The Identification of Blue Diffusion-Treated Sapphires

Total Page:16

File Type:pdf, Size:1020Kb

The Identification of Blue Diffusion-Treated Sapphires THE IDENTIFICATION OF BLUE DIFFUSION-TREATED SAPPHIRES By Robert E. IZane, Robert C. IZammerling, John I. Koivula, lames E. Shigley, and Emmanuel Fritsch Blue diffusion-treated sapphires are be- he heat treatment of pale, colorless, or milky white coming more prevalent than ever before. T"geuda" sapphires to produce attractive blue stones The diffusion technique, which involves has been practiced for a number of decades. These stones the addition of color-causing chemicnls have become a staple in today's international gem markets. during heat trentment, results in a thin layer of color at the surface of colorless or A different but related color-enhancement technique that light-colored sapphire. The color was emerged in the late 1970s and early 1980s is now also found to be stable to routine cleaning pro- becoming prevalent in the trade: diffusion treatment (see cedures; however, it may be partially or figure 1).This process involves the diffusion at very high completely-removed if the stone is re- temperatures (1700° and higher) of color-causing transi- polished pf, recut. Recently, significant tion elen~entssuch as iron, titanium, chromium, or nickel quantities of so-called "deep" diffusion- (depending on the color desired) into a region that extends treated sapphires have entered the market. just below the surface of the otherwise colorless or very This article documents the properties of light colored corundum (Carr and Nisevich, 1975). The these and other blue diffusion-treated sap- result is a thin color layer at and just below the surface of phires, and presents means of identifying the gemstone (see figure 2). This layer may be partially or this method using simple gemological tests. completely removed if the stone is repolished or recut. It is commonly used on corundum that does not respond to standard heat treatment. Unlike some treatment methods, ABOUT THE AUTHORS the diffusion treatment of sapphires does not have any Mr. Kane is supervisor of identification at the GIA parallel in nature. As Nassau (1981)stated, "the results of Gem Trade Laboratory, Inc. Santa Monica. Mr. Kam- merling is director of technical development, Mr. diffusion treatment . remind one more of Lechleitner Koivula is chief gemologisl, Dr. Shigley is director synthetic emerald overgrowth on a natural beryl than of of research, and Dr. Fritsch is research scientist at the Gemological Institute of America, Santa heated aquamarine." Monica, California. Since 1979, numerous brief reports of diffusion-treated Acknowledgments: The authors are graleful to the corundum have been published (Crowningshield, 1979a following for providing information, gem materials, and b, 1980; Brauner, 198 1; Crowningshield and Nassau, and research assistance: Karla and Bob Brom, 1981, 1982; Fryer et al., 1981, 1982a and b; Graziani et al., The Rainbow Collection; Jeffery Bergman, Gem Source; Robert K. Stevenson, Long Gems Ltd.; 1981; Leone and Cumo, 1981; Mat, 1981; Nassau, 1981, Edward Boehm, formerly 01 Overland Gems, now 1982; Herzberg, 198 1; Scarratt, 1981, 1983; Hinni, 1982; 01 the Gubelin Gemmolog~calLaboratory; Barry Read, 1982; "New CIBJO guidelines given to sapphire Hodgin. Dino DeGhionno, Lorri Dee Rascoe, J. Michael Allbr~tton,Terry Payne, Loretta Loeb, Sam description," 1983; Hughes, 1987; Ohguchi, 1983a and b; Muhlmeisler, Mike Moon, and Maha Smith, all of Kammerling et al., 1990a; Koivula and Kammerling, 1990). GIA; and Shane McClure and Karin Hurwit, of the Although relatively little corundum treated in this GIA Gem Trade Laboratory. John Armstrong and Paul Carpenter, of the California Institute of Tech- manner was seen in the mid- to late 1980s, it appears to nology, provided the electron microprobe analyses. have become quite prevalent in the international gem Gems & Gemology, Vol. 26, No. 2, pp. 115-133 markets in recent months. In late 1989, several blue 0 1990 Gemological Institute of Anierica diffusion-treated sapphires (and samples of starting mate- Diffusion-Treated Sapphires GEMS & GEMOLOGY Summer 1990 115 Figure 1. These blue sapphires (0.67-2.85 ct) have all been diffu- sion treated, reportedly by a process that produces an unusually deep layer of color at and just under the surface of the stone. Courtesy of Gem Source; photo by Shane F. McClure. rial) were donated to GIA by Karla and Bob Brom, loss of over lo%, yet they retain a fine color." of The Rainbow Collection, Honolulu, Hawaii According to a report in Jewellery News Asia (figure 3).They report (pers.comm., 1990)that they ("New colour diffusion for sapphires," 1990))the have received 500 ct of faceted and cabochon-cut vendor claims that about 25,000 ct of this material material from a scientist in Bangkok, Thailand, have been treated and repolished, with 12,500 ct who purports to use a complex treatment process currently in the world market. Trade sources and involving eight to 10 separate heating periods of 40 our own observations at Tucson indicate that a hours each. number of vendors are now selling diffusion- More recently, at the 1990 Tucson Show, signifi- treated blue sapphires. cant quantities of faceted blue diffusion-treated Another point of interest not previously men- sapphires were offered for sale by Gem Source, of tioned in the literature is the experimentation in Las Vegas, Nevada, and Bangkok, Thailand (again, Bangkok, Thailand, with diffusion treatment that see figure 1). According to a promotional flier involves not only iron and titanium, but also other provided by the vendor, these blue sapphires had color-causing impurities such as cobalt. We had an been subjected to "new techniques resulting in opportunity to examine a number of these stones much deeper penetration of the metal ions. The as well. penetration is so deep that many stones treated To better understand the different types of with this method are entirely recut, with a weight diffusion-treated stones on the market, the pro- 116 Diffusion-Treated Sapphires GEMS & GEMOLOGY Summer 1990 persons involved in the heat treatment of cor- undum in Thailand. Five of the heat treaters returned the treated sapphires with very little or no apparent improvement in color. The sixth person, however, presented the Bangkok dealer with the intensely colored blue sapphire rough shown on either side of the untreated material in figure 4. Elated over the apparently successful heat treatment, the Bangkok dealer began organizing the purchase of large quantities of Montana sap- phire rough. When he cut a portion of the treated rough, however, he discovered that the blue color was confined to a very thin area near the surface (R. K. Stevenson, pers. comm., 1984). In June of 1990, Bob Crowningshield of the East Coast GIA Gem Trade Laboratory reported seeing an- other lot of diffusion-treated Montana sapphire rough that was being marketed as heat-treated material. Disclosure Practices. Although there is no world- wide agreement concerning disclosure practices Figure 4. In the early 1980s, a gem dealer in Bangkok supplied six different heat-treating for the heat treatment of blue sapphire, there is operations with light-colored Montana sapphire general consensus in the trade that disclosure of rough (as seen in the center of this photo). diffusion-treated corundum is essential because Five lots of the heat-treated sapphires were the added color is confined to a surface layer. returned with little or no improvement in Consequently, while the terminology may vary, color. The sixth operation, however, returned corundum treated in this manner is nearly always intensely colored blue sapphires to the dealer described as synthetically or artificially colored. (as seen here. on either side of the original For example, the GIA Gem Trade Laboratory light-colored rough). Subsequent cutting re- issues the following conclusion on identification vealed that the blue color was confined to reports: a thin superficial layer: The sapphires had been diffusion treated. The largest piece DIFFUSION-TREATED NATURAL SAPPHIRE weighs 0.75 ct. Photo by Shane F. McClure. Note: The color of this stone is confined to a shallow surface layer that has been produced by Carbide). Carr and Nisevich later described this diffusing chemicals into the surface by heat treatment procedure as a separate process (1976 treatment. and 1977). When the Linde division of Union Carbide ceased production of synthetic star cor- THE DIFFUSION MECHANISM undum, all four of these patents were assigned to The color in blue sapphire is due to Fez+-0-Ti4+ Astrid Corp. of Hong Kong, which had acquired charge transfer, influenced by Fez+ 3Fe3 + charge Linde's stock of synthetic star rubies and star transfer and Fe3+ absorptions (Smith and Strens, sapphires (Nassau, 1981). Astrid Corp., a member 1976; Schmetzer, 1987). Diffusion treatment first of the Golay Buchel group, produced diffusion- brings the necessary iron and titanium coloring treated sapphires in Bangkok until the early 1980s agents into contact with the stone's surface. The (D. Biddle, pers. comm., 1990). stone is then heated, sometimes to just below its However, it appears that diffusion treatment is melting point, causing the corundum lattice to being practiced by other firms. In late 1984, a expand and allowing the thermally energized tran- Bangkok gem dealer reported to one of the authors sition metal ions to migrate into a layer at the (R. Kane) that he had given very light colored surface, resulting in a near-surface concentration sapphire rough from Montana to six different of color. 118 Diffusion-Treated Sapphires GEMS & GEMOLOGY Summer 1990 Generally spealzing, tlie higher the temperature n~aintainedand the longer the time used for the heating step, the greater the depth of color penetra- tion will be. In this regard, the possible difference between so-called "deep" diffusion treatment and earlier diffusion-treated stones may be in a higher temperature being reached and/or maintained. It may also be in the use of more than one heating stage in the treatment procedure.
Recommended publications
  • Finish, Culet Size, and Girdle Thickness: Categories of the GIA Diamond Cut Grading System
    Finish, Culet Size, and Girdle Thickness: Categories of the GIA Diamond Cut Grading System This booklet summarizes the relationship of Finish, Culet Size, and Girdle Thickness to the GIA Cut Grading System for round brilliant diamonds. It is intended to help members of the jewelry trade better understand the attributes of diamond appearance, and how those attributes are evaluated within the GIA Cut Grading System. Finish—Polish and Symmetry In the GIA Cut Grading System for standard round brilliant To determine the relationship between finish and overall diamonds, finish (for Polish and Symmetry features) is cut quality, GIA conducted extensive observation testing factored into the final overall cut grade as follows: of numerous diamonds using standardized lighting and viewing conditions. Observations of diamonds with • To qualify for an Excellent cut grade, polish and comparable proportions, but differing in their polish and symmetry must be Very Good or Excellent. symmetry categories, were analyzed to determine the effects of finish on overall cut appearance. In this way, • To qualify for a Very Good cut grade, both polish GIA found that a one grade difference between the other and symmetry must be at least Good. aspects of a diamond’s cut grade and its polish and • To qualify for a Good cut grade, both polish and symmetry assessments did not significantly lower a symmetry must be at least Fair. trained observer’s assessment of face-up appearance, and could not be discerned reliably with the unaided eye— • To qualify for a Fair cut grade, both polish and e.g., polish and/or symmetry descriptions of Very Good symmetry must be at least Fair.
    [Show full text]
  • Download Course Outline for This Program
    Program Outline 434- Jewellery and Metalwork NUNAVUT INUIT LANGUAGES AND CULTURES Jewelry and Metalwork (and all fine arts) PROGRAM REPORT 434 Jewellery and Metalwork Start Term: No Specified End Date End Term: No Specified End Date Program Status: Approved Action Type: N/A Change Type: N/A Discontinued: No Latest Version: Yes Printed: 03/30/2015 1 Program Outline 434- Jewellery and Metalwork Program Details 434 - Jewellery and Metalwork Start Term: No Specified End Date End Term: No Specified End Date Program Details Code 434 Title Jewellery and Metalwork Start Term No Specified End Date End Term No Specified End Date Total Credits Institution Nunavut Faculty Inuit Languages and Cultures Department Jewelry and Metalwork (and all fine arts) General Information Eligible for RPL No Description The Program in Jewellery and Metalwork will enable students to develop their knowledge and skills of jewellery and metalwork production in a professional studio atmosphere. To this end the program stresses high standards of craftship and creativity, all the time encouraging and exposing students to a wide range of materials, techniques and concepts. This program is designed to allow the individual student to specialize in an area of study of particular interest. There is an emphasis on creative thinking and problem-solving throughout the program.The first year of the program provides an environment for the students to acquire the necessary skills that will enable them to translate their ideas into two and three dimensional jewellery and metalwork. This first year includes courses in: Drawing and Design, Inuit Art and Jewellery History, Lapidary and also Business and Communications.
    [Show full text]
  • The Red Emerald
    The Red Emerald Black Album Words by Seth William Rozendaal Photos by David Rozendaal This work is for the enjoyment of gemstone aficionados around the world and throughout time, and dedicated to the divine muse who inspires everything. This book celebrates the Red Emerald’s public debut at the 2017 Tucson Gem and Mineral Show. Graphics taken from the Mineralogical Record Volume 47 Number 1: Colombian Emeralds where noted. The two photos of the Heart matrix specimen on the top of the page in Section VI were taken by Wayne Schrimp. Seth Rozendaal is responsible for the landscape photo in Section II, the beveled heart in Section VI and Office Suite Graphics. The Suite Treasure necklace photo in Section XIII was taken at the Brent Isenberger Studio. Cover and all other interior photos in this album were taken by David Rozendaal. Without his tireless dedication, this publication would not have been possible. For additional information, please contact: Seth William Rozendaal (515) 868-7207 [email protected] Index I - Red Beryl IS Red Emerald II - Formation III - Matrix Specimens IV - Wafers V - Prisms VI - Twins VII - Clusters VIII - Bixbyite Combinations IX - Topaz Combinations X - Hourglass Patterning XI - The Scarlet Spectrum XII - Facet-Grade Red Emerald XIII - The Red Emerald Suite Treasure I ~ Red Beryl IS Red Emerald The human infatuation with Emeralds runs so deep, and our desire for them traces so far back… It's one of the only gemstones found in rank-signifying Neolithic headdresses. Yeah, you heard me: Caveman Crowns. Aja Raden - Author, Historian and Scientist Diamonds may be forever, but only Emeralds are eternal; our appreciation of Emeralds stretches from the beginning of human civilization to the very end.
    [Show full text]
  • Preliminary Investigation of Purple Garnet from a New Deposit in Mozambique
    GIT GEMSTONE UPDATE Preliminary Investigation of Purple Garnet from a New Deposit in Mozambique By GIT-Gem testing laboratory 11 May 2016 Introduction In March 2016, a group of Thai gem dealer led by Mr. Pichit Nilprapaporn paid a visit to the GIT and informed us about a new garnet deposit in Mozambique, that was discovered near the western border with Zimbabwe. They also displayed a large parcel of rough and a few cut stones claimed to be the material found in this new deposit (Figure 1). According to the stone’s owner, these garnet specimens were unearthed from an unconsolidated sediment layer, just a few meters below ground surface. This brief report is our preliminary investigation on the interesting vivid purple garnet from the new deposit in Mozambique. Figure 1: Mr. Pichit Nilprapaporn (center), the stone’s owner, showing a large parcel of purple gar- net roughs claimed to be from a new deposit in Mozambique to the GIT director (left). The Gem and Jewelry Institute of Thailand (Public Organization) 140, 140/1-3, 140/5 ITF-Tower Building. 1st - 4th and 6th Floor,Silom Road, Suriyawong, Bangrak, Bangkok 10500 Thailand Tel: +66 2634 4999 Fax: +66 2634 4970; Web: http://www.git.or.th; E-mail: [email protected] 11 May, 2016 Preliminary Investigation of Purple Garnet from a New Deposit in Mozambique 2 Samples and Testing Procedure The stone’s owners donated some specimens (one 6.10 ct oval-facetted stone and 13 rough samples weighing from 3.83 to 9.43 cts) to the GIT Gem Testing Laboratory for studying.
    [Show full text]
  • HIGHLIGHTS and BREAKTHROUGHS Sapphire, A
    1 HIGHLIGHTS AND BREAKTHROUGHS 2 Sapphire, a not so simple gemstone 3 F. LIN SUTHERLAND1* 4 1Geoscience, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia. 5 *E-mail: [email protected] 6 Abstract: Sapphire is a gemstone of considerable reach and is much researched. It still delivers scientific surprises, as exemplified by a 7 recent paper in American Mineralogist that re-interprets the origin of needle-like rutile inclusions that form “silk” in sapphires. 8 Understanding of variations in sapphire genesis continues to expand. Keywords: Sapphire, inclusions, trace elements, genesis 9 Sapphire as a gem variety of corundum has wide use in the gem trade as one of the more historically valuable colored gem stones 10 (CGS) and is mined from a great variety of continental gem deposits across the world. A masterly compendium on this gemstone and its 11 ramifications is recently available (Hughes 2017). As a gem, sapphire ranges through all the colors of corundum, except where 12 sufficient Cr enters its α-alumina crystal structure and causes the red color of the variety ruby. Sapphire, as a key pillar in a wide 13 economic network of gem enhancing treatments, jewelry and other manufacturing enterprises, has elicited numerous scientific and 14 gemological enquiries into its internal nature and natural genesis and subsequent treatments. A further use of sapphire as a synthetic 15 material with a great variety of purposes also has triggered a proliferation of detailed studies on its growth, properties and other element 16 substitutional effects (Dobrovinski et al. 2009). Even with this vast range of studies, this apparently simple gemstone still yields 17 controversies and breakthroughs in understanding its genetic formation.
    [Show full text]
  • Taaffeite, a New Beryllium Mineral, Found As a Cut Gem- Stone.I
    765 Taaffeite, a new beryllium mineral, found as a cut gem- stone.I By B. W. ANDERSON,B.Sc., F.C.S., C. J. PAYNE, B.Sc. Laboratory of the Diamond, Pearl, and Precious Stone Trade Section of the London Chamber of Commerce. and G. F. CLARINGBULL,B.Sc., Ph.D., F.G.S. With microchemical analysis by M. H. HEY, M.A., D.Sc. Department of Mineralogy, British Museum. [Read June 7, 1951.] ------ N October 1945 Count Taaffe,2 a brilliant if unorthodox Dublin I gemmologist, in the course of examining a motley collection of gem- stones, came across a small mauve stone which puzzled him greatly. The stone had the appearance, and most of the characters, of spinel, but afforded clear evidence of double refraction. As recounted below, this stone was later found to belong to an entirely new mineral species-the only c~se hitherto known where a mineral has been first encountered as a faceted gem. Since the precise circumstances of such a discovery have both human and technical interest, it seemed best to obtain from Count Taaffe his own account of the event. This is accordingly given below before pro- ceeding to the more formal presentation of the data on the new mineral, which has been named taaffeite in honour of its discoverer. On one of my rounds in search of gems I came to Mr. Robert Dobbie, watchmaker and working jeweller in Fleet Street, Dublin; he allowed me in his genial way to go through all his boxes in which he kept stones, to pick out any that were real-most of them were glass-and to make him an offer for them.
    [Show full text]
  • Compilation of Reported Sapphire Occurrences in Montana
    Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area ....................................
    [Show full text]
  • HK Fancy Sapphire
    Hong Kong, March 2011 Fancy Coloured Sapphires: The Beauty beyond "Blue" of Sapphire and "Red" of Ruby Dr. Michael S. Krzemnicki Swiss Gemmological Institute SSEF Switzerland All photos © M.S. Krzemnicki, SSEF except where indicated. The range of colours... © Swiss Gemmological Institute SSEF 1 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 2 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 3 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 4 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 5 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 6 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 7 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 8 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... Fancy sapphires: The colour range beyond red of rubies and blue of sapphires © Swiss Gemmological Institute SSEF 9 The range of colours... Photo: © SilkenEast Ltd, Bangkok © Swiss Gemmological Institute SSEF The range of colours... Collection: SilkenEast Ltd, Bangkok © Swiss Gemmological Institute SSEF 10 Jewellery with fancy sapphires Photos © Luc Phan, SSEF © Swiss Gemmological Institute SSEF © Swiss Gemmological PhotoInstitute © Luc SSEF Phan, SSEF 11 Corundum Chemical composition: aluminium oxide, Al2O3 Chemical pure aluminium oxide is colourless © Wikipedia In nature always with trace elements (chemical impurities), usually: - Mg, Ti, V, Cr, Fe, Ga - and occasionally rare HFS-elements such as Nb, Sn, Ta, Th Not all trace elements are affecting the colour (e.g.
    [Show full text]
  • Preciosa's Machine-Cut Beads and Pendants Are Expertly Crafted with Rigorous Attention to Detail. This Assortment of Classic S
    Beads and Pendants BEADS & PENDANTS Preciosa’s machine-cut Beads and Pendants are expertly crafted with rigorous attention to detail. This assortment of classic shapes emphasizes quality over quantity and offers a straightforward, shining selection of perfectly polished staples. 111 Colors Coatings Full Coatings Numerical order 00030 . Crystal 10330 . Light Colorado Topaz 63030 . Turquoise Crystal Light Rose Crystal AB Crystal AB 2× 00030 200** AB . Crystal AB 20020 . Light Amethyst 70010 . Rose 00030 70120 00030 200 AB 00030 20000AB 2× 00030 20000 AB 2× . Crystal AB 2× 20050 . Amethyst 70120 . Light Rose 00030 225** Cel . Crystal Celsian 20310 . Violet 70040 . Indian Pink Jet Pink Sapphire Crystal Argent Flare Crystal Golden Flare 2×* 00030 226** Val . Crystal Valentinite 20410 . Tanzanite 70220 . Pink Sapphire 23980 70220 00030 242 AgF 00030 23800 GlF 2× 00030 234** Ven . Crystal Venus 20480 . Deep Tanzanite 70350 . Fuchsia 00030 235** Hon . Crystal Honey 21110 . Amethyst Opal 71350 . Rose Opal White Opal Rose Crystal Velvet* Crystal Aurum 2×* 00030 236** Vir . Crystal Viridian 23980 . Jet 80100 . Jonquil 01000 70010 00030 279 Vel 00030 26200 Aur 2× 00030 237** Lag . Crystal Lagoon 23980 200** AB . Jet AB 80310 . Citrine 00030 23800 GlF 2× . Crystal Golden Flare 2× 23980 20700 LtHem 2× . Jet Light Hematite 2× 90040 . Hyacinth Black Diamond Indian Pink Crystal Honey Crystal Labrador 2×* 00030 239** BdF . Crystal Blond Flare 23980 272** Hem . Jet Hematite 90070 . Light Siam 40010 70040 00030 235 Hon 00030 27000 Lab 2× 00030 242** AgF . Crystal Argent Flare 23980 27200 Hem 2× . Jet Hematite 2× 90090 . Siam 00030 261** StG . Crystal Starlight Gold 30020 .
    [Show full text]
  • INCLUSIONS in AQUAMARINE from AMBATOFOTSIKELY, MADAGASCAR Fabrice Danet, Marie Schoor, Jean-Claude Boulliard, Daniel R
    NEW Danet G&G Fall 2012_Layout 1 9/27/12 11:31 AM Page 205 RAPID COMMUNICATIONS INCLUSIONS IN AQUAMARINE FROM AMBATOFOTSIKELY, MADAGASCAR Fabrice Danet, Marie Schoor, Jean-Claude Boulliard, Daniel R. Neuville, Olivier Beyssac, and Vincent Bourgoin grams of translucent to transparent beryl were pro- duced, as well as several tonnes of opaque material In January 2012, aquamarine crystals containing for industrial use. While only a very small percentage interesting inclusions were extracted from the Am- was suitable for faceting, several hundred aqua- batofotsikely area northwest of Antsirabe, Mada- marines in the 1–35 ct range have been cut. In April gascar. These specimens displayed various types 2012, one of the authors (FD) traveled to the locality of eye-visible and microscopic inclusions, and and obtained representative samples. some had an unusual form. Raman microspec- troscopy identified reddish brown plate lets as Location and Geologic Setting. The workings are lo- hematite, while ilmenite was found as black cated less than 1 km north of Ambatofotsikely (a village platelets, black needles, and distinctive dark gray now locally known as Ambatofotsy Carole), 22 km dendrites. Similar inclusions are known in beryl north-northwest of Ankazomiriotra, and 74 km north- from Brazil, India, Mozambique, and Sri Lanka. west of Antsirabe. The deposit is centered at coordinates 19°27.662¢S, 46°27.450¢E, at an elevation of 1,010 m. The site is accessed by a paved road (RN 34) from ining activity near the central Malagasy village Antsirabe to a point 16 km west of Ankazomiriotra. of Ambatofotsikely was first documented nearly From there, a trail extends 15 km to Ambatofotsikely.
    [Show full text]
  • The Journal of Gemmology Editor: Dr R.R
    he Journa TGemmolog Volume 25 No. 8 October 1997 The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London Eel N SSU Tel: 0171 404 1134 Fax: 0171 404 8843 e-mail: [email protected] Website: www.gagtl.ac.uklgagtl President: Professor R.A. Howie Vice-Presidents: LM. Bruton, Af'. ram, D.C. Kent, R.K. Mitchell Honorary Fellows: R.A. Howie, R.T. Liddicoat Inr, K. Nassau Honorary Life Members: D.). Callaghan, LA. lobbins, H. Tillander Council of Management: C.R. Cavey, T.]. Davidson, N.W. Decks, R.R. Harding, I. Thomson, V.P. Watson Members' Council: Aj. Allnutt, P. Dwyer-Hickey, R. fuller, l. Greatwood. B. jackson, J. Kessler, j. Monnickendam, L. Music, l.B. Nelson, P.G. Read, R. Shepherd, C.H. VVinter Branch Chairmen: Midlands - C.M. Green, North West - I. Knight, Scottish - B. jackson Examiners: A.j. Allnutt, M.Sc., Ph.D., leA, S.M. Anderson, B.Se. (Hons), I-CA, L. Bartlett, 13.Se, .'vI.phil., I-G/\' DCi\, E.M. Bruton, FGA, DC/\, c.~. Cavey, FGA, S. Coelho, B.Se, I-G,\' DGt\, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, f1GA, Cj.E. Halt B.Sc. (Hons), FGr\, G.M. Howe, FG,'\, oo-, G.H. jones, B.Se, PhD., FCA, M. Newton, B.Se, D.PhiL, H.L. Plumb, B.Sc., ICA, DCA, R.D. Ross, B.5e, I-GA, DGA, P..A.. Sadler, 13.5c., IGA, DCA, E. Stern, I'GA, DC/\, Prof. I.
    [Show full text]
  • Evaluation of Brilliance, Fire, and Scintillation in Round Brilliant
    Optical Engineering 46͑9͒, 093604 ͑September 2007͒ Evaluation of brilliance, fire, and scintillation in round brilliant gemstones Jose Sasian, FELLOW SPIE Abstract. We discuss several illumination effects in gemstones and University of Arizona present maps to evaluate them. The matrices and tilt views of these College of Optical Sciences maps permit one to find the stones that perform best in terms of illumi- 1630 East University Boulevard nation properties. By using the concepts of the main cutter’s line, and the Tucson, Arizona 85721 anti-cutter’s line, the problem of finding the best stones is reduced by E-mail: [email protected] one dimension in the cutter’s space. For the first time it is clearly shown why the Tolkowsky cut, and other cuts adjacent to it along the main cutter’s line, is one of the best round brilliant cuts. The maps we intro- Jason Quick duce are a valuable educational tool, provide a basis for gemstone grad- Jacob Sheffield ing, and are useful in the jewelry industry to assess gemstone American Gem Society Laboratories performance. © 2007 Society of Photo-Optical Instrumentation Engineers. 8917 West Sahara Avenue ͓DOI: 10.1117/1.2769018͔ Las Vegas, Nevada 89117 Subject terms: gemstone evaluation; gemstone grading; gemstone brilliance; gemstone fire; gemstone scintillation; gemstone cuts; round brilliant; gemstones; diamond cuts; diamonds. James Caudill American Gem Society Advanced Instruments Paper 060668R received Aug. 28, 2006; revised manuscript received Feb. 16, 8881 West Sahara Avenue 2007; accepted for publication Apr. 10, 2007; published online Oct. 1, 2007. Las Vegas, Nevada 89117 Peter Yantzer American Gem Society Laboratories 8917 West Sahara Avenue Las Vegas, Nevada 89117 1 Introduction are refracted out of the stone.
    [Show full text]