The Role of Folic Acid in Maintaining Colorectal Cancer Cell DNA Methylation Patterns and Cancer Stem Cell Phenotype in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Folic Acid in Maintaining Colorectal Cancer Cell DNA Methylation Patterns and Cancer Stem Cell Phenotype in Vitro The role of folic acid in maintaining colorectal cancer cell DNA methylation patterns and cancer stem cell phenotype in vitro By Nathan Farias A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Master of Science in Biomedical Sciences Guelph, Ontario, Canada © Nathan Farias December, 2013 ABSTRACT The role of folic acid in maintaining colorectal cancer cell DNA methylation patterns and cancer stem cell phenotype in vitro Nathan Farias Advisor: University of Guelph, 2013 Dr. B. L. Coomber Folic acid is a B vitamin involved in DNA CpG methylation. Mandated dietary fortification has led to a subsequent increase in blood folate concentration which has been correlated to a simultaneous spike in colorectal cancer incidence in Canada and the US. Several human colorectal cancer cell lines were cultivated under low (0 mg/L), standard (4 mg/L), and high (16 mg/L) folate conditions for seven days, then assessed for DNA methyltransferase1 protein expression, changes in DNA methylation, and ability to generate colonospheres in culture. Low folic acid levels generally led to reduced DNMT1 protein expression, CpG hypomethylation, and reduced colonosphere yield. High folic acid levels led to increased DNMT1 protein expression, CpG hypermethylation, and maintained colonosphere yield. This data demonstrates that varying levels of folic acid in vitro can influence the methylation status and cancer stem cell self-renewal ability of human colorectal cancer cells. ACKNOWLEDGEMENTS I would like to take this opportunity to acknowledge and thank everyone who contributed and helped me throughout the course of my masters degree. Firstly, I would like to acknowledge and thank Dr. Brenda Coomber for providing me with the opportunity to contribute to such an exciting and rewarding field as cancer research. Her passion and willingness to educate made her an invaluable resource, while her determination and commitment to research were admirable qualities that motivated me throughout my degree. Brenda’s persistence in challenging my ideas and concepts not only ensured that my work was accurate, but it contributed to the development of my critical thinking skills that I will carry on in my future endeavors. I would also like to thank my committee members Dr. Terry Van Raay and Dr. Marica Bakovic for being involved in my project and providing me with guidance and instruction throughout the course of my work. Dr. Van Raay assisted me in understanding the Wnt pathway activation in my cell model, while Dr. Bakovic assisted me in understanding the folate cycle in regards to DNA methylation. I would also like to acknowledge Dr. Bekim Sadikovic for undertaking the data analysis of the Illumina Human Methylation 450k Array. The results that he generated were important contributions to my thesis Next I would like to thank everyone involved with teaching me how to use equipment or new protocols. I would like to thank Amanda Barber for being my first instructor in a lab setting and teaching me essential techniques and protocols, such as cell culture and western blotting. Amanda gave me a running start on my project and without her it wouldn’t have been possible. Next I would like to acknowledge Jodi Morrison for not only being a fantastic technician but also a vital resource throughout the course of my work. Her substantial technical knowledge and iii patience make her and essential asset in our lab and it would be difficult to picture a smooth running operation without her. In addition to this, I would like to thank Helen Coates, Monica Antenos, Richard Gilbert and Leanne Delaney for helping me with understanding new protocols and equipment. I would like to thank all my fellow colleagues and lab mates for providing me with a fun and positive atmosphere both in and outside the lab. I would like to acknowledge Amanda Barber, Nelson Ho, Amy Richard, Sonja Zours, Richard Gilbert, Fiasal Alibhai, Peter Podobed, Lindsay Robinson, Stacey Butler, Mai Jarad, Meghan Doerr, Jonathan Asling, and Sean Masson. I would like to especially acknowledge Leanne Delaney, someone who I could always count on for assistance and reinforcement. Finally, I would like to acknowledge my friends and family from far and wide for providing me with the support and encouragement that I needed to be successful in my degree. I would like to thank Vovo (Grandma), Anthony Piccolo, Alban Vuktilaj, Alessia Piccolo, Sandra Piccolo, Jack Piccolo and the entire Delaney Family. Most importantly, I would like to thank my mother, Elvira Farias, for always being there to support and motivate me. Thank you for always showing an interest and listening to me even though you don’t really understand what I do. My mother is the inspiration for everything that I accomplish and I owe all my success to her for raising me into who I am today. I can never thank you enough. iv DECLARATION OF WORK PERFORMED I declare that all work reported in this thesis was performed by me, with the exception of the items indicated below. Illumina HumanMethylation450K BeadChip array was done at the Genetic & Molecular Epidemiology Laboratory, Hamilton General Hospital, Hamilton, ON, and analyzed by Dr. Bekim Sadikovic (Assistant Professor Pathology and Molecular Medicine, McMaster University). v TABLE OF CONTENTS ACKNOWLEDGEMENTS ........................................................................................................ iii DECLARATION OF WORK PERFORMED ...........................................................................v TABLE OF CONTENTS ........................................................................................................... vi LIST OF FIGURES ................................................................................................................... viii LIST OF ABBREVIATIONS ..................................................................................................... ix INTRODUCTION ........................................................................................................................1 LITERATURE REVIEW .............................................................................................................4 Colorectal cancer ....................................................................................................................................4 Normal Colon Homeostasis .....................................................................................................................6 Hierarchical crypt organization ...........................................................................................................6 Identifying normal ISC .........................................................................................................................7 Normal colon stem cell maintenance ...................................................................................................8 Wnt ........................................................................................................................................................8 Notch ....................................................................................................................................................9 BMP ....................................................................................................................................................10 Hedgehog ............................................................................................................................................10 Cancer Stem Cells .................................................................................................................................11 CSC assays .........................................................................................................................................12 Colon CSCs .........................................................................................................................................14 CSC niche ...........................................................................................................................................14 CSC markers .......................................................................................................................................16 DNA Methylation ..................................................................................................................................18 DNA methylation associated genetic regulation ................................................................................18 Aberrant DNA methylation in cancer .................................................................................................20 Hypomethylation in CRC .....................................................................................................................21 Hypermethylation in CRC ..................................................................................................................22 Folate, DNA Methylation, and Cancer ...............................................................................................23 Folate cycle .........................................................................................................................................24 Folate and CRC incidence ..................................................................................................................25 RATIONALE ..............................................................................................................................29 MATERIALS
Recommended publications
  • Educational Paper Ciliopathies
    Eur J Pediatr (2012) 171:1285–1300 DOI 10.1007/s00431-011-1553-z REVIEW Educational paper Ciliopathies Carsten Bergmann Received: 11 June 2011 /Accepted: 3 August 2011 /Published online: 7 September 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Cilia are antenna-like organelles found on the (NPHP) . Ivemark syndrome . Meckel syndrome (MKS) . surface of most cells. They transduce molecular signals Joubert syndrome (JBTS) . Bardet–Biedl syndrome (BBS) . and facilitate interactions between cells and their Alstrom syndrome . Short-rib polydactyly syndromes . environment. Ciliary dysfunction has been shown to Jeune syndrome (ATD) . Ellis-van Crefeld syndrome (EVC) . underlie a broad range of overlapping, clinically and Sensenbrenner syndrome . Primary ciliary dyskinesia genetically heterogeneous phenotypes, collectively (Kartagener syndrome) . von Hippel-Lindau (VHL) . termed ciliopathies. Literally, all organs can be affected. Tuberous sclerosis (TSC) . Oligogenic inheritance . Modifier. Frequent cilia-related manifestations are (poly)cystic Mutational load kidney disease, retinal degeneration, situs inversus, cardiac defects, polydactyly, other skeletal abnormalities, and defects of the central and peripheral nervous Introduction system, occurring either isolated or as part of syn- dromes. Characterization of ciliopathies and the decisive Defective cellular organelles such as mitochondria, perox- role of primary cilia in signal transduction and cell isomes, and lysosomes are well-known
    [Show full text]
  • Ciliopathies Gene Panel
    Ciliopathies Gene Panel Contact details Introduction Regional Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Levels 4-6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling analysis of genetically Samples required heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 1:2,000 5ml venous blood in plastic EDTA births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases.
    [Show full text]
  • Next Generation Massively Parallel Sequencing of Targeted
    ARTICLE Next generation massively parallel sequencing of targeted exomes to identify genetic mutations in primary ciliary dyskinesia: Implications for application to clinical testing Jonathan S. Berg, MD, PhD1,2, James P. Evans, MD, PhD1,2, Margaret W. Leigh, MD3, Heymut Omran, MD4, Chris Bizon, PhD5, Ketan Mane, PhD5, Michael R. Knowles, MD2, Karen E. Weck, MD1,6, and Maimoona A. Zariwala, PhD6 Purpose: Advances in genetic sequencing technology have the potential rimary ciliary dyskinesia (PCD) is an autosomal recessive to enhance testing for genes associated with genetically heterogeneous Pdisorder involving abnormalities of motile cilia, resulting in clinical syndromes, such as primary ciliary dyskinesia. The objective of a range of manifestations including situs inversus, neonatal this study was to investigate the performance characteristics of exon- respiratory distress at full-term birth, recurrent otitis media, capture technology coupled with massively parallel sequencing for chronic sinusitis, chronic bronchitis that may result in bronchi- 1–3 clinical diagnostic evaluation. Methods: We performed a pilot study of ectasis, and male infertility. The disorder is genetically het- four individuals with a variety of previously identified primary ciliary erogeneous, rendering molecular diagnosis challenging given dyskinesia mutations. We designed a custom array (NimbleGen) to that mutations in nine different genes (DNAH5, DNAH11, capture 2089 exons from 79 genes associated with primary ciliary DNAI1, DNAI2, KTU, LRRC50, RSPH9, RSPH4A, and TX- dyskinesia or ciliary function and sequenced the enriched material using NDC3) account for only approximately 1/3 of PCD cases.4 the GS FLX Titanium (Roche 454) platform. Bioinformatics analysis DNAH5 and DNAI1 account for the majority of known muta- was performed in a blinded fashion in an attempt to detect the previ- tions, and the other genes each account for a small number of ously identified mutations and validate the process.
    [Show full text]
  • Cldn19 Clic2 Clmp Cln3
    NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Looking for Missing Proteins in the Proteome Of
    Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, Christophe Bruley, Charlotte Macron, Anne Gonzalez de Peredo, Yohann Coute, Karima Chaoui, et al. To cite this version: Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, et al.. Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. Journal of Proteome Research, American Chemical Society, 2016, 15 (11), pp.3998-4019. 10.1021/acs.jproteome.6b00400. hal-02191502 HAL Id: hal-02191502 https://hal.archives-ouvertes.fr/hal-02191502 Submitted on 19 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Proteome Research 1 2 3 Looking for missing proteins in the proteome of human spermatozoa: an 4 update 5 6 Yves Vandenbrouck1,2,3,#,§, Lydie Lane4,5,#, Christine Carapito6, Paula Duek5, Karine Rondel7, 7 Christophe Bruley1,2,3, Charlotte Macron6, Anne Gonzalez de Peredo8, Yohann Couté1,2,3, 8 Karima Chaoui8, Emmanuelle Com7, Alain Gateau5, AnneMarie Hesse1,2,3, Marlene 9 Marcellin8, Loren Méar7, Emmanuelle MoutonBarbosa8, Thibault Robin9, Odile Burlet- 10 Schiltz8, Sarah Cianferani6, Myriam Ferro1,2,3, Thomas Fréour10,11, Cecilia Lindskog12,Jérôme 11 1,2,3 7,§ 12 Garin , Charles Pineau .
    [Show full text]
  • Ciliary Dyneins and Dynein Related Ciliopathies
    cells Review Ciliary Dyneins and Dynein Related Ciliopathies Dinu Antony 1,2,3, Han G. Brunner 2,3 and Miriam Schmidts 1,2,3,* 1 Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany; [email protected] 2 Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands; [email protected] 3 Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands * Correspondence: [email protected]; Tel.: +49-761-44391; Fax: +49-761-44710 Abstract: Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel Citation: Antony, D.; Brunner, H.G.; developments in the field.
    [Show full text]
  • IFM) Analysis of Primary Ciliary Dyskinesia (PCD) Patients with Suspected Inner Dynein Arm Defects (IDA
    Hjeij et al. Cilia 2012, 1(Suppl 1):P23 http://www.ciliajournal.com/content/1/S1/P23 POSTERPRESENTATION Open Access Immunofluorescence microscopy (IFM) analysis of primary ciliary dyskinesia (PCD) patients with suspected inner dynein arm defects (IDA) R Hjeij1*, NT Loges1, A Becker-Heck2, H Omran1 From First International Cilia in Development and Disease Scientific Conference (2012) London, UK. 16-18 May 2012 Primary ciliary dyskinesia (PCD), characterized by abnor- Author details 1Universitätsklinikum Münster, Germany. 2Department of Pediatrics, University mal motility of cilia or flagella, is caused by defects of Hospital Freiburg, Germany. structural components such as inner dynein arms (IDAs). Recently high-speed videomicroscopy has substituted Published: 16 November 2012 transmission electron microscopy (TEM) analysis as the “gold standard” for diagnosis. However, TEM is still the most widely used diagnostic tool in many countries. A doi:10.1186/2046-2530-1-S1-P23 Cite this article as: Hjeij et al.: Immunofluorescence microscopy (IFM) recent study reported that isolated IDA defects is the most analysis of primary ciliary dyskinesia (PCD) patients with suspected frequent (> 50%) ciliary defect in PCD, as detected by inner dynein arm defects (IDA). Cilia 2012 1(Suppl 1):P23. TEM (Theegarten, 2011). IFM analysis has shown in several studies that it can ascertain diagnosis such as in PCD variants caused by DNAH5, DNAI1, DNAI2, KTU, LRRC50, CCDC39 and CCDC40 mutations. IFM can pro- vide a complete view of the ciliary axoneme and identify “partial” axonemal defects which may be misinterpreted by TEM (e.g. present in KTU mutant cilia). Here we per- formed IFM analysis of known PCD patients to identify the composition of dynein arm defects, including IDAs.
    [Show full text]
  • Downloaded the CDS Fasta File and Gff File from the Ensembl Ftp Server (Release-98) [39]
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.25.266486; this version posted April 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Frequent lineage-specific substitution rate changes support an episodic model for protein evolution Neel Prabh1,2 and Diethard Tautz1 1. Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany 2. Corresponding author E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.08.25.266486; this version posted April 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 Abstract Since the inception of the molecular clock model for sequence evolution, the investigation of protein divergence has revolved around the question of a more or less constant rate of overall sequence information change. Although anomalies in clock-like divergence are described for some proteins, nowadays, the assumption of a constant decay rate for a given protein family is taken as the null model for protein evolution. Still, so far, a systematic test of this null model has not been done at a genome-wide scale despite the databases’ enormous growth. We focus here on divergence rate comparisons between closely related lineages, since this allows clear orthology assignments by synteny and unequivocal alignments, which are crucial for the determination of substitution rate changes. Thus, we generated a high-confidence dataset of syntenic orthologs from four ape species, including humans.
    [Show full text]
  • Qt38n028mr Nosplash A3e1d84
    ! ""! ACKNOWLEDGEMENTS I dedicate this thesis to my parents who inspired me to become a scientist through invigorating scientific discussions at the dinner table even when I was too young to understand what the hippocampus was. They also prepared me for the ups and downs of science and supported me through all of these experiences. I would like to thank my advisor Dr. Elizabeth Blackburn and my thesis committee members Dr. Eric Verdin, and Dr. Emmanuelle Passegue. Liz created a nurturing and supportive environment for me to explore my own ideas, while at the same time teaching me how to love science, test my questions, and of course provide endless ways to think about telomeres and telomerase. Eric and Emmanuelle both gave specific critical advice about the proper experiments for T cells and both volunteered their lab members for further critical advice. I always felt inspired with a sense of direction after thesis committee meetings. The Blackburn lab is full of smart and dedicated scientists whom I am thankful for their support. Specifically Dr. Shang Li and Dr. Brad Stohr for their stimulating scientific debates and “arguments.” Dr. Jue Lin, Dana Smith, Kyle Lapham, Dr. Tet Matsuguchi, and Kyle Jay for their friendships and discussions about what my data could possibly mean. Dr. Eva Samal for teaching me molecular biology techniques and putting up with my late night lab exercises. Beth Cimini for her expertise with microscopy, FACs, singing, and most of all for being a caring and supportive friend. Finally, I would like to thank Dr. Imke Listerman, my scientific partner for most of the breast cancer experiments.
    [Show full text]
  • DNAI2 Mutations Cause Primary Ciliary Dyskinesia with Defects in the Outer Dynein Arm
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE DNAI2 Mutations Cause Primary Ciliary Dyskinesia with Defects in the Outer Dynein Arm Niki Tomas Loges,1,2 Heike Olbrich,1 Lale Fenske,1 Huda Mussaffi,3 Judit Horvath,4 Manfred Fliegauf,1 Heiner Kuhl,5 Gyorgy Baktai,6 Erzsebet Peterffy,6 Rahul Chodhari,7 Eddie M.K. Chung,7 Andrew Rutman,8 Christopher O’Callaghan,8 Hannah Blau,3 Laszlo Tiszlavicz,9 Katarzyna Voelkel,10 Michal Witt,10,11 Ewa Zie˛tkiewicz,10 Juergen Neesen,12 Richard Reinhardt,5 Hannah M. Mitchison,7 and Heymut Omran1,* Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by chronic destructive airway disease and random- ization of left/right body asymmetry. Males often have reduced fertility due to impaired sperm tail function. The complex PCD pheno- type results from dysfunction of cilia of the airways and the embryonic node and the structurally related motile sperm flagella. This is associated with underlying ultrastructural defects that frequently involve the outer dynein arm (ODA) complexes that generate cilia and flagella movement. Applying a positional and functional candidate-gene approach, we identified homozygous loss-of-function DNAI2 mutations (IVS11þ1G > A) in four individuals from a family with PCD and ODA defects. Further mutational screening of 105 unrelated PCD families detected two distinct homozygous mutations, including a nonsense (c.787C > T) and a splicing mutation (IVS3-3T > G) resulting in out-of-frame transcripts. Analysis of protein expression of the ODA intermediate chain DNAI2 showed sublocalization throughout respiratory cilia.
    [Show full text]
  • Carrier Distribution
    Multigene Testing for Primary Ciliary Dyskinesia (PCD): Diagnostic Yield and Phenotypic Summary Jade E Tinker, Heather A Newman, Sarah E Witherington, Kendra Waller, Jennifer Thompson, Jill S. Dolinsky, Chia-Ling Gau, Brigette Tippin Davis Ambry Genetics Corporation, Aliso Viejo, California BACKGROUND METHODS MUTATION DISTRIBUTION IN • • DNA samples from 691 individuals with a clinical suspicion of PCD were POSITVE CASES Primary ciliary dyskinesia (PCD) is a rare genetic condition caused by abnormal ciliary action or structural defects in embryonic and postnatal life. referred for clinical genetic testing between November 2011 and June 2014 • Out of the 691 individuals tested, a genetic • Symptoms can include situs inversus or situs ambiguous, respiratory disease and were analyzed with a PCD multigene sequencing panel that included diagnosis (2 pathogenic mutations in with sinusitis and bronchiectasis, chronic otitis media, and male infertility. the following genes: DNAH5, DNAI1, DNAI2, DNAH11, TXNDC3, RSPH4A, autosomal recessive genes or 1 hemizygous • Historically, mutations in DNAI1 and DNAH5 were estimated to account for RSPH9, DNAAF1, DNAAF2, RPGR, OFD1, and CFTR. pathogenic mutation in X-linked genes) was up to 30% of all cases of PCD, while mutations in other known genes • Due to the high carrier frequency of cystic fibrosis (CF) and phenotypic provided in 42 individuals (6%). accounted for only a small percentage, and the genetic etiology in a large overlap between PCD and CF, the CFTR gene is included on the panel. • Of the 42 positive cases, 57% (n=24) had portion of cases remains unknown. • PCD is a recessive condition, and the majority of implicated genes are mutations identified in two genes: DNAH5 • With the availability of next generation sequencing, simultaneous autosomal.
    [Show full text]