<<

Course SS 2017 26.-30.06.2017 Roger Gläser UNIVERSITÄT LEIPZIG Institute of Chemical Technology  Süddeutscher Lehrverbund Dr. Kral  Ruhr-Lehrverbund Prof. Behr, Universität Dortmund Prof. Muhler, Bochum  Südwestdeutscher Lehrverbund Prof. Claus, TU Darmstadt Prof. Maier, Saarbrücken  Norddeutscher Lehrverbund Prof. Rößner, Universität Oldenburg  Nordostdeutscher Lehrverbund Prof. Beller, LIKAT Rostock  Mitteldeutscher Lehrverbund Prof. Gläser, Universität Leipzig

Supported by

Participants and Prize Winners 04.-08.07.2016 Course SS 2017 26.06.2017 Roger Gläser UNIVERSITÄT LEIPZIG Institute of Chemical Technology [email protected] : - modern energy conversion - chemicals manufacture - environmental technology

Catalysis in Industrial Processes: non catalytic processes (ca. 15%) homogeneous catalysis (17%)

biocatalysis (3%)

catalytic processes (ca. 85%) (80%)

de Jong, K. P. (1998) Cat Tech, 2, 87.

Catalysis in Industrial Processes: non catalytic processes (ca. 15%) • world catalyst sales: 15 billion US$/a (2004) • foreseen growth rate about 5%/a • catalayst usage generates margin more than 100 times of catalyst costs  more 1500 billion US$/a

catalytic processes (ca. 85%)

• environmental impact of catalysis • without catalysis many products could not be obtained

de Jong, K. P. (1998) Cat Tech, 2, 87. The Catalyst Group Resources (2008) Chemical Week April 28. Spring House.

The way ahead…

http://www.gecats.de/gecats_media/Urbanczyk/Ka talyse_Roadmap_2010_engl_final.pdf

Roadmap for Catalysis Research in , 3rd edn, March 2010 (GeCatS, ProcessNet; DECHEMA, GDCh, DBG, DGMK, VDI) , , , , , , , William S. Knowles, Ryoji Noyori, Barry Sharpless,

Wilhelm Ostwald Fritz Haber Carl Bosch Gerhard Ertl Parmentier 1781: Starch decomposes into sugars in the presence of an acid Döbereiner 1823: The Döbereiner lighter

Berzelius 1835: All these reactions have in common, that they need, along with the reactants, another substance which is not consumed.  term „catalysis“ (gr.: „to dissolve, to abort“) Ostwald 1894: Katalyse ist die Beschleunigung eines langsam verlaufenden chemischen Vorgangs durch die Gegenwart eines fremden Stoffes

„So wurde ich unwiderstehlich zu der Auffassung gedrängt, dass das Wesen der Katalyse nicht in der Hervorbringung einer Reaktion zu suchen ist, sondern in ihrer Beschleunigung …

… Ich würde der Pflicht der Aufrichtigkeit ... zuwider handeln, wenn ich unterlassen würde, zu bemerken, dass mir selbst damals dieser Fortschritt keineswegs besonders imponierte …“ (Wilhelm Ostwald, Rede zur Nobelpreisverleihung 1909)

aus: G. Ertl und T. Gloyna, Katalyse: Vom Stein der Weisen zu Wilhelm Ostwald, Z. Phys. Chem. 217 (2003) 1207–1219

openopen reaction reaction sequence sequence closedclose reaction reaction sequence sequence

Step 1: R I´ Step 1 : R + C I Step 2: I´ P Step 2 : I P + C

Overall: R P Overall: R P One product formed in step 2 is identical with a reactant in step 1. Stoichiometry Catalysis

(open reaction sequence) (closed(close reaction reaction sequence) sequence)

R R I´ P C I

P

Simplest example for a catalytic cycle. • A catalyst is a material that converts reactants into products, through a series of elementary steps, in which the catalyst participates while being regenerated to its original form at the end of each cycle during its lifetime.

A catalyst changes the kinetics of the reaction, but does not change the thermodynamics.

E. K. Rideal, H. S. Taylor, Catalysis in Theory and Practice, Macmillan, London , 1919. solid molecular catalysts catalysts

bio- catalysts spectroscopy theory

preparation solid molecular catalysts catalysts kinetics bio- catalysts genetics

thermo- dynamics process and reactor engineering • Heterogeneous catalysis

• Homogeneous catalysis

• Biocatalysis

• Phase-transfer catalysis

• Electrocatalysis

• Photocatalysis • turnover number (TON): overall number of catalytic cycles stability

• turnover frequency (TOF): number of catalytic cycles per (turnover rate TOR) unit time activity

1  dn  • reaction rate (r): r   R  mCat  dt 

• site time yield STY: overall rate of catalytic reaction within the reactor Hydrocracking

Reforming (3 bar, 15 bar, 30 bar)

Methanol to gasoline

FCC

Ammonia synthesis

Oxidation of (Ostwald-Processes) 1 Week 5 Years 1 min 1 h 1 Day 1 Month 1 Year

6 8 1e-210-2 1e-1 1e+01 1e+1 1e+2102 1e+3 1e+4104 1e+5 1e+610 1e+7 1e+810 Time / s ΔR H / Case Example (kJ mol-1) T / °C Catalyst

1. Exothermic fused Fe-catalyst N + 3 H 2 NH -105 400 – 500 equilibrium 2 2 3 with promoters

2. Endothermic CH4 + H2O CO + 3 H2 +225 750 – 850 Ni on porous equilibrium support

3. Direction of C H + 0.5 O C H O 270 – 290 Ag/α-Al O selectivity 2 4 2 2 4 2 3 • Heterogeneous catalysis SOHIO-Process

• Homogeneous catalysis SHOP-Process

• Biocatalysis Synthesis of α-Aspartame application: Ammoxidation of propene to acrylonitrile

– – -1 H2C=CH CH3 + NH3 + 1.5 O2 H2C=CH CN + 3 H2O DRH = – 515 kJ mol

process conditions: fluidized-bed reactor 400 – 500 °C, contact time 1 – 20 s

worldwide production capacity: 5 106 t a-1

catalyst: bismuth molybdate (+ promoters)

J. Weitkamp, R. Gläser, "Katalyse", in: "Winnacker-Küchler: Chemische Technik", R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Eds., Vol. 1, Chapter 5, Wiley-VCH, Weinheim (2004), pp. 645-718. – – H2C=CH CH3 + NH3 + 1.5 O2 H2C=CH CN + 3 H2O

productproduct outout productproduct inin

steamsteam

water water NH,NH3 3 CH36 C3H6 air

J. Weitkamp, R. Gläser, "Katalyse", in: "Winnacker-Küchler: Chemische Technik", R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Eds., Vol. 1, Chapter 5, Wiley-VCH, Weinheim (2004), pp. 645-718. rate-determining step

J. Weitkamp, R. Gläser, "Katalyse", in: "Winnacker-Küchler: Chemische Technik", R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Eds., Vol. 1, Chapter 5, Wiley-VCH, Weinheim (2004), pp. 645-718. 1. Oligomerization of ethene

homogeneous catalysis Ni-catalysts

detergents)

2. Double bond isomerization of C4-C10 and > C20 heterogeneous catalysis MgO (x+y = 2 -8 and > 20)

3. Metathesis of Rx-CH=CH-Ry

heterogeneous catalysis Re- or Mo-catalysts

J. Weitkamp, R. Gläser, "Katalyse", in: "Winnacker-Küchler: Chemische Technik", R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Eds., Vol. 1, Chapter 5, Wiley-VCH, Weinheim (2004), pp. 645-718. J. Weitkamp, R. Gläser, "Katalyse", in: "Winnacker-Küchler: Chemische Technik", R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Eds., Vol. 1, Chapter 5, Wiley-VCH, Weinheim (2004), pp. 645-718. • worldwide production capacity: 1.000 t a-1 • market value: 850 Mio € a-1

J. Weitkamp, R. Gläser, "Katalyse", in: "Winnacker-Küchler: Chemische Technik", R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Eds., Vol. 1, Chapter 5, Wiley-VCH, Weinheim (2004), pp. 645-718.

Course SS 2017 26.-30.06.2017 Roger Gläser UNIVERSITÄT LEIPZIG Institute of Chemical Technology