The Systematics and Genetics of Tomatoes on the Galápagos Islands (Solanum, Solanaceae)

Total Page:16

File Type:pdf, Size:1020Kb

The Systematics and Genetics of Tomatoes on the Galápagos Islands (Solanum, Solanaceae) The systematics and genetics of tomatoes on the Galápagos Islands (Solanum, Solanaceae) By Sarah Catherine Darwin A thesis submitted for the degree of Doctor of Philosophy at University College London August 2009 Department of Genetics, Evolution and Environment University College London 1 Declaration I, Sarah Darwin confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Chapter 2 is a reprint from a paper on the taxonomy of the tomatoes of the Galápagos Islands published in Systematics and Biodiversity in 2003. This was a collaborative project, and the authors were Sarah Darwin, Sandra Knapp and Iris Peralta. I was the lead author as this was part of my thesis work, and I carried out most of the work towards the paper. Below I list the contributions of each author for Chapter 2. Morphological analysis I undertook the analysis of the herbarium specimens, with particular guidance from Sandy Knapp and Iris Peralta for the S. lycopersicum and S. pimpinellifolium collected from the mainland of South America. Morphometrics Morphological characters were selected by all of us based on my experience from fieldwork, Dr Peralta’s experience from greenhouse grown accessions and Dr Knapp’s experience from herbarium specimens. I undertook the measurement of the living plants and herbarium specimens with the assistance/guidance of Drs Peralta and Knapp Statistics I and Dr Peralta undertook the PCA, with advice from Drs Claudio Galmarini and Clive Moncrieff. Taxonomic treatment Dr Knapp and Dr Norman Robson wrote the Latin for the taxonomic treatment. 2 Artwork The illustration of S. galapagense for the taxonomic treatment was undertaken by C. Scoones the rest of the illustrations and figures were undertaken by me and formatted for the paper by Derek Adams and myself. Writing I wrote the first draft of the paper, and it went through repeated editorial cycles among all three authors. Sarah Darwin Prof. James Mallet Candidate UCL Supervisor 3 Abstract Galápagos tomatoes (Solanum section Lycopersicon) have long interested scientists and plant breeders. Several morphological and physiological characters found in the endemic Galápagos tomatoes have been bred into the cultivated Solanum lycopersicum, making the native plants an invaluable resource for the development of this important global crop. Extensive fieldwork was carried out on twelve islands, old records were confirmed, new records added, but several previously recorded populations of endemic tomatoes could not be confirmed. I collected tomatoes from 12 islets and Islands. Detailed morphometric analysis on c.400 plants and extensive genetic studies on c.1,200 plants were carried out in addition to fieldwork and natural history studies. Observations and experiments were carried out on herbarium specimens, field collected and green house grown accessions. I confirmed the presence of four taxa in the Galápagos Islands – two endemic species S. cheesmaniae and S. galapagense, the latter here described as new, and two introduced species S. pimpinellifolium and S. lycopersicum. Hybrids were found involving all taxa growing in the Galápagos Islands. Of particular interest is an extensive hybrid zone between S. cheesmaniae and S. pimpinellifolium spanning 20km along the Baltra Road on Isla Santa Cruz. Hybridization raises the threat of extinction by introgression and the possibility of the evolution of a serious invasive species. Conservation recommendations are proposed. In addition, a genetic analysis was undertaken of 60 seed bank accessions of all four tomato species from the Galápagos. Again, indications of hybridization were found, raising the potential of introgression within the seed bank collections, occurring potentially during rejuvenation cycles. Furthermore, I propose a new outline for a generic invasive species threat/impact scoring system. Applying this new system I class Solanum pimpinellifolium as an alien invasive species and assess its impact on Isla Santa Cruz in the Galápagos Islands. 4 Acknowledgments I would like to thank my supervisors Dr Sandy Knapp and Professors Jim Mallet and Ziheng Yang for their support and advice during this thesis. I would like to thank all the many people in the Galápagos Islands for their enthusiasm, invaluable support, advice and help with fieldwork, they are too numerous to mention by name. The Galápagos National Parks, in Islas Santa Cruz and Isabela, for advice, field assistance and field permits. The staff at the Charles Darwin Research Station in the Galápagos Islands, in particular Alan Tye and Mark Gardener for their collaboration and on the ground support. Tina and Daniel Fitter and Virginia Appleton for joining me and guiding me on field excursions. Godfrey Merlin, Jenny and David Day, Felipe Cruz for their general advice and assistance in the Galápagos Islands. I would like to thank the Tomato Genetic Resource Center and Cornell seed bank for their kind donation of seed accessions. Clive Moncrieff, Clem Maidment, Iris Peralta, Claudio Galmarini, Steve Ansell, Harald Schneider and Kanchon Dasmahapatra for their advice on analytical packages and statistics and the Department of Botany at the Natural History Museum for giving me desk space on which to undertake this research and in particular my friends Juliet Brodie, Gabrielle To and Rhina and Holger Thüs for their general support. Teamwork in the allozyme laboratory was supported by Johannes Vogel, Steve Russell, Michael Grundmann, Steve Ansell and Harriet Hunt. Pat Hart and David McCann who helped with the maps and layout of figure 3.11. Lorraine Porch who assisted with the thesis layout. Financial support was received from the BBSRC (PhD grant) and the Hubbard Foundation. The latter funded the first part of the research and the field trips. Special thanks goes to my family, wonderful husband Johannes, my lovely sons Leo and Josiah, my parents Ras and Shuna for their continued belief and patience and to my mother-in-law Edith Vogel. I would like to dedicate this thesis to my mother who made our lives such fun. 5 Table of contents Title page 1 Declaration 2 Abstract 4 Acknowledgments 5 Table of contents 6 List of figures 7 List of tables 9 Preface 11 Chapter 1 Plant invasions on oceanic islands 28 Chapter 2 Taxonomy of tomatoes in the Galápagos Islands: 69 native and introduced species of Solanum section Lycopersicon (Solanaceae) Chapter 3 Galápagos tomato genetics and hybridization 96 Chapter 3a The genetic diversity in tomatoes from the 105 Galápagos Islands Chapter 3b Galápagos tomato soup: hybridization between 142 tomato species Chapter 3c Genetics of tomatoes in seed banks 202 Chapter 4 General discussion and conclusions 221 Appendix 1 Box plots 244 6 List of figures a Greenhouse grown plants. Perceived wisdom in 2000 13 b Map of the Galápagos Islands. SCD field collection sites 15 from 2000 c Map of the Galápagos Islands. SCD field collection sites 18 from 2002 d Solanum pimpinellifolium at the Basura, Baltra Road, Isla 19 Santa Cruz e Solanum cheesmaniae at the Basura, Baltra Road, Isla 19 Santa Cruz f Solanum cheesmaniae x S. pimpinellifolium hybrids at the 20 Basura, Baltra Road, Isla Santa Cruz g Map of the Galápagos Islands. SCD field collection sites 23 from 2000 and 2002 1.1 Transitions of an alien species into an invasive and 39 dominant species 2.1 Distribution map of tomatoes in the Galápagos Islands 72 2.2 History of classification of tomatoes in the Galápagos 74 2.3 Results of the morphological analysis 80 2.4 Leaf morphology variation in the Galápagos tomatoes 83 2.5 Solanum galapagense 86 2.6 Solanum section Lycopersicon in the Galápagos 87 3.1 Ne arranged from East to West for S. cheesmaniae and S. 123 galapagense 3.2 Plot of likelihood value of different values of k 124 3.3 STRUCTURE bar charts 125 3.4 Flower measurements 154 3.5 Sepal score, description, and illustration 158 3.6 PCO of morphological characters using field circumscription 175 as symbol 3.7 Likelihood scores for STRUCTURE for k=1 to k=8 176 3.8 STRUCTURE bar charts 177 7 3.9 PCO of morphological characters using STRUCTURE as 178 symbol 3.10 Likelihood scores for STRUCTURE hybrid work 179 3.11 Distribution of S. cheesmaniae, S. pimpinellifolium and 180 hybrids along the Baltra road, Santa Cruz 3.12 Stigma exsertion for S. cheesmaniae, S. pimpinellifolium 183 and S. cheesmaniae x S. pimpinellifolium 3.13 Percentage mixed offspring from field collected accessions 185 8 List of tables 1.1 Tens rule (sensu Williamson 1996) 31 1.2 Terms to describe alien plants suggested by Richardson et 37 al. (2000) 1.3 Proposed outline for invasive plant species threat/impact 42 scoring system 1.4 The alien plant definition, stage and ‘threat/impact score’ for 43 Solanum pimpinellifolium in the Galápagos Islands 2.1 Galápagos Island names and synonyms 73 2.2 Characters measured for morphometric analysis 77 2.3 Locality groups as OTUs for accessions 79 2.4 Means of leaf character ratios 79 3.1 Population localities, names, numbers, coordinates and 103 altitudes 3.2 Populations used for each species in this analysis 112 3.3 Allele frequencies for variable loci in Galápagos tomatoes 115 3.4 Allele presence in SCD bulk data set 119 3.5 Summary of within population genetic diversity measures 122 3.6 Summary of F-statistics 123 3.7 Results for some of the life history traits (Hamrick and Godt, 139 1996) 3.8 He and Fst of S. cheesmaniae and S. galapagense 139 compared Hamrick and Godt (1996) results 3.9 Populations
Recommended publications
  • Template for Two-Page Abstracts in Word 97 (PC)
    GEOLOGIC MAPPING OF THE LUNAR SOUTH POLE QUADRANGLE (LQ-30). S.C. Mest1,2, D.C. Ber- man1, and N.E. Petro2, 1Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719-2395 ([email protected]); 2Planetary Geodynamics Laboratory, Code 698, NASA GSFC, Greenbelt, MD 20771. Introduction: In this study we use recent image, the surface [7]. Impact craters display morphologies spectral and topographic data to map the geology of the ranging from simple to complex [7-9,24] and most lunar South Pole quadrangle (LQ-30) at 1:2.5M scale contain floor deposits distinct from surrounding mate- [1-7]. The overall objective of this research is to con- rials. Most of these deposits likely consist of impact strain the geologic evolution of LQ-30 (60°-90°S, 0°- melt; however, some deposits, especially on the floors ±180°) with specific emphasis on evaluation of a) the of the larger craters and basins (e.g., Antoniadi), ex- regional effects of impact basin formation, and b) the hibit low albedo and smooth surfaces and may contain spatial distribution of ejecta, in particular resulting mare. Higher albedo deposits tend to contain a higher from formation of the South Pole-Aitken (SPA) basin density of superposed impact craters. and other large basins. Key scientific objectives in- Antoniadi Crater. Antoniadi crater (D=150 km; clude: 1) Determining the geologic history of LQ-30 69.5°S, 172°W) is unique for several reasons. First, and examining the spatial and temporal variability of Antoniadi is the only lunar crater that contains both a geologic processes within the map area.
    [Show full text]
  • Genome Skimming for Phylogenomics
    Genome skimming for phylogenomics Steven Andrew Dodsworth School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK. Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy November 2015 1 Statement of originality I, Steven Andrew Dodsworth, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged and my contribution indicated. Previously published material is also acknowledged and a full list of publications is given in the Appendix. Details of collaboration and publications are given at the start of each chapter, as appropriate. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Signature: Date: 16th November 2015 2 Frontispiece: Nicotiana burbidgeae Symon at Dalhousie Springs, South Australia. 2014. Photo: S. Dodsworth. 3 Acknowledgements Firstly, I would like to thank my PhD supervisors, Professor Andrew Leitch and Professor Mark Chase.
    [Show full text]
  • Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2
    Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) by Boris C. Kondratieff, Paul A. Opler, Matthew C. Garhart, and Jason P. Schmidt C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 March 15, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration (top to bottom): Widow Skimmer (Libellula luctuosa) [photo ©Robert Behrstock], Stonefly (Perlesta species) [photo © David H. Funk, White- lined Sphinx (Hyles lineata) [photo © Matthew C. Garhart] ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences, Colorado State University, Fort Collins, Colorado 80523 Copyrighted 2004 Table of Contents EXECUTIVE SUMMARY……………………………………………………………………………….…1 INTRODUCTION…………………………………………..…………………………………………….…3 OBJECTIVE………………………………………………………………………………………….………5 Site Descriptions………………………………………….. METHODS AND MATERIALS…………………………………………………………………………….5 RESULTS AND DISCUSSION………………………………………………………………………..…...11 Dragonflies………………………………………………………………………………….……..11
    [Show full text]
  • ECO-Ssls for Pahs
    Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1
    [Show full text]
  • DNA Variation in a Diversity Panel of Tomato Genetic Resources
    J. AMER.SOC.HORT.SCI. 146(5):339–345. 2021. https://doi.org/10.21273/JASHS05066-21 DNA Variation in a Diversity Panel of Tomato Genetic Resources Joanne A. Labate Plant Genetic Resources Unit, Agricultural Research Service, U.S. Department of Agriculture, 630 W. North St., Geneva, NY 14456 ADDITIONAL INDEX WORDS. genotyping by sequencing, germplasm, Plant Variety Protection, single nucleotide polymorphism, Solanum lycopersicum, Solanum pimpinellifolium ABSTRACT. A diversity panel of 190 National Plant Germplasm System (NPGS) tomato (Solanum lycopersicum) acces- sions was genotyped using genotyping by sequencing. These originated from 31 countries and included fresh market, ornamental, processing, breeders’ lines, landraces, and home gardening types, as well as six different accessions of the economically valuable cultivar San Marzano. Most of the 34,531 discovered single nucleotide polymorphisms were rare and therefore excluded from downstream analyses. A total of 3713 high-quality, mapped single nucleotide polymorphisms that were present in at least two accessions were used to estimate genetic distances and population structure. Results showed that these phenotypically and geographically diverse NPGS tomato accessions were closely related to each other. However, a subset of divergent genotypes was identified that included landraces from primary centers of diversity (South America), secondary centers of diversity (Italy, Taiwan, and France), and genotypes that originated from wild species through 20th century breeding for disease resistance (e.g., ‘VFNT Cherry’). Extreme variant accessions produce cultivated fruit traits in a background that contains many wild or primitive genes. These accessions are promising sources of novel genes for continued crop improvement. Vegetable producers require an abundance of genetic diver- for purposes of breeding, research, and higher education.
    [Show full text]
  • Relative Ages
    CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • INDEX to 1915-1919 Obituaries in the Canton Repository
    INDEX To 1915-1919 Obituaries in the Canton Repository Published by the Stark County District Library of Canton, Ohio 2005 Index to 1915-1919 Obituaries in the Canton Repository The following is an alphabetical listing, by the deceased’s surname, of obituaries that appeared in the Canton, Ohio newspaper, The Repository. It was compiled by the library staff during the course of the year in the hope that it would be a useful tool to genealogy, as well as other researchers. To use this index, simply locate the name of the person whose obituary you wish to find. The entries will appear as follows: Miller William A. (Estella M.) Mrs. 1924 Jan. 13 30 The first column is the name of the deceased. The second gives the date on which the item appeared. And the third tells the page number containing the obituary. You may find one name with multiple listings showing different dates and locations in the paper. This indicates consecutive listings for that individual. I encourage you to view each for additional information. Index to 1915-1919 Obituaries in the Canton Repository Surname Given Name Maiden Title Year Mth Day Pg ? Mary 1918 Apr. 18 15 Aaron Benjamin 1918 Nov. 27 2 Abbott Lawrence C. 1919 Mar. 14 24 Abels infant 1919 July 16 6 Abherve Minnie Jacobs Mrs. 1918 Dec. 13 33 Abrams Leo 1917 Apr. 24 2 Abt Leo 1918 Apr. 27 1 Abvrezis Macone 1917 Sept. 17 2 Acker L. E. 1918 Jan. 13 26 Acker Leonard E. 1918 Jan. 12 5 Acker Sarah Mrs.
    [Show full text]
  • Inflorescence Development in Two Tomato Species
    111 NOTE / NOTE Inflorescence development in two tomato species N. Welty, C. Radovich, T. Meulia, and E. van der Knaap Abstract: The inflorescence of tomato has been characterized as either a cyme or raceme. Cymose inflorescences are de- terminate, whereas racemose inflorescences are indeterminate. In this study, we addressed the discrepancy in inflorescence architecture by analyzing the morphology of a wild relative of tomato Solanum pimpinellifolium L. and four domesticated Solanum lycopersicum L. lines. Careful observation of developing inflorescences of both species showed a bifurcation of the meristem into a determinate floral and an indeterminate inflorescence meristem. Interestingly, higher fruit carpel num- ber was associated with delayed floral development, which might give the impression of determinate growth in some of the lines. Nevertheless, our results demonstrated that tomato inflorescences are indeterminate in nature regardless of the line studied. Floral buds were formed concomitantly with the development of the inflorescence meristem and not on the flanks of the peduncle, a characteristic of racemose growth. Thus, tomato inflorescences should be classified as a cyme with the note that the inflorescence meristem does not terminate into a flower and, in fact, maintains indeterminacy. In ad- dition, S. pimpinellifolium produced many more flowers in a highly regular manner when compared with the cultivated types. This demonstrated the usefulness of wild relatives of tomato as a tool to further understand flower and fruit devel- opment in this crop species. Key words: inflorescence, tomato, cyme, raceme, meristem, bifurcation. Re´sume´ : On a caracte´rise´ l’inflorescence de la tomate comme une cyme ou un race`me.
    [Show full text]
  • Discoveries of Mass Independent Isotope Effects in the Solar System: Past, Present and Future Mark H
    Reviews in Mineralogy & Geochemistry Vol. 86 pp. 35–95, 2021 2 Copyright © Mineralogical Society of America Discoveries of Mass Independent Isotope Effects in the Solar System: Past, Present and Future Mark H. Thiemens Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093 USA [email protected] Mang Lin State Key Laboratory of Isotope Geochemistry Guangzhou Institute of Geochemistry, Chinese Academy of Sciences Guangzhou, Guangdong 510640 China University of Chinese Academy of Sciences Beijing 100049 China [email protected] THE BEGINNING OF ISOTOPES Discovery and chemical physics The history of the discovery of stable isotopes and later, their influence of chemical and physical phenomena originates in the 19th century with discovery of radioactivity by Becquerel in 1896 (Becquerel 1896a–g). The discovery catalyzed a range of studies in physics to develop an understanding of the nucleus and the properties influencing its stability and instability that give rise to various decay modes and associated energies. Rutherford and Soddy (1903) later suggested that radioactive change from different types of decay are linked to chemical change. Soddy later found that this is a general phenomenon and radioactive decay of different energies and types are linked to the same element. Soddy (1913) in his paper on intra-atomic charge pinpointed the observations as requiring the observations of the simultaneous character of chemical change from the same position in the periodic chart with radiative emissions required it to be of the same element (same proton number) but differing atomic weight. This is only energetically accommodated by a change in neutrons and it was this paper that the name “isotope” emerges.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • John Hooper - Pioneer British Batman
    NEWSLETTER AND PROCEEDINGS OF THE LINNEAN SOCIETY OF LONDON VOLUME 26 x NUMBER xJULY 2010 THE LINNEAN SOCIETY OF LONDON Registered Charity Number 220509 Burlington House, Piccadilly, London W1J 0BF Tel. (+44) (0)20 7434 4479; Fax: (+44) (0)20 7287 9364 e-mail: [email protected]; internet: www.linnean.org President Secretaries Council Dr Vaughan Southgate BOTANICAL The Officers and Dr Sandra D Knapp Prof Geoffrey Boxshall Vice-Presidents Prof Mark Chase Dr Mike Fay ZOOLOGICAL Prof Dianne Edwards Dr Sandra D Knapp Dr Malcolm Scoble Mr Alistair Land Dr Keith Maybury Dr Terry Langford Dr Malcolm Scoble EDITORIAL Mr Brian Livingstone Dr John R Edmondson Prof Geoff Moore Treasurer Ms Sara Oldfield Professor Gren Ll Lucas OBE COLLECTIONS Dr Sylvia Phillips Mrs Susan Gove Mr Terence Preston Executive Secretary Dr Mark Watson Dr Ruth Temple Librarian Dr David Williams Mrs Lynda Brooks Prof Patricia Willmer Financial Controller/Membership Mr Priya Nithianandan Deputy Librarian Conservator Mr Ben Sherwood Ms Janet Ashdown Building and Office Manager Ms Victoria Smith Honorary Archivist Conservation Assistant Ms Gina Douglas Ms Lucy Gosnay Communications Manager Ms Claire Inman Special Publications and Education Manager Ms Leonie Berwick Office Assistant Mr Tom Helps THE LINNEAN Newsletter and Proceedings of the Linnean Society of London ISSN 0950-1096 Edited by Brian G Gardiner Editorial ................................................................................................................ 1 Society News..............................................................................................................
    [Show full text]