Desarrollo De Una Genoteca De Líneas De Introgresión Entre Solanum

Total Page:16

File Type:pdf, Size:1020Kb

Desarrollo De Una Genoteca De Líneas De Introgresión Entre Solanum Desarrollo de una genoteca de líneas de introgresión entre Solanum lycopersicum y Solanum pimpinellifolium utilizando herramientas genómicas de alto rendimiento y detección de QTLs implicados en calidad de fruto Tesis presentada por: Walter Barrantes Santamaría Para optar al título de Doctor en Biotecnología Directores: Dr. Antonio José Monforte, Dr. Antonio Granell 2014 i El Dr. Antonio José Monforte Gilabert, científico titular del Consejo Superior de Investigaciones Científicas y el Dr. Antonio Granell Richart, Profesor de investigación del Consejo Superior de Investigaciones Científicas, ambos pertenecientes al Instituto de Biología Molecular y Celular de Plantas. CERTIFICAN que el Ingeniero Agrónomo Walter Barrantes Santamaría ha realizado bajo su dirección en el Instituto de Biología Molecular y Celular de Plantas el trabajo que lleva como título ¨ Desarrollo de una genoteca de líneas de introgresión entre Solanum lycopersicum y Solanum pimpinellifolium utilizando herramientas de genómicas de alto rendimiento, y detección de QTLs implicados en calidad de fruto¨, y autorizan su presentación para optar al grado de Doctor en Biotecnología por la Universidad Politécnica de Valencia. Y para que conste, expiden y firman el presente certificado en Valencia, a 23 de Mayo del 2014. Dr. Antonio José Monforte Gilabert Dr. Antonio Granell Richart ii Agradecimientos Durante mi estancia en Valencia han sido muchas las personas con las que de una u otra forma he compartido momentos especiales, ya sean estos de trabajo o solaz esparcimiento. Todos estos momentos los recordaré con especial cariño, pero especialmente los segundos, que hicieron que mi estancia y la de mi familia fuese mucho más agradable. Quiero empezar mis agradecimientos con las dos personas cuya participación en el desarrollo de esta tesis fue trascendental: los Drs. Antonio Monforte y Antonio Granell, quienes aparte de su acertada guía durante todas y cada una de las etapas de mí doctorado también, me brindaron su amistad y la de sus estimables familias. A Toni G. gracias por darme la oportunidad de venir al IBMCP y poder vivir esta experiencia por demás maravillosa. Y especialmente, quiero agradecer a Tony M. la paciencia, comprensión y apoyo en todo momento y decirle que esta tesis no habría sido posible sin su irremplazable participación. Esta tesis fue auspiciada por la Universidad de Costa Rica, quiero agradecer a los funcionarios que en su momento confiaron en mí para que realizara este Doctorado, a los compañeros de la Estación Agrícola Fabio Baudrit, y de la Facultad de Agronomía por su voto de confianza. Agradezco a la Oficina de Asuntos Internacionales (OAICE), en especial a la Dra. Ana Sittenfeld, Yamileth Damazio y Fátima Acosta por el apoyo y comprensión que recibimos mi familia y yo durante nuestra ¨aventura¨ por tierras chilenas. Gracias también a la Dra. Julieta Carranza y a Laura Agüero y a todo el personal de OAICE por estar siempre pendiente de nosotros en Valencia. Al CSIC por cofinanciar parte de mi beca y por brindarme la oportunidad de recibir parte de mi capacitación en uno de sus prestigiosos centros de investigación. Un especial agradecimiento al Dr. Rafael Fernández, responsable en gran medida de la realización de esta tesis, por su ayuda en el desarrollo de la genoteca y, por estar siempre dispuesto a responder ante mis consultas, algunas veces, con mucho más detalle del esperado. Al Dr. Carlos Romero por su oportuna ayuda en la interpretación de los resultados del capítulo 3, a Asun Fernández que gracias a su guía pude iniciar con el trabajo de genotipado de la plantas, al Dr. José María Bellés por sus consejos y ayuda a lo largo de todo este tiempo. iii Igualmente quiero agradecer a todas las personas que de una u otra forma colaboraron en el diseño, instalación, mantenimiento y evaluación de los ensayos de campo en Alginet, Orihuela y Málaga. En Alginet un agradecimiento especial al personal de los invernaderos de la Cooperativa Agrícola (Coagri), también a Teresa León, Erika, Silvia, Teresa Caballero y Soledad Casal por su colaboración en la evaluación de los frutos. En Orihuela un agradecimiento muy especial a Juan José Ruiz, Santiago García-Martínez, Aranzazu Alonso, Fernando Rubio, Adrián Grau, José Joaquín García, Javier Vives y Alberto Lara por toda la colaboración brindada. En Málaga a Gloria López Casado, Antonia Núñez Martín, Luis Rodríguez Caso, Rafael Gómez Cabrera y personal de campo, a todo ellos muchas gracias ya que sin su ayuda esta tesis no se hubiera podido realizar. También quiero agradecer a mis profesores del COMAV por sus enseñanzas, a los compañeros del IBMCP que de una u otra forma me han ayudado. En especial al Dr. Eugenio Grau del servicio de secuenciación por su apoyo y amistad. Al personal de los invernaderos del IBMCP-UPV especialmente a ¨Rafa¨ por su imprescindible ayuda durante el ensayo de campo en Alginet, a María Victoria, Ferrán y David por todo el apoyo logístico recibido en el invernadero a lo largo de estos cuatro años. A mis compañeros del laboratorio 0.08 con los cuales compartí largas horas de trabajo y uno que otro momento de diversión, Gerardo, Aurora D, Aurora M, Mohamed, Gabriela. En especial a especial a José Añó por su valiosa ayuda en la cosecha de frutos y extracción de semillas y, a Soledad Casal por toda la ayuda brindada durante mi paso por el laboratorio. A todos ellos muchas gracias porque han hecho mi estancia más agradable. Finalmente quiero agradecer a mi familia y amigos, en especial a mi esposa Kristel y mi hija Ximena porque sin su apoyo no lo hubiera logrado. A mi madre, hermanos, cuñado, sobrinos y primos que realizaron el esfuerzo de sacar parte de su tiempo para venir a compartirlo con nosotros a Valencia. Muchas gracias a todos, este logro también es de ustedes. iv INDICE RESUMEN ......................................................................................................................... 11 ABSTRACT ....................................................................................................................... 13 RESUM .............................................................................................................................. 15 CAPITULO 1: Introducción General ............................................................................... 17 1.1 Descripción botánica del tomate.................................................................................. 17 1.2 Taxonomía .................................................................................................................. 17 1.3 Importancia económica del tomate .............................................................................. 18 1.4 Centro de origen e historia del tomate ......................................................................... 19 1.5 Recursos fitogenéticos ................................................................................................ 20 1.5.1 Bancos de Germoplasma ...................................................................................................20 1.5.2 Especies silvestres como fuentes de variabilidad genética aprovechable en mejora ............20 1.5.3 Sistemas de cruzamiento en tomate ...................................................................................22 1.5.4 S. pimpinellifolium como parental donante de genes ..........................................................23 1.6 Uso de Marcadores genéticos para conocer la variabilidad natural de tomate .............. 24 1.7 Métodos de genotipado de SNPs ................................................................................. 26 1.7.1 Métodos de genotipado de SNPs simples ..........................................................................26 1.7.2 Genotipado de SNPs de alto rendimiento .........................................................................29 1.7.3 Genotipado basado en secuenciación masiva ....................................................................30 1.8 Genómica del tomate .................................................................................................. 31 1.9 Mapas genéticos del tomate ........................................................................................ 32 1.10 Mapeo de Quantitative Trait Locus ........................................................................... 34 1.11 Poblaciones para mapeo de QTLs en tomate ............................................................. 35 1.12 Usos y ventajas de las ILs en la detección de QTLs ................................................... 37 1.13 QTLs definidos en tomate y regiones cromosómicas relacionadas ............................. 38 1.14 QTLs para caracteres calidad de fruto en tomate ....................................................... 39 1.14.1 QTLs para caracteres de peso, tamaño y forma del fruto ..................................................39 1.14.2 QTLs para Sólidos totales ...............................................................................................40 1.14.3 QTLs para acidez y pH ...................................................................................................41 1.14.4 QTLs para color de fruto .................................................................................................41 1.14.5 QTLs para contenido nutricional y compuestos volátiles .................................................42 1.14.6 QTLs para vida pos-cosecha ...........................................................................................43 OBJETIVO GENERAL ...................................................................................................
Recommended publications
  • Solanum Section Lycopersicon: Solanaceae)
    Biological Journal of the Linnean Society, 2016, 117, 96–105. With 4 figures. Using genomic repeats for phylogenomics: a case study in wild tomatoes (Solanum section Lycopersicon: Solanaceae) 1,2 2,3 € 4 5 STEVEN DODSWORTH *, MARK W. CHASE , TIINA SARKINEN , SANDRA KNAPP and ANDREW R. LEITCH1 1School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK 2Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK 3School of Plant Biology, The University of Western Australia, Crawley, WA, 6009, Australia 4Royal Botanic Garden, Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK 5Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK Received 17 February 2015; revised 7 May 2015; accepted for publication 21 May 2015 High-throughput sequencing data have transformed molecular phylogenetics and a plethora of phylogenomic approaches are now readily available. Shotgun sequencing at low genome coverage is a common approach for isolating high-copy DNA, such as the plastid or mitochondrial genomes, and ribosomal DNA. These sequence data, however, are also rich in repetitive elements that are often discarded. Such data include a variety of repeats present throughout the nuclear genome in high copy number. It has recently been shown that the abundance of repetitive elements has phylogenetic signal and can be used as a continuous character to infer tree topologies. In the present study, we evaluate repetitive DNA data in tomatoes (Solanum section Lycopersicon)to explore how they perform at the inter- and intraspecific levels, utilizing the available data from the 100 Tomato Genome Sequencing Consortium.
    [Show full text]
  • The 12Th Solanaceae Conference
    SOL2015 would like to thank our sponsors: The 12th Solanaceae Conference The 12th Solanaceae Conference 1 The 12th Solanaceae Conference 2 CONTENTS Scientific Committee, Conference Chairs and Speakers ..................................... 4 Map of the Conference Site ............................................................................... 5 Social Events ..................................................................................................... 6 Program at a Glance .......................................................................................... 9 Scientific Program ............................................................................................. 10 Abstract (Monday, October 26th) Keynote lecture (KL‐1) ...................................................................................... 23 Session I – Plant Growth & Development ........................................................ 24 Session II – Biodiversity .................................................................................... 27 Session III – Molecular Breeding ...................................................................... 30 Session IV – Bioinformatics and SGN Workshop .............................................. 32 Abstract (Tuesday, October 27th) Keynote lecture (KL‐2) ...................................................................................... 34 Session V – Flower, Fruit and Tuber Biology .................................................... 35 Abstract (Wednesday, October 28th) Keynote lecture (KL‐3)
    [Show full text]
  • Report of the Tomato Genetics Cooperative
    Report of the Tomato Genetics Cooperative Volume 56 September 2006 Report of the Tomato Genetics Cooperative Number 56- September 2006 University of Florida Gulf Coast Research and Education Center 14625 CR 672 Wimauma, FL 33598 USA Foreword The Tomato Genetics Cooperative, initiated in 1951, is a group of researchers who share and interest in tomato genetics, and who have organized informally for the purpose of exchanging information, germplasm, and genetic stocks. The Report of the Tomato Genetics Cooperative is published annually and contains reports of work in progress by members, announcements and updates on linkage maps and materials available. The research reports include work on diverse topics such as new traits or mutants isolated, new cultivars or germplasm developed, interspecific transfer of traits, studies of gene function or control or tissue culture. Relevant work on the Solanaceous species is encouraged as well. Paid memberships currently stand at approximately 101 from 19 countries. Requests for membership (per year) US$15 to addresses in the US and US$20 if shipped to addresses outside of the United States should be sent to Dr. J.W. Scott, [email protected]. Please send only checks or money orders. Make checks payable to the University of Florida. We are sorry but we are NOT able to accept cash or credit cards. Cover. The woodcut of “Poma aurea” or “Goldapffel” (Solanum lycopersicum) from Matthioli (1586), a German edition edited not by Matthioli, but by the German herbalist Joachim Camerarius. This copy has been hand-colored, but the flowers were left unpainted, presumably because their color was not known.
    [Show full text]
  • Evaluation of Wild Tomato Accessions (Solanum Spp.)
    Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content Mohamed Rakha, Ndeye Bouba, Srinivasan Ramasamy, Jean-Luc Regnard, Peter Hanson To cite this version: Mohamed Rakha, Ndeye Bouba, Srinivasan Ramasamy, Jean-Luc Regnard, Peter Hanson. Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genetic Resources and Crop Evolution, Springer Verlag, 2017, 64 (5), pp.1011-1022. 10.1007/s10722-016-0421-0. hal-01607841 HAL Id: hal-01607841 https://hal.archives-ouvertes.fr/hal-01607841 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Genet Resour Crop Evol (2017) 64:1011–1022 DOI 10.1007/s10722-016-0421-0 RESEARCH ARTICLE Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content Mohamed Rakha . Ndeye Bouba . Srinivasan Ramasamy . Jean-Luc Regnard . Peter Hanson Received: 17 February 2016 / Accepted: 13 June 2016 / Published online: 29 June 2016 Ó The Author(s) 2016.
    [Show full text]
  • Chapter 9. Solanum Sect. Lycopersicon
    Chittaranjan Kole Editor Wild Crop Relatives: Genomic and Breeding Resources Vegetables [email protected] Editor Prof. Chittaranjan Kole Director of Research Institute of Nutraceutical Research Clemson University 109 Jordan Hall Clemson, SC 29634 [email protected] ISBN 978-3-642-20449-4 e-ISBN 978-3-642-20450-0 DOI 10.1007/978-3-642-20450-0 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011922649 # Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) [email protected] Chapter 9 Solanum sect. Lycopersicon Silvana Grandillo, Roger Chetelat, Sandra Knapp, David Spooner, Iris Peralta, Maria Cammareri, Olga Perez, Pasquale Termolino, Pasquale Tripodi, Maria Luisa Chiusano, Maria Raffaella Ercolano, Luigi Frusciante, Luigi Monti, and Domenico Pignone 9.1 Introduction such as their bright yellow flowers and pinnatifid, non-prickly leaves.
    [Show full text]
  • The Systematics and Genetics of Tomatoes on the Galápagos Islands (Solanum, Solanaceae)
    The systematics and genetics of tomatoes on the Galápagos Islands (Solanum, Solanaceae) By Sarah Catherine Darwin A thesis submitted for the degree of Doctor of Philosophy at University College London August 2009 Department of Genetics, Evolution and Environment University College London 1 Declaration I, Sarah Darwin confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Chapter 2 is a reprint from a paper on the taxonomy of the tomatoes of the Galápagos Islands published in Systematics and Biodiversity in 2003. This was a collaborative project, and the authors were Sarah Darwin, Sandra Knapp and Iris Peralta. I was the lead author as this was part of my thesis work, and I carried out most of the work towards the paper. Below I list the contributions of each author for Chapter 2. Morphological analysis I undertook the analysis of the herbarium specimens, with particular guidance from Sandy Knapp and Iris Peralta for the S. lycopersicum and S. pimpinellifolium collected from the mainland of South America. Morphometrics Morphological characters were selected by all of us based on my experience from fieldwork, Dr Peralta’s experience from greenhouse grown accessions and Dr Knapp’s experience from herbarium specimens. I undertook the measurement of the living plants and herbarium specimens with the assistance/guidance of Drs Peralta and Knapp Statistics I and Dr Peralta undertook the PCA, with advice from Drs Claudio Galmarini and Clive Moncrieff. Taxonomic treatment Dr Knapp and Dr Norman Robson wrote the Latin for the taxonomic treatment.
    [Show full text]
  • Characterization of RIN Isoforms and Their Expression in Tomato Fruit Ripening
    cells Article Characterization of RIN Isoforms and Their Expression in Tomato Fruit Ripening Maria A. Slugina, Gleb I. Efremov, Anna V. Shchennikova * and Elena Z. Kochieva Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia; [email protected] (M.A.S.); [email protected] (G.I.E.); [email protected] (E.Z.K.) * Correspondence: [email protected]; Tel.: +7-499-1356219 Abstract: Ripening of tomato fleshy fruit is coordinated by transcription factor RIN, which triggers ethylene and carotenoid biosynthesis, sugar accumulation, and cell wall modifications. In this study, we identified and characterized complete sequences of the RIN chromosomal locus in two tomato Solanum lycopersicum cultivars, its rin/RIN genotype, and three wild green-fruited species differing in fruit color and composition. The results reveal that S. lycopersicum cultivars and some wild species (S. pennellii, S. habrochaites, and S. huaylasense) had a 30-splicing site enabling the transcription of RIN1i and RIN2i isoforms. The other wild species (S. arcanum, S. chmielewskii, S. neorickii, and S. peruvianum) had a 30-splicing site only for RIN2i, which was consistent with RIN1i and RIN2i expression patterns. The genotype rin/RIN, which had an extended 30-terminal deletion in the rin allele, mainly expressed the chimeric RIN–MC transcript, which was also found in cultivars (RIN/RIN). The RIN1, but not RIN2, protein is able to induce the transcription of the reporter gene in the Y2H system, which positively correlated with the transcription profile of RIN1i and RIN target genes. We suggest that Citation: Slugina, M.A.; Efremov, during fruit ripening, RIN1 activates ripening-related genes, whereas RIN2 and RIN–MC act as G.I.; Shchennikova, A.V.; Kochieva, modulators by competing for RIN-binding sites in gene promoters, which should be confirmed by E.Z.
    [Show full text]
  • The Status of the Endemic Flora of Galapagos: the Number of Threatened Species Is Increasing Alan Tye Charles Darwin Foundation
    BIODIVERSITY AND BIOPHYSICAL RESOURSES The status of the endemic flora of Galapagos: the number of threatened species is increasing Alan Tye Charles Darwin Foundation The endemic species of Galapagos are of the greatest Results conservation interest because their future depends entirely on their continued existence in the islands. A The new evaluations cover 180 species, compared complete evaluation of the threat status of the endemic with 175 in 2002, eight of which were Not Evaluated vascular plants (flowering plants and ferns) of (IUCN category NE) 1. Of the 180 evaluated in 2006, Galapagos was published in the last Galapagos nine species were placed in the IUCN category Data Report 1. A re-evaluation of their threat status at full Deficient (DD) owing to uncertainties regarding the species level was carried out during 2006, as a contri - limits of the taxon and therefore its distribution. For bution to the Ecuadorian national plant Red Data the 171 species that were fully evaluated, Table 1 Book 2. The present report summarises the results of summarizes the results of the latest re-evaluation and this re-evaluation and assesses changes since 2002. the previous full evaluation in 2002 1. No species were As in the last report 1, all species have been evaluated classified as EW (Extinct in the Wild). Table 1 gives the under the IUCN criteria 3, using the same methods as numbers and percentages of species in each category, by Tye 4,5 . These threat evaluations are carried out and reveals that 100 of the 168 extant species that under the auspices of the Galapagos Plant Specialist were evaluated (excluding the three extinct and the Group of IUCN, and become the official evaluations nine DD species) are threatened (60%).
    [Show full text]
  • Chapter 2. Tomato (Solanum Lycopersicum)
    2. TOMATO (SOLANUM LYCOPERSICUM) – 69 Chapter 2. Tomato (Solanum lycopersicum) This chapter deals with the biology of tomato (Solanum lycopersicum). It contains information for use during the risk/safety regulatory assessment of genetically engineered varieties intended to be grown in the environment (biosafety). It includes elements of taxonomy, centre of origin and distribution, crop production and cultivation practices, reproductive biology, genetics, hybridisation and introgression, interactions with other organisms (ecology), pests and diseases, and biotechnological developments. This chapter was prepared by the OECD Working Group on the Harmonisation of Regulatory Oversight in Biotechnology, with Spain and Mexico as the co-lead countries. It was initially issued in September 2016. Production data have been updated based on FAOSTAT. SAFETY ASSESSMENT OF TRANSGENIC ORGANISMS IN THE ENVIRONMENT: OECD CONSENSUS DOCUMENTS, VOLUME 7 © OECD 2017 70 – 2. TOMATO (SOLANUM LYCOPERSICUM) Introduction The cultivated tomato, Solanum lycopersicum L., is the world’s most highly consumed vegetable due to its status as a basic ingredient in a large variety of raw, cooked or processed foods. It belongs to the family Solanaceae, which includes several other commercially important species. Tomato is grown worldwide for local use or as an export crop. In 2014, the global area cultivated with tomato was 5 million hectares with a production of 171 million tonnes, the major tomato-producing countries being the People’s Republic of China (hereafter “China”) and India (FAOSTAT, 2017). Tomato can be grown in a variety of geographical zones in open fields or greenhouses, and the fruit can be harvested by manual or mechanical means. Under certain conditions (e.g.
    [Show full text]
  • November 17 – 21, 2019 Tentative Program
    November 17 – 21, 2019 Tentative Program Day 1 11/17/2019 6:00 – 8:00 p.m. Welcome reception Day 2 11/18/2019 8:00 a.m. Coffee-Pastries 8:30 a.m. Welcome - Sam Hutton and Gary Vallad 8:45 a.m. Rob Gilbert/Nick Place (IFAS Reps Invited) 9:00 a.m. Michael Schadler - Tomato Trade and Tariffs 9:30 a.m. Keynote: Greg Martin, Using Natural Variation and CRISPR to Understand and Improve Tomato Disease Resistance 10:10 a.m. Break 10:40 a.m. Manipulation of Tomato Architecture to Allow for Mechanically Harvested Fresh-market tomatoes - Tong Geon Lee, University of Florida/IFAS Gulf Coast REC 11:00 a.m. A Comparison of Whole-Genome Sequence Data Analysis Platforms to Study Solanaceae Genomes - Gurleen Kaur, University of Florida/IFAS Gulf Coast REC 11:20 a.m. Modifying Wild Tomato Introgressions to Improve the Horticultural Type of Tomatoes with Genetic Control of Insects and Transmitted Virus - Martha Mutchler-Chu, Cornell University 11:40 a.m. Challenges in Improving Vintage Tomato Varieties using Marker Assisted Selection and Background Genome Selection - Barbara Liedl, West Virginia State University 12:00 noon Lunch 1:00 p.m. Keynote: Discovery, Introgression, and Pyramiding of Disease Resistance in Tomato - David Francis, The Ohio State University 1:30 p.m. Genetic Mapping and Multi-Environment Characterization of Early Blight Resistance Genotypic Selection in Cultivared Tomato - Taylor Anderson, Cornell University 1:50 p.m. Development of Co-Dominant SCAR Markers for Detection of the Pto, Tm-22, I-3, and Sw5 Genes in Tomato - Jianbo Zhang, North Carolina State University 2:10 p.m.
    [Show full text]
  • (Psidium Galapageium), an Endemic Plant of the Galapagos Islands
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317602; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 4 Understanding the genetic diversity of the guayabillo (Psidium galapageium), an 5 endemic plant of the Galapagos Islands 6 7 8 9 10 11 Diego Urquia a*, Gabriela Pozo a, Bernardo Gutierrez a, b , Jennifer K. Rowntree c, Maria 12 de Lourdes Torres a, d# 13 14 15 16 17 a Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), 18 Diego de Robles y Via Interoceanica s/n, Quito,170157, Ecuador 19 b Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, 20 United Kingdom 21 c Ecology & Environment Research Centre, Department of Natural Sciences, 22 Manchester Metropolitan University, Oxford Road, Manchester M15 6BH, United 23 Kingdom 24 d Galapagos Science Center, Universidad San Francisco de Quito and University of 25 North Carolina at Chapel Hill, Alsacio Northia s/n, Isla San Cristobal 200150, 26 Galapagos, Ecuador 27 28 29 30 # Corresponding author: 31 Prof. Maria de Lourdes Torres 32 Universidad San Francisco de Quito, 33 Diego de Robles y Via Interoceanica s/n, Quito,170157, Ecuador 34 Email: [email protected] 35 36 37 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317602; this version posted September 29, 2020.
    [Show full text]
  • Solanum Lycopersicum L., Solanaceae) and Its Botanical Relatives
    Title The Tomato (Solanum lycopersicum L., Solanaceae) and Its Botanical Relatives Authors Knapp, S; Peralta, IE Date Submitted 2016-12-09 Knapp & Peralta – Botany and relatives 1 NOTES to do: Write to BMC re. figure re-use NHM Library for figure from Dodoens/Matthioli Mindy for map The tomato (Solanum lycopersicum L., Solanaceae) and its botanical relatives Sandra Knapp and Iris E. Peralta Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Departmento de Agronomía, Universidad Nacional del Cuyo, Almirante Brown 500, 5505 Chacras de Coria & IADIZA- CCT CONICET Mendoza, Argentina. Introduction The cultivated tomato, Solanum lycopersicum L., belongs to the diverse family Solanaceae, which includes more than 3000 species, occupying a wide variety of habitats (Knapp 2002). The Solanaceae contain many species of economic use, both for food (tomatoes, potatoes, peppers and eggplants), medicines (deadly nightshade, henbane, datura) and ornamental purposes (petunias). Solanum lycopersicum was previously recognised as Lycopersicon esculentum Mill., but data from both morphology and molecular sequences support its inclusion in the large genus Solanum L., and a revised new nomenclature has resulted (Peralta and Spooner 2001; Spooner et al. 2005; Peralta and Spooner 2005; Peralta et al. 2006; Peralta et al. 2008). Morphological characters, phylogenetic relationships, and geographical distribution have demonstrated that tomatoes (Solanum sect. Lycopersicon (Mill.) Wettst.) and their immediate outgroups in Solanum sect. Lycopersicoides (A.Child) Peralta and sect. Juglandifolia (Rydb.) A.Child form a sister clade to potatoes (sect. Petota Dumort.), with Solanum sect. Etuberosum (Buk. & Kameraz) Child being sister to potatoes + tomatoes (Spooner et al. 1993; Peralta and Spooner 2001; Spooner et al.
    [Show full text]