I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. _______________________________ ____________ Petra Wilhelmina Snijman Date Copyright © 2007 University of the Western Cape All rights reserved iii ABSTRACT Bioactivity-guided fractionation was used to identify the most potent antioxidant and antimutagenic fractions contained in the methanol extract of unfermented rooibos (Aspalathus linearis), as well as the bioactive principles for the most potent antioxidant fractions. The different extracts and fractions were screened using Salmonella typhimurium tester strain TA98 and metabolically activated 2- acetoaminofluorene (2-AAF) to evaluate antimutagenic potential, while the antioxidant potency was assessed by two different in vitro assays, i.e. the inhibition of Fe(II) induced microsomal lipid peroxidation and the scavenging of the 2,2'- azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation. The most polar XAD fraction displayed the most protection against 2-AAF induced mutagenesis in TA98. Successive fractionation of the two XAD fractions
    [Show full text]
  • Biosynthesis of Vitexin and Isovitexin: Enzymatic Synthesis of the C-Glucosylflavones Vitexin and Isovitexin with an Enzyme Preparation Fromfagopyrum Esculentum M
    Biosynthesis of Vitexin and Isovitexin: Enzymatic Synthesis of the C-Glucosylflavones Vitexin and Isovitexin with an Enzyme Preparation fromFagopyrum esculentum M. Seedlings F. Kerscher and G. Franz Lehrstuhl für Pharmazeutische Biologie, Universität Regensburg, Universitätsstraße 31, D-8400 Regensburg, Bundesrepublik Deutschland Z. Naturforsch. 42c, 519—524 (1987); received October 8/December 29, 1986 Biosynthesis of Vitexin, Fagopyrum esculentum M., Flavonoid-C-glucosylation, 2-Hydroxy- flavanones A C-glucosyltransferase from Fagopyrum esculentum seedlings catalyzes the transfer of glucose from UDP-glucose or ADP-glucose to 2-hydroxyflavanones. In cell-free enzyme preparations it was shown that only 2-hydroxyflavanones, e.g. 2,4',5,7-tetrahydroxyflavanone and 2,5,7-tri- hydroxyflavanone were appropriate substrates. Naringenin, naringenin-chalcone and the flavones apigenin and chrysin cannot act as glucosyl acceptors in C-glucosyl-flavonoid biosynthesis. This demonstrates that C-glucosylation occurs after oxidation of flavanones. Introduction Cotyledons of Fagopyrum esculentum are known C-glucosyl flavonoids are widespread in the plant to produce considerable amounts of vitexin and kingdom with the most important representatives isovitexin [ 8 ]. The aim of the present work was to being vitexin and isovitexin [1], The biosynthesis of demonstrate at which stage during biogenesis of the aglycon C-glucosylation occurs. Enzyme extracts the aglycon was subject of several investigations [ 2 ], Nothing, however, is known about the mechanism of were prepared from this cotyledon material and incu­ the C-glucosylation of these flavone compounds [3]. bated with several hypothetic glucosyldonors and In vivo experiments demonstrated that flavanones acceptors such as naringenin-chalcone, naringenin, might act as precursors for flavone-C-glucosides but 2 -hydroxynaringenin, apigenin and further with not the flavones [4], On the other hand the 2,5,7-trihydroxyflavanone and chrysin.
    [Show full text]
  • Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin
    Review Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin Rashida Ginwala, Raina Bhavsar, DeGaulle I. Chigbu, Pooja Jain and Zafar K. Khan * Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; [email protected] (R.G.); [email protected] (R.B.); [email protected] (D.I.C.); [email protected] (P.J.) * Correspondence: [email protected] Received: 28 November 2018; Accepted: 30 January 2019; Published: 5 February 2019 Abstract: Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination.
    [Show full text]
  • Antineoplastic Potential of the Vitex Species: an Overview
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas BOLETÍN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS 17 (5): 492 - 502 (2018) © / ISSN 0717 7917 / www.blacpma.usach.cl Revisión | Review Antineoplastic potential of the Vitex species: An overview [Potencial antineoplásico de la especie Vitex: una visión general] Manisha Nigam1, Sarla Saklani2, Sergey Plygun3,4 & Abhay Prakash Mishra2 1Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, 246174, Uttarakhand, India 2Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, 246174, Uttarakhand, India 3All Russian Research Institute of Phytopathology, Moscow Region, Russia 4European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland Contactos | Contacts: Abhay Prakash MISHRA - E-mail address: [email protected] Abstract: Irrespective of progressive treatments, cancer remains to have the utmost rate of treatment failure due to numerous reasons associated. In recent years, the use of traditional medicine in cancer research has established considerable interest. Natural products represent an amazing source for cancer therapy and combating associated side-effects. More than thousand plants have been found to possess significant anticancer properties. Vitex is the largest genus in the family Lamiaceae which comprises 250 species distributed throughout world and several species have been reported to have anticancer properties. Despite a long tradition of use of some species, the genus has not been explored properly in terms of its anticancer profile. Here we are reporting the updated knowledge of the antineoplastic profile of this genus available so far.
    [Show full text]