Solanaceae), Plant Macroecology and Responses to Land-Use Change

Total Page:16

File Type:pdf, Size:1020Kb

Solanaceae), Plant Macroecology and Responses to Land-Use Change Diversification patterns of Solanum L. (Solanaceae), plant macroecology and responses to land-use change a thesis submitted for the degree of Doctor of Philosophy in Life Science by Susy Echeverr´ıa-Londono˜ Department of Life Science Imperial College London London SW7 2BZ, United Kingdom 2018 Declaration of Originality I certify that this thesis, and the research to which it refers, are the product of my own work, unless mentioned here or in the text. I collected none of the ecological data. Data from Chapter 4 and 5 came from a number of researchers who have generously shared their data to the PREDICTS project. Chapter 5 has been published in the Journal “Diversity and Distributions” and has benefited from comments by co-authors and anonymous reviewers. Parts of the manuscript have been commented and proofread by my supervisors, Andy Purvis and Sandra Knapp, whereas others have been commented and proofread by the postdoctoral researchers Isabel Fenton and Adriana De Palma. Susy Echeverr´ıa-Londo˜no 2 Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work 3 4 Diversification patterns of Solanum L. (Solanaceae), plant macroecology and responses to land-use change Abstract Current patterns of biodiversity reflect, to a certain degree, the legacy effects of species adaptations to past environmental and geological settings. A more in-depth understand- ing of this history and the traits that shape it, therefore, will help us to improve our predictions of how species will respond to current environmental change. In this thesis, I apply different analytical approaches to a range of case studies at a variety of taxonomic and geographic scales to test the importance of this fundamental hypothesis. To examine the consequences of evolutionary and biogeographic history on the evolution of global biodiversity, in Chapter 2, I focus on the hyperdiverse plant genus Solanum (ca. 1300 species). This genus is an ideal case study since it combines a complete high-level phylogeny with global species distribution data, and covers an ecological spectrum from endemics to weeds. Chapter 2 shows that the vast diversity of Solanum is the result of at least two radiations. The majority of the lineages distributed in the Old World represent the most significant recent radiation, diversifying nearly twice as rapidly as any other group of solanums. This chapter also provides a brief comparison of the current approaches for modelling multi-rate diversification. In Chapter 3, I explore how the evolutionary legacy of colonisation, dispersal and climatic history have affected patterns of diversity in the genus. In this chapter, I show how successful colonisation of new areas and environmental changes can — but does not always — drive explosive diversification. In Chapter 3, I show how arid-adapted lineages within Solanum have benefited from widespread habitat drying over the last few million years. This successful expansion reveals the potential evolutionary capacity of this group to expand and colonise currently disturbed and open areas, which is supported by the spread of some species considered as weeds such as S. elaeagnifolium, S. torvum, S. nigrum. In Chapter 4, therefore, I undertake a global analysis to assess whether the climatic preferences that have shaped the macroevolution of Solanum are now also shaping plant macroecology worldwide. For this analysis, I broaden my taxonomic scope to consider all plants, analysing an extensive global database that I helped to compile on how terrestrial assemblages respond to land use change, using a simple and very coarse classification of land use. In this 5 chapter, I demonstrate that species adapted to mesic conditions are highly sensitive to habitat conversion, compared with widespread arid and warmer-adapted species. These results show how land-use and climate change may favour similar species, thus potentially increasing the rate of homogenisation caused in the Anthropocene. As shown in Chapter 4 species’ responses to current environmental changes vary widely, depending on their ecological traits and climatic adaptations. This heterogeneity of responses could drive significant rearrangements in the composition of ecosystems, es- pecially in the tropics where most of the species with narrow geographic and climatic ranges are found. In chapter 5, therefore, I quantify the impacts of land-use change on the composition of tropical assemblages using Colombia as a case study. In this chapter, I statistically analyse plant and animal data from 285 sites in Colombia to model how terrestrial assemblages are responding to land use change, using a much more finely- resolved land-use classification than that used in Chapter 4. I combine these models with four projections of land use to investigate how diversity is expected to change under future scenarios associated with different climate change policies. Here I demonstrate that land-use change has driven an increasing change in the composition of the ecological assemblages in Colombia and that depending on the policies implemented in the future, this negative effect could continue, risking the quality of ecosystems unless the impacts are mitigated. 6 To my husband, my aunt Vicky and my uncle Hermes. 7 Acknowledgments I would like to thank my PhD advisor, Professor Andy Purvis who gave me the oppor- tunity to join his team in Silwood Park as a master student and at the Natural History Museum as a PhD student. Thanks Andy for supporting me during the past five years and for helping me during this very challenging period of my life. I am also very grateful with my co-supervisor Dr Sandra Knapp for all her advice and trust during my PhD. Thanks Sandy for your enthusiasm and for sharing with me your knowledge and adven- tures. I also have to thank Tiina S¨arkinen and Natalie Cooper for their scientific advice and insightful discussions and suggestions. Natalie thanks a lot for all your help not only during my PhD but also in finding a Postdoc. I will forever be thankful to Isabel for all her advice, discussions, suggestions and proof- reading. Isabel your support was vital for me. I very much appreciate all the academic and personal conversations, which truly made a difference during my PhD. I also want to thank Adriana for all her statistical advice, proofreading and for all the hugs that she gave me when I most needed them. Thanks Adriana for all your good vibe and for buying me coffee and cake for my engagement and birthdays! I also want to thank my bachelor supervisor Daniel Rafael Miranda-Esquivel for all the training and advice. Everything I learned back in Colombia made a significant contribu- tion to my performance as a Masters and PhD student. I thank all the members of the Purvis lab: Katia, Rogier, Sara, Victoria, Dan, Sam, Helen, Adriana, Isabel and Connor for all the fun and for listening to my complaints every day (also for trying to understand what I was saying). We share a lot of fun moments but also some upsetting ones, 2016 and 2017, not the greatest years for the human race and the world in general. I also want to thank Dom who became an exceptional friend since the masters. Thanks Dom for all the movies, the coffee and our career crisis conversations. My latin girls! Katia, Belen, Blanca and Nadia. You made my time in the museum unforgettable. Thanks for all your support, the fun, the tears and all the coffee! I will miss you all! Belen, I will miss you so much. You became one of my best friends, and I 8 am grateful for all what you did for me during my time in London. I will never forget all the good and also the sad moments we share together. I would like to thank my aunt Vicky and uncle Hermes for all their support with my university studies. There is no doubt that without them I would never have achieved anything. There are no words to express how grateful I am for your trust, love and support. The best outcome for the last five years is finding my soul-mate and now husband, Francesco. Thank you for all your love, patience and support. Thanks for believing in me more than anyone else and helping me when sometimes I was sad and depressed. Thanks for choosing me as your life partner and for being as you are. I gratefully acknowledge the funding sources that made my PhD possible. I was par- tially funded by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) for my masters and two years of my PhD. I also want to thank my husband and father-in-law for their financial support during the last two years of my PhD. 9 List of figures 1.1 Example of the floral morphology in Solanum species from different sub- clades or sections ............................... 25 2.1 Backbone tree of Solanum from S¨arkinen et al. (2015) ........... 35 2.2 Diversification shifts identified in the phylogeny of Solanum using MEDUSA 43 2.3 Overall mean net diversification rates of Solanum lineages obtained in BAMM 44 2.4 Average macroevolutionary cohort across the 100 trees obtained by PASTIS using the Solanum species in the S¨arkinen et al. (2013) phylogeny .... 45 3.1 Historical biogeographic events allowed in BioGeoBEARS ......... 59 3.2 Global distribution of the net diversification rates of Solanum.
Recommended publications
  • Floristic Study of Bryophytes in a Subtropical Forest of Nabeup-Ri at Aewol Gotjawal, Jejudo Island
    − pISSN 1225-8318 Korean J. Pl. Taxon. 48(1): 100 108 (2018) eISSN 2466-1546 https://doi.org/10.11110/kjpt.2018.48.1.100 Korean Journal of ORIGINAL ARTICLE Plant Taxonomy Floristic study of bryophytes in a subtropical forest of Nabeup-ri at Aewol Gotjawal, Jejudo Island Eun-Young YIM* and Hwa-Ja HYUN Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science, Seogwipo 63582, Korea (Received 24 February 2018; Revised 26 March 2018; Accepted 29 March 2018) ABSTRACT: This study presents a survey of bryophytes in a subtropical forest of Nabeup-ri, known as Geumsan Park, located at Aewol Gotjawal in the northwestern part of Jejudo Island, Korea. A total of 63 taxa belonging to Bryophyta (22 families 37 genera 44 species), Marchantiophyta (7 families 11 genera 18 species), and Antho- cerotophyta (1 family 1 genus 1 species) were determined, and the liverwort index was 30.2%. The predominant life form was the mat form. The rates of bryophytes dominating in mesic to hygric sites were higher than the bryophytes mainly observed in xeric habitats. These values indicate that such forests are widespread in this study area. Moreover, the rock was the substrate type, which plays a major role in providing micro-habitats for bryophytes. We suggest that more detailed studies of the bryophyte flora should be conducted on a regional scale to provide basic data for selecting indicator species of Gotjawal and evergreen broad-leaved forests on Jejudo Island. Keywords: bryophyte, Aewol Gotjawal, liverwort index, life-form Jejudo Island was formed by volcanic activities and has geological, ecological, and cultural aspects (Jeong et al., 2013; unique topological and geological features.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Diversidad Y Distribución De La Familia Asteraceae En México
    Taxonomía y florística Diversidad y distribución de la familia Asteraceae en México JOSÉ LUIS VILLASEÑOR Botanical Sciences 96 (2): 332-358, 2018 Resumen Antecedentes: La familia Asteraceae (o Compositae) en México ha llamado la atención de prominentes DOI: 10.17129/botsci.1872 botánicos en las últimas décadas, por lo que cuenta con una larga tradición de investigación de su riqueza Received: florística. Se cuenta, por lo tanto, con un gran acervo bibliográfico que permite hacer una síntesis y actua- October 2nd, 2017 lización de su conocimiento florístico a nivel nacional. Accepted: Pregunta: ¿Cuál es la riqueza actualmente conocida de Asteraceae en México? ¿Cómo se distribuye a lo February 18th, 2018 largo del territorio nacional? ¿Qué géneros o regiones requieren de estudios más detallados para mejorar Associated Editor: el conocimiento de la familia en el país? Guillermo Ibarra-Manríquez Área de estudio: México. Métodos: Se llevó a cabo una exhaustiva revisión de literatura florística y taxonómica, así como la revi- sión de unos 200,000 ejemplares de herbario, depositados en más de 20 herbarios, tanto nacionales como del extranjero. Resultados: México registra 26 tribus, 417 géneros y 3,113 especies de Asteraceae, de las cuales 3,050 son especies nativas y 1,988 (63.9 %) son endémicas del territorio nacional. Los géneros más relevantes, tanto por el número de especies como por su componente endémico, son Ageratina (164 y 135, respecti- vamente), Verbesina (164, 138) y Stevia (116, 95). Los estados con mayor número de especies son Oaxa- ca (1,040), Jalisco (956), Durango (909), Guerrero (855) y Michoacán (837). Los biomas con la mayor riqueza de géneros y especies son el bosque templado (1,906) y el matorral xerófilo (1,254).
    [Show full text]
  • NPV Dissertação (2008).Pdf (4.051Mb)
    UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas – Departamento de Química Programa de Pós-Graduação em Química Alcalóides Esteroidais dos Frutos Maduros de Solanum caavurana Vell. Mestranda: Nelissa Pacheco Vaz Orientadora: Profª. Drª. Beatriz Helena L. de N. Sales Maia Dissertação apresentada ao Programa de Pós-Graduação em Química, para obtenção do Título de Mestre em Ciências, área de concentração Química Orgânica. Curitiba-PR Janeiro 2008 “A química é talvez a ciência que mais necessita de amigos. Para fazê-los, tê-los e mantê-los basta a humildade de perceber que você nunca vai conseguir saber tudo de química e que eles sempre poderão lhe ensinar alguma coisa.” (Flávio Leite) ii AGRADECIMENTOS: U A Deus pela vida e oportunidade de adquirir conhecimento superior de qualidade numa sociedade tão desigual; U À minha família por acreditarem, apoiarem, incentivarem e terem investido tempo, amor e dedicação para a realização dos meus sonhos. Agradeço também pela compreensão e convivência; U A Universidade Federal do Paraná e ao Departamento de Química desta universidade pela oportunidade de realização deste trabalho; U À professora Drª. Beatriz Helena Lameiro de Noronha Sales Maia pela orientação, amizade, compreensão, presença, motivação e auxílio durante a realização deste trabalho; U À professora Drª. Raquel Marques Braga - Instituto de Química - Universidade de Campinas (IQ - UNICAMP) pelas análises de ressonância magnética nuclear e auxílios nas determinações estruturais; U Ao professor Dr. Norberto Peporine Lopes - Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo: Departamento de Física e Química – (FCFRP-USP) pela aquisição dos Espectros de Massas; U Aos biólogos Drª.
    [Show full text]
  • IAPT/IOPB Chromosome Data 25 TAXON 66 (5) • October 2017: 1246–1252
    Marhold & Kučera (eds.) • IAPT/IOPB chromosome data 25 TAXON 66 (5) • October 2017: 1246–1252 IOPB COLUMN Edited by Karol Marhold & Ilse Breitwieser IAPT/IOPB chromosome data 25 Edited by Karol Marhold & Jaromír Kučera DOI https://doi.org/10.12705/665.29 Tatyana V. An’kova* & Elena Yu. Zykova Franco E. Chiarini,1* David Lipari,1 Gloria E. Barboza1 & Sandra Knapp2 Central Siberian Botanical Garden SB RAS, Zolotodolinskaya Str. 101, 630090 Novosibirsk, Russia 1 Instituto Multidisciplinario de Biología Vegetal (IMBIV), * Author for correspondence: [email protected] CONICET, Universidad Nacional de Córdoba, CC 495 Córdoba 5000, Argentina All materials CHN; vouchers are deposited in NS; collector E.Yu. 2 Department of Life Sciences, Natural History Museum, Zykova. Cromwell Road, London SW7 5BD, U.K. * Author for correspondence: [email protected] The study was supported by the Russian Foundation for Basic Research (grant 16-04-01246 A to E. Zykova). All materials CHN; collectors: FC = Franco Chiarini, GB = Gloria Barboza, JU = Juan Urdampilleta, SK = Sandra Knapp, TS ASTERACEAE = Tiina Särkinen. Anthemis tinctoria L., 2n = 18; Russia, Altay Republic, Z35a, Z37. 2n = 27; Russia, Altay Republic, Z35b. The authors thank Consejo Nacional de Investigaciones Científi- Arctium lappa L., 2n = 36; Russia, Altay Republic, Z38. cas y Técnicas (CONICET, Argentina) for financial support. NSF Plan- Arctium minus (Hill) Bernh., 2n = 36; Russia, Altay Republic, Z41; etary Biodiversity Initiative DEB-0316614 “PBI Solanum: a worldwide Russia, Novosibirskaya Oblast, Z43. treatment”; field work for SK was financed by a National Geographic Senecio vulgaris L., 2n = 40; Russia, Altay Republic, Z56, Z90; Rus- grant to T.
    [Show full text]
  • Functional Ecology Published by John Wiley & Sons Ltd on Behalf of British Ecological Society
    Received: 22 June 2017 | Accepted: 14 February 2018 DOI: 10.1111/1365-2435.13085 RESEARCH ARTICLE Insular woody daisies (Argyranthemum, Asteraceae) are more resistant to drought- induced hydraulic failure than their herbaceous relatives Larissa C. Dória1 | Diego S. Podadera2 | Marcelino del Arco3 | Thibaud Chauvin4,5 | Erik Smets1 | Sylvain Delzon6 | Frederic Lens1 1Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands; 2Programa de Pós-Graduação em Ecologia, UNICAMP, Campinas, São Paulo, Brazil; 3Department of Plant Biology (Botany), La Laguna University, La Laguna, Tenerife, Spain; 4PIAF, INRA, University of Clermont Auvergne, Clermont-Ferrand, France; 5AGPF, INRA Orléans, Olivet Cedex, France and 6BIOGECO INRA, University of Bordeaux, Cestas, France Correspondence Frederic Lens Abstract Email: [email protected] 1. Insular woodiness refers to the evolutionary transition from herbaceousness to- Funding information wards derived woodiness on (sub)tropical islands and leads to island floras that have Conselho Nacional de Desenvolvimento a higher proportion of woody species compared to floras of nearby continents. Científico e Tecnológico, Grant/Award Number: 206433/2014-0; French National 2. Several hypotheses have tried to explain insular woodiness since Darwin’s original Agency for Research, Grant/Award Number: observations, but experimental evidence why plants became woody on islands is ANR-10-EQPX-16 and ANR-10-LABX-45; Alberta Mennega Stichting scarce at best. 3. Here, we combine experimental measurements of hydraulic failure in stems (as a Handling Editor: Rafael Oliveira proxy for drought stress resistance) with stem anatomical observations in the daisy lineage (Asteraceae), including insular woody Argyranthemum species from the Canary Islands and their herbaceous continental relatives. 4. Our results show that stems of insular woody daisies are more resistant to drought- induced hydraulic failure than the stems of their herbaceous counterparts.
    [Show full text]
  • Chromosome Numbers in Compositae, XII: Heliantheae
    SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII.
    [Show full text]
  • Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
    Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld.
    [Show full text]
  • Molecular Phylogeny of Chinese Thuidiaceae with Emphasis on Thuidium and Pelekium
    Molecular Phylogeny of Chinese Thuidiaceae with emphasis on Thuidium and Pelekium QI-YING, CAI1, 2, BI-CAI, GUAN2, GANG, GE2, YAN-MING, FANG 1 1 College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China. 2 College of Life Science, Nanchang University, 330031 Nanchang, China. E-mail: [email protected] Abstract We present molecular phylogenetic investigation of Thuidiaceae, especially on Thudium and Pelekium. Three chloroplast sequences (trnL-F, rps4, and atpB-rbcL) and one nuclear sequence (ITS) were analyzed. Data partitions were analyzed separately and in combination by employing MP (maximum parsimony) and Bayesian methods. The influence of data conflict in combined analyses was further explored by two methods: the incongruence length difference (ILD) test and the partition addition bootstrap alteration approach (PABA). Based on the results, ITS 1& 2 had crucial effect in phylogenetic reconstruction in this study, and more chloroplast sequences should be combinated into the analyses since their stability for reconstructing within genus of pleurocarpous mosses. We supported that Helodiaceae including Actinothuidium, Bryochenea, and Helodium still attributed to Thuidiaceae, and the monophyletic Thuidiaceae s. lat. should also include several genera (or species) from Leskeaceae such as Haplocladium and Leskea. In the Thuidiaceae, Thuidium and Pelekium were resolved as two monophyletic groups separately. The results from molecular phylogeny were supported by the crucial morphological characters in Thuidiaceae s. lat., Thuidium and Pelekium. Key words: Thuidiaceae, Thuidium, Pelekium, molecular phylogeny, cpDNA, ITS, PABA approach Introduction Pleurocarpous mosses consist of around 5000 species that are defined by the presence of lateral perichaetia along the gametophyte stems. Monophyletic pleurocarpous mosses were resolved as three orders: Ptychomniales, Hypnales, and Hookeriales (Shaw et al.
    [Show full text]
  • Inventaire Et Analyse Chimique Des Exsudats Des Plantes D'utilisation Courante Au Congo-Brazzaville
    Inventaire et analyse chimique des exsudats des plantes d’utilisation courante au Congo-Brazzaville Arnold Murphy Elouma Ndinga To cite this version: Arnold Murphy Elouma Ndinga. Inventaire et analyse chimique des exsudats des plantes d’utilisation courante au Congo-Brazzaville. Chimie analytique. Université Paris Sud - Paris XI; Université Marien- Ngouabi (Brazzaville), 2015. Français. NNT : 2015PA112023. tel-01269459 HAL Id: tel-01269459 https://tel.archives-ouvertes.fr/tel-01269459 Submitted on 5 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MARIEN NGOUABI UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE 470: CHIMIE DE PARIS SUD Laboratoire d’Etude des Techniques et d’Instruments d’Analyse Moléculaire (LETIAM) THÈSE DE DOCTORAT CHIMIE par Arnold Murphy ELOUMA NDINGA INVENTAIRE ET ANALYSE CHIMIQUE DES EXSUDATS DES PLANTES D’UTILISATION COURANTE AU CONGO-BRAZZAVILLE Date de soutenance : 27/02/2015 Directeur de thèse : M. Pierre CHAMINADE, Professeur des Universités (France) Co-directeur de thèse : M. Jean-Maurille OUAMBA, Professeur Titulaire CAMES (Congo) Composition du jury : Président : M. Alain TCHAPLA, Professeur Emérite, Université Paris-Sud Rapporteurs : M. Zéphirin MOULOUNGUI, Directeur de Recherche INRA, INP-Toulouse M. Ange Antoine ABENA, Professeur Titulaire CAMES, Université Marien Ngouabi Examinateurs : M.
    [Show full text]
  • Acanthaceae), a New Chinese Endemic Genus Segregated from Justicia (Acanthaceae)
    Plant Diversity xxx (2016) 1e10 Contents lists available at ScienceDirect Plant Diversity journal homepage: http://www.keaipublishing.com/en/journals/plant-diversity/ http://journal.kib.ac.cn Wuacanthus (Acanthaceae), a new Chinese endemic genus segregated from Justicia (Acanthaceae) * Yunfei Deng a, , Chunming Gao b, Nianhe Xia a, Hua Peng c a Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China b Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Facultyof Life Science, Binzhou University, Binzhou, 256603, Shandong, People's Republic of China c Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China article info abstract Article history: A new genus, Wuacanthus Y.F. Deng, N.H. Xia & H. Peng (Acanthaceae), is described from the Hengduan Received 30 September 2016 Mountains, China. Wuacanthus is based on Wuacanthus microdontus (W.W.Sm.) Y.F. Deng, N.H. Xia & H. Received in revised form Peng, originally published in Justicia and then moved to Mananthes. The new genus is characterized by its 25 November 2016 shrub habit, strongly 2-lipped corolla, the 2-lobed upper lip, 3-lobed lower lip, 2 stamens, bithecous Accepted 25 November 2016 anthers, parallel thecae with two spurs at the base, 2 ovules in each locule, and the 4-seeded capsule. Available online xxx Phylogenetic analyses show that the new genus belongs to the Pseuderanthemum lineage in tribe Justi- cieae.
    [Show full text]
  • Adding Ecological Value to the Urban Lawnscape. Insect Abundance and Diversity in Grass-Free Lawns
    Biodivers Conserv (2015) 24:47–62 DOI 10.1007/s10531-014-0788-1 ORIGINAL PAPER Adding ecological value to the urban lawnscape. Insect abundance and diversity in grass-free lawns Lionel S. Smith • Moth E. J. Broyles • Helen K. Larzleer • Mark D. E. Fellowes Received: 28 April 2014 / Revised: 14 August 2014 / Accepted: 18 August 2014 / Published online: 4 September 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract Insect diversity may be declining even more rapidly than in plants and verte- brates, particularly in areas where indigenous habitats are replaced by an anthropogenic one. The most common component of anthropogenic greenspace is the ornamental lawn. Intensively managed and offering limited habitat opportunities for both plants and insects, lawns are biodiversity poor and ecologically insensitive. An alternative lawn format that positively influences biodiversity and reduces management requirements would be a useful tool in eco-friendly urban greenspace management. In investigating the potential for a forb-only alternative to the grass lawn we sampled both trial grassfree lawn formats and turf lawns to identify any influence that lawn composition and grass-free lawn specific mowing regimes might have on the abundance and diversity of insect families. In addition to the mowing regimes, both the composition and origin of lawn flora were found to significantly influence insect abundance and diversity and these factors rarely interacted. Native-only and mixed origin grass-free lawns hosted greater numbers of adult insects than found in turf and an equivalent diversity of insect families, however the mowing regime applied was distinct from traditional turf lawn management by being substantially less intensive and our results suggest that there is the potential for even greater abundance and diversity via the grass-free format that may offer additional resources to insectivorous garden species such as birds.
    [Show full text]