Galapagos News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KS2 Tortoise Shapes and Sizes
TORTOISE SHAPES AND SIZE... ? Not all tortoises look the same. What can you learn about a tortoise from looking at the shape of its shell? Some Galapagos tortoises have Some Galapagos tortoises have domed shells like this saddleback shells like this An adaptation is a feature an animal has which helps it survive. If an animal has a greater chance of surviving then it has a greater chance of having more babies who are also likely to have the same adaptation. In the space below, draw one of our Galapagos giant tortoises. Make notes describing the TASK 1 different adaptations of the tortoise and how those features might help the tortoise survive in the wild. Worksheet 2 KS2 1 ? Not all the Galapagos Islands have the same habitat. What can you tell about the habitat of a tortoise by looking at the shape of its shell? Some of the Galapagos Islands are Some of the Galapagos Islands are smaller and dryer, where tall cacti larger and wetter, where many plants grow. plants grow close to the ground. TASK 2 Of the two tortoise shell shapes, which is likely to be better for reaching tall cacti plants? ______________________________________________________________________________________________ ______________________________________________________________________________________________ ______________________________________________________________________________________________ Which of these island types is likely to provide enough food for tortoises to grow to large sizes? ______________________________________________________________________________________________ -
The Conservation Biology of Tortoises
The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1. -
The Use of Extant Non-Indigenous Tortoises As a Restoration Tool to Replace Extinct Ecosystem Engineers
OPINION ARTICLE The Use of Extant Non-Indigenous Tortoises as a Restoration Tool to Replace Extinct Ecosystem Engineers Christine J. Griffiths,1,2,3,4 Carl G. Jones,3,5 Dennis M. Hansen,6 Manikchand Puttoo,7 Rabindra V. Tatayah,3 Christine B. Muller,¨ 2,∗ andStephenHarris1 Abstract prevent the extinction and further degradation of Round We argue that the introduction of non-native extant tor- Island’s threatened flora and fauna. In the long term, the toises as ecological replacements for extinct giant tortoises introduction of tortoises to Round Island will lead to valu- is a realistic restoration management scheme, which is able management and restoration insights for subsequent easy to implement. We discuss how the recent extinctions larger-scale mainland restoration projects. This case study of endemic giant Cylindraspis tortoises on the Mascarene further highlights the feasibility, versatility and low-risk Islands have left a legacy of ecosystem dysfunction threat- nature of using tortoises in restoration programs, with par- ening the remnants of native biota, focusing on the island ticular reference to their introduction to island ecosystems. of Mauritius because this is where most has been inferred Overall, the use of extant tortoises as replacements for about plant–tortoise interactions. There is a pressing need extinct ones is a good example of how conservation and to restore and preserve several Mauritian habitats and restoration biology concepts applied at a smaller scale can plant communities that suffer from ecosystem dysfunction. be microcosms for more grandiose schemes and addresses We discuss ongoing restoration efforts on the Mauritian more immediate conservation priorities than large-scale offshore Round Island, which provide a case study high- ecosystem rewilding projects. -
Aldabrachelys Arnoldi (Bour 1982) – Arnold's Giant Tortoise
Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectTestudinidae of the IUCN/SSC — AldabrachelysTortoise and Freshwater arnoldi Turtle Specialist Group 028.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.028.arnoldi.v1.2009 © 2009 by Chelonian Research Foundation • Published 18 October 2009 Aldabrachelys arnoldi (Bour 1982) – Arnold’s Giant Tortoise JUSTIN GERLACH 1 1133 Cherry Hinton Road, Cambridge CB1 7BX, United Kingdom [[email protected]] SUMMARY . – Arnold’s giant tortoise, Aldabrachelys arnoldi (= Dipsochelys arnoldi) (Family Testudinidae), from the granitic Seychelles, is a controversial species possibly distinct from the Aldabra giant tortoise, A. gigantea (= D. dussumieri of some authors). The species is a morphologi- cally distinctive morphotype, but has so far not been genetically distinguishable from the Aldabra tortoise, and is considered synonymous with that species by many researchers. Captive reared juveniles suggest that there may be a genetic basis for the morphotype and more detailed genetic work is needed to elucidate these relationships. The species is the only living saddle-backed tortoise in the Seychelles islands. It was apparently extirpated from the wild in the 1800s and believed to be extinct until recently purportedly rediscovered in captivity. The current population of this morphotype is 23 adults, including 18 captive adult males on Mahé Island, 5 adults recently in- troduced to Silhouette Island, and one free-ranging female on Cousine Island. Successful captive breeding has produced 138 juveniles to date. -
Human Translocation As an Alternative Hypothesis to Explain the Presence of Giant Tortoises on Remote Islands in the Southwestern Indian Ocean
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/298072054 Human translocation as an alternative hypothesis to explain the presence of giant tortoises on remote islands in the Southwestern Indian Ocean ARTICLE in JOURNAL OF BIOGEOGRAPHY · MARCH 2016 Impact Factor: 4.59 · DOI: 10.1111/jbi.12751 READS 63 3 AUTHORS: Lucienne Wilmé Patrick Waeber Missouri Botanical Garden ETH Zurich 50 PUBLICATIONS 599 CITATIONS 37 PUBLICATIONS 113 CITATIONS SEE PROFILE SEE PROFILE Jörg U. Ganzhorn University of Hamburg 208 PUBLICATIONS 5,425 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Lucienne Wilmé letting you access and read them immediately. Retrieved on: 18 March 2016 Journal of Biogeography (J. Biogeogr.) (2016) PERSPECTIVE Human translocation as an alternative hypothesis to explain the presence of giant tortoises on remote islands in the south-western Indian Ocean Lucienne Wilme1,2,*, Patrick O. Waeber3 and Joerg U. Ganzhorn4 1School of Agronomy, Water and Forest ABSTRACT Department, University of Antananarivo, Giant tortoises are known from several remote islands in the Indian Ocean Madagascar, 2Missouri Botanical Garden, (IO). Our present understanding of ocean circulation patterns, the age of the Madagascar Research & Conservation Program, Madagascar, 3Forest Management islands, and the life history traits of giant tortoises makes it difficult to com- and Development, Department of prehend how these animals arrived -
ECUADOR – Galapagos Giant Tortoises Stolen From
CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA NOTIFICATION TO THE PARTIES No. 2018/076 Geneva, 30 October 2018 CONCERNING: ECUADOR Galapagos giant tortoises stolen from breeding center 1. This Notification is being published at the request of Ecuador. 2. The CITES Management Authority of Ecuador informed the Secretariat that on 27 September 2018, the Galapagos National Park Directorate filed a criminal complaint in Ecuador following the theft of 123 live Galapagos giant tortoises (Chelonoidis niger) from the Galapagos National Park breeding center on Isabela Island. 3. The Galapagos giant tortoise (Chelonoidis niger1) is included in CITES Appendix I. 4. The stolen tortoises range from one to six years in age. One-year-old Galapagos giant tortoises may be around six centimetres in carapace length and weigh an estimated 200 grams. A six-year-old Galapagos giant tortoise could range from 12 to 30 centimetres in carapace length, and weigh around two kilograms. 5. The likely market for the stolen specimens is outside of Ecuador, and the CITES Management Authority of Ecuador therefore requests that the present Notification be distributed as widely as possible among police, customs and wildlife enforcement authorities. 6. Parties are requested to inform the CITES Management Authority of Ecuador should any permits or certificates regarding trade in these specimens be received. The Management Authority of Ecuador also requests that CITES Management Authorities do not approve any export, import or re-export permit applications related to this species before consulting with the CITES Management Authority of Ecuador. 7. Parties that seize illegally traded specimens of Chelonoidis niger are also requested to communicate information about these seizures to the Management Authority of Ecuador. -
Seychelles Giant Tortoise
Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectTestudinidae of the IUCN/SSC — Aldabrachelys Tortoise and Freshwater hololissa Turtle Specialist Group 061.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.061.hololissa.v1.2011 © 2011 by Chelonian Research Foundation • Published 31 December 2011 Aldabrachelys hololissa (Günther 1877) – Seychelles Giant Tortoise JUSTIN GERLACH 1 1133 Cherry Hinton Road, Cambridge, CB1 7BX United Kingdom [[email protected]] SUMMARY . – The Seychelles Giant Tortoise, Aldabrachelys hololissa (= Dipsochelys hololissa) (Family Testudinidae) is a controversial species possibly distinct from the Aldabra giant tor- toise, A. gigantea (= D. dussumieri of some authors). The species is a morphologically distinctive morphotype, but has so far not been genetically distinguishable from the Aldabra tortoise, and is considered by many researchers to be either synonymous with or only subspecifically distinct from that taxon. It is a domed grazing species, differing from the Aldabra tortoise in its broader shape and reduced ossification of the skeleton; it differs also from the other controversial giant tortoise in the Seychelles, the saddle-backed morphotype A. arnoldi. Aldabrachelys hololissa was apparently extirpated from the wild in the 1800s and is now known only from 37 adults, including 28 captive, 1 free-ranging on Cerf Island, and 8 on Cousine Island, 6 of which were released in 2011 along with 40 captive bred juveniles. Captive reared juveniles show that there is a presumed genetic basis to the morphotype and further genetic work is needed to elucidate this. -
Giant Tortoises with Pinta Island Ancestry Identified In
Biological Conservation 157 (2013) 225–228 Contents lists available at SciVerse ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Short communication The genetic legacy of Lonesome George survives: Giant tortoises with Pinta Island ancestry identified in Galápagos a, a a,b c d Danielle L. Edwards ⇑, Edgar Benavides , Ryan C. Garrick , James P. Gibbs , Michael A. Russello , Kirstin B. Dion a, Chaz Hyseni a, Joseph P. Flanagan e, Washington Tapia f, Adalgisa Caccone a a Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA b Department of Biology, University of Mississippi, MS 38677, USA c College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA d Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada V1V 1V7 e Houston Zoo, Houston, TX 77030, USA f Galápagos National Park Service, Puerto Ayora, Galápagos, Ecuador article info abstract Article history: The death of Lonesome George, the last known purebred individual of Chelonoidis abingdoni native to Received 22 August 2012 Pinta Island, marked the extinction of one of 10 surviving giant tortoise species from the Galápagos Archi- Received in revised form 9 October 2012 pelago. Using a DNA reference dataset including historical C. abingdoni and >1600 living Volcano Wolf Accepted 14 October 2012 tortoise samples, a site on Isabela Island known to harbor hybrid tortoises, we discovered 17 individuals with ancestry in C. abingdoni. These animals belong to various hybrid categories, including possible first generation hybrids, and represent multiple, unrelated individuals. Their ages and relative abundance sug- Keywords: gest that additional hybrids and conceivably purebred C. -
A Teacher's Resource Guide to Galapagos
Teacher’s Resource Guide Teacher’s Resource Guide to Acknowledgments A Teacher’s Resource Guide to Galapagos was cre- SCIENCE AND CURRICULUM ADVISORS: ated by the National Science Teachers Dr. Carole Baldwin, Smithsonian Institution, Association, Special Publications, 1840 Wilson Washington, DC Blvd., Arlington, VA 22201-3000, with funding Sue Cassidy, Bishop McNamara High School, generously provided by the National Science Forestville, MD Foundation and the Smithsonian Institution. Dr. Robert Hoffmann, Smithsonian Institution, This material copyright © 2000 Smithsonian Washington, DC Institution and Imax Ltd. All rights reserved. Sue Mander, Imax Ltd., Toronto, Canada IMAX® and AN IMAX EXPERIENCE® are registered trademarks of Imax Corporation. Laura McKie, Smithsonian Institution, Washington, DC WRITER: Richard Benz, Wickliffe High School, Dr. David Pawson, Smithsonian Institution, Wickliffe, OH Washington, DC EDITOR: Erin Miller, National Science Teachers Sharon Radford, Paideia School, Atlanta, GA Association Dr. Irwin Slesnick, Western Washington DIRECTOR OF SPECIAL PUBLICATIONS: University, Bellingham, WA Shirley Watt Ireton, National Science Teachers Dr. John Weld, Oklahoma State University, Association Stillwater, OK Dr. Don Wilson, Smithsonian Institution, Table of Contents Washington, DC Sponsored by America Online Inc., the Introduction for Teachers . 3 Smithsonian Institution and Imax Ltd. present in Film Synopsis . 3 association with the National Science Foundation, Pre-Screening Discussion . 3 a Mandalay Media Arts production Galapagos. Where in the World? . 4 Adventuring in the Archipelago . 5 EXECUTIVE PRODUCERS: Laurence P. Adventuring in Your Own Backyard . 8 O’Reilly, Andrew Gellis, Peter Guber, Barry Clark How Did Life Get to the Galápagos? . 10 PRODUCERS/DIRECTORS: Al Giddings and Current Events in the Ocean . 11 David Clark Hot Side Hot, Cool Side Cool . -
Galapagos Islands Fact Sheet Galapagos Islands Fact Sheet
GALAPAGOS ISLANDS FACT SHEET GALAPAGOS ISLANDS FACT SHEET INTRODUCTION The Galapagos Islands are located west of Ecuador and are renowned for being the home to a vast array of fascinating species of wildlife, including lava lizards, the giant tortoise as well as red and blue-footed boobies. They are one of the world’s foremost destinations for wildlife viewing, many of the plant and animal species being found nowhere else in the world. Located at the confluence of three ocean currents and surrounded by a marine reserve, the islands abound with marine species. The Galapagos Islands, of which there are 19 main islands, are an archipelago of volcanic islands in the Pacific Ocean. They lay either side of the Equator and 1,000km west of the South American continent and mainland Ecuador of which they are a part. The islands were formed as a result of processes caused by volcanic and seismic activity. These processes along with the isolation of the islands resulted in the development of unusual animal life. Charles Darwin’s visit to the islands in 1835 was the inspiration for his theory of evolution by natural selection. The largest island Isabela, measures 5,827 square kilometres and accounts for nearly three quarters of the total land area of the Galapagos. Volcan Wolf on Isabela is the highest point of the Galapagos at 1,707m above sea level. GALAPAGOS ISLANDS FACT SHEET CLIMATE The Galapagos Islands have a subtropical and dry climate with comfortable temperatures year-round. The warmest months are usually from December to June (high season) and this is the recommended time to visit. -
ALDABRA GIANT TORTOISE Aldabrachelys Gigantea
ALDABRA GIANT TORTOISE Aldabrachelys gigantea Location: The Aldabra giant tortoise inhabits the Aldabra Islands, a coral atoll comprised of 4 islands in the Seychelles, which is located between the coast of Kenya and the northern tip of Madagascar. The Aldabra giant tortoise occurs in many different habitats. The largest tortoise concentrations are found on the grasslands called platins; the grasslands are often dotted with trees and bushes. It also frequents scrublands, mangrove swamps and coastal dunes. Diet: These animals are primarily herbivores with the ability to both graze and browse. In the drier areas, they graze mostly on sedges, and a combination of native species of grasses and herbs. Many of these distinct plants are naturally dwarfed and grow their seeds not from the tops of the plants, but closer to the ground to avoid the tortoises’ close cropping jaws. In the wooded and scrub areas, tortoises browse on many types of woody plants. A number of species are readily eaten, and some show a conspicuous browse line about 3 feet above the ground, which is about as high as the tortoises can stretch their necks. Life Cycle: Aldabra giant tortoises are found both individually and in herds. They mainly feed in the mornings and continue until the temperature becomes too hot. Sheltering trees or bushes are necessary to escape the extreme mid- day sun; some tortoises cool themselves in pools or mud holes. Mating of Aldabra giant tortoises usually occurs between February and May. The eggs are carried within the female’s body for about 2.5 months. During the dry season, the female digs a flask-shaped cavity where she deposits her eggs. -
Scientists Try to Mate Galapagos Tortoise -- Again 21 January 2011
Scientists try to mate Galapagos tortoise -- again 21 January 2011 Scientists believe George may have a better chance of reproducing with his two new partners, of the Geochelone hoodensis species. The two potential mates arrived on Santa Cruz island, where George lives, on Thursday from the archipelago's Spanish Island. Genetic studies conducted by Yale University have shown that the newly arrived tortoises "are genetically closer ... more compatible, and could offer greater possibilities of producing offspring," In this July 21, 2008 file photo released by the the park's statement said. Galapagos National Park, a giant tortoise named "Lonesome George" is seen in the Galapagos islands, The Galapagos island chain, about 620 miles an archipelago off Ecuador's Pacific coast. Scientists are (1,000 kms) off Ecuador's coast, is home to unique still hoping to mate the elderly giant tortoise from the animal species that inspired Charles Darwin's ideas Galapagos - even though efforts over the past two on evolution. decades have failed. On Thursday, park officials said that they are providing two new female partners for George, who is believed to be the last living member of ©2010 The Associated Press. All rights reserved. the Geochelone abigdoni species. (AP Photo/ This material may not be published, broadcast, Galapagos National Park, File) rewritten or redistributed. Will Lonesome George ever become a dad? Scientists are still hoping to mate the near century- old giant tortoise from the Galapagos - even though efforts over the past two decades have failed. The Galapagos National Park said in a statement Thursday that they are providing two new female partners for George, who is believed to be the last living member of the Geochelone abigdoni species.